ResearchPad - human-genetics https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Potency and breadth of human primary ZIKV immune sera shows that Zika viruses cluster antigenically as a single serotype]]> https://www.researchpad.co/article/elastic_article_7747 The recent emergence of Zika virus as an important human pathogen has raised questions about the durability and breadth of Zika virus immunity following natural infection in humans. While global epidemic patterns suggest that Zika infection elicits a protective immune response that is likely to offer long-term protection against repeat infection by other Zika viruses, only one study to date has formally examined the ability of human Zika immune sera to neutralize different Zika viruses. That study was limited because it evaluated human immune sera no more than 13 weeks after Zika virus infection and tested a relatively small number of Zika viruses. In this study, we examine twelve human Zika immune sera as far as 3 years after infection and test the sera against a total of eleven Zika virus isolates. Our results confirm the earlier study and epidemic patterns that suggest Zika virus exists in nature as a single serotype, and infection with one Zika virus can be expected to elicit protective immunity against repeat infection by any Zika virus for years to decades after the first infection.

]]>
<![CDATA[The qualitative assessment of optical coherence tomography and the central retinal sensitivity in patients with retinitis pigmentosa]]> https://www.researchpad.co/article/elastic_article_7697 To analyze the relationships between qualitative and quantitative parameters of spectral-domain optical coherence tomography (SD-OCT) and the central retinal sensitivity in patients with retinitis pigmentosa (RP).Materials and methodsNinety-three eyes of 93 patients were finally enrolled, with a median age (quartile) of 58 (24.5) years. We assessed the patients using SD-OCT and the 10–2 program of a Humphry Field Analyzer (HFA). As a qualitative parameter, two graders independently classified the patients’ SD-OCT images into five severity grades (grades 1–5) based on the severity of damage to the photoreceptor inner and outer segments (IS/OS) layer. As quantitative parameters, we measured the IS-ellipsoid zone (IS-EZ) width, IS/OS thickness, outer nuclear layer (ONL) thickness, central macular thickness (CMT, 1 and 3 mm) and macular cube (6 × 6 mm) volume and thickness. The central retinal sensitivity was defined by the best-corrected visual acuity (BCVA; logMAR), average sensitivities of the central 4 (foveal sensitivity [FS]) and 12 (macular sensitivity [MS]) points of the HFA 10–2 program and the mean deviation (MD) of the 10–2 program. Spearman’s correlation was used to assess the association between both qualitative and quantitative parameters and variables of the central retinal sensitivity. In addition, we performed a multiple regression analysis using these parameters to identify the parameters most strongly influencing the central retinal sensitivity.ResultsThe IS/OS severity grade was significantly correlated with the BCVA (ρ = 0.741, P < 0.001), FS (ρ = −0.844, P < 0.001), MS (ρ = −0.820, P < 0.001) and MD (ρ = −0.681, P < 0.001) and showed stronger correlations to them than any other quantitative parameters including the IS-EZ width, IS/OS thickness, ONL thickness, CMTs and macular cube volume/thickness. Furthermore, a step-wise multiple regression analysis indicated that the IS/OS severity grade was more strongly associated with the BCVA (β = 0.659, P < 0.001), FS (β = −0.820, P < 0.001), MS (β = −0.820, P < 0.001) and MD (β = −0.674, P < 0.001) than any other quantitative parameters. The intraclass correlation coefficient between two graders indicated substantial correlation (κ = 0.70).DiscussionThe qualitative grading of OCT based on the severity of the IS/OS layer was simple and strongly correlated with the central retinal sensitivity in patients with RP. It may be useful to assess the central visual function in patients with RP, although there is some variation in severity within the same severity grade. ]]> <![CDATA[Association between <i>ALDH2</i> Polymorphism and Gastric Cancer Risk in a Korean Population]]> https://www.researchpad.co/article/N3f22849a-687c-445c-828d-295dd5d9915e

]]>
<![CDATA[Nosocomial transmission of extensively drug resistant Acinetobacter baumannii strains in a tertiary level hospital]]> https://www.researchpad.co/article/N9f3b656c-39ce-49ef-bced-db8369f1110d

Acinetobacter baumannii is an opportunistic infectious agent that affects primarily immunocompromised individuals. A. baumannii is highly prevalent in hospital settings being commonly associated with nosocomial transmission and drug resistance. Here, we report the identification and genetic characterization of A. baumannii strains among patients in a tertiary level hospital in Mexico. Whole genome sequencing analysis was performed to establish their genetic relationship and drug resistance mutations profile. Ten genetically different, extensively drug resistant strains were identified circulating among seven wards. The genetic profiles showed resistance primarily against aminoglycosides and beta-lactam antibiotics. Importantly, no mutants conferring resistance to colistin were observed. The results highlight the importance of implementing robust classification schemes for advanced genetic characterization of A. baumannii clinical isolates and simultaneous detection of drug resistance markers for adequate patient’s management in clinical settings.

]]>
<![CDATA[A framework for gene mapping in wheat demonstrated using the Yr7 yellow rust resistance gene]]> https://www.researchpad.co/article/N8aa5bdf2-6390-43c2-aef2-b7a76659179a

We used three approaches to map the yellow rust resistance gene Yr7 and identify associated SNPs in wheat. First, we used a traditional QTL mapping approach using a double haploid (DH) population and mapped Yr7 to a low-recombination region of chromosome 2B. To fine map the QTL, we then used an association mapping panel. Both populations were SNP array genotyped allowing alignment of QTL and genome-wide association scans based on common segregating SNPs. Analysis of the association panel spanning the QTL interval, narrowed the interval down to a single haplotype block. Finally, we used mapping-by-sequencing of resistant and susceptible DH bulks to identify a candidate gene in the interval showing high homology to a previously suggested Yr7 candidate and to populate the Yr7 interval with a higher density of polymorphisms. We highlight the power of combining mapping-by-sequencing, delivering a complete list of gene-based segregating polymorphisms in the interval with the high recombination, low LD precision of the association mapping panel. Our mapping-by-sequencing methodology is applicable to any trait and our results validate the approach in wheat, where with a near complete reference genome sequence, we are able to define a small interval containing the causative gene.

]]>
<![CDATA[Multi-omics characterization of molecular features of gastric cancer correlated with response to neoadjuvant chemotherapy]]> https://www.researchpad.co/article/N3308b82d-7816-4a17-bf1c-d6fc16156b95

We performed the multi-omic characterization of gastric cancer to detect key molecular features for neoadjuvant chemotherapy.

]]>
<![CDATA[Systematic scoping review of the concept of ‘genetic identity’ and its relevance for germline modification]]> https://www.researchpad.co/article/Nb5b3e5e6-9f74-4bf5-850c-740f6e227f81

EU legislation prohibits clinical trials that modify germ line ‘genetic identity’. ‘Genetic identity’ however, is left undefined. This study aims to identify the use of the term ‘genetic identity’ in academic literature, and investigate its relevance for debates on genetic modification. A total of 616 articles that contained the term were identified. Content analysis revealed that the term was used in various and contradicting ways and a clear understanding of the term is lacking. This review demonstrates that the EU legislation is open to interpretation, because of the diversity of meaning with which ‘genetic identity’ is currently used. Because of the diversity of meaning with which ‘genetic identity’ is used and understood, further reflection is needed. This requires further medical, legal, ethical and social debate and a coordinated response at both a European and a global level.

]]>
<![CDATA[Mixed evidence for the relationship between periodontitis and Alzheimer’s disease: A bidirectional Mendelian randomization study]]> https://www.researchpad.co/article/N89b89fe7-2f39-423b-9f5f-6e2e7b2736b5

Recent experimental studies indicated that a periodontitis-causing bacterium might be a causal factor for Alzheimer’s disease (AD). We applied a two-sample Mendelian randomization (MR) approach to examine the potential causal relationship between chronic periodontitis and AD bidirectionally in the population of European ancestry. We used publicly available data of genome-wide association studies (GWAS) on periodontitis and AD. Five single-nucleotide polymorphisms (SNPs) were used as instrumental variables for periodontitis. For the MR analysis of periodontitis on risk of AD, the causal odds ratio (OR) and 95% confidence interval (CI) were derived from the GWAS of periodontitis (4,924 cases vs. 7,301 controls) and from the GWAS of AD (21,982 cases vs. 41,944 controls). Seven non-overlapping SNPs from another latest GWAS of periodontitis was used to validate the above association. Twenty SNPs were used as instrumental variables for AD. For the MR analysis of liability to AD on risk of periodontitis, the causal OR was derived from the GWAS of AD including 30,344 cases and 52,427 controls and from the GWAS of periodontitis consisted of 12,289 cases and 22,326 controls. We employed multiple methods of MR. Using the five SNPs as instruments of periodontitis, there was suggestive evidence of genetically predicted periodontitis being associated with a higher risk of AD (OR 1.10, 95% CI 1.02 to 1.19, P = 0.02). However, this association was not verified using the seven independent SNPs (OR 0.97, 95% CI 0.87 to 1.08, P = 0.59). There was no association of genetically predicted AD with the risk of periodontitis (OR 1.00, 95% CI 0.96 to 1.04, P = 0.85). In summary, we did not find convincing evidence to support periodontitis being a causal factor for the development of AD. There was also limited evidence to suggest genetic liability to AD being associated with the risk of periodontitis.

]]>
<![CDATA[Mild Zellweger syndrome due to functionally confirmed novel PEX1 variants]]> https://www.researchpad.co/article/N2e167d9f-36bc-4b95-876a-2f2393173328

Zellweger spectrum disorders (ZSD) constitute a group of rare autosomal recessive disorders characterized by a defect in peroxisome biogenesis due to mutations in one of 13 PEX genes. The broad clinical heterogeneity especially in late-onset presenting patients and a mild phenotype complicates and delays the diagnostic process. Here, we report a case of mild ZSD, due to novel PEX1 variants. The patient presented with an early hearing loss, bilateral cataracts, and leukodystrophy on magnetic resonance (MR) images. Normal results of serum very-long-chain fatty acids (VLCFA) and phytanic acid were found. Molecular diagnostics were performed to uncover the etiology of the clinical phenotype. Using whole exome sequencing, there have been found two variants in the PEX1 gene—c.3450T>A (p.Cys1150*) and c.1769T>C (p.Leu590Pro). VLCFA measurement in skin fibroblasts and C26:0-lysoPC in dried blood spot therefore was performed. Both results were in line with the diagnosis of ZSD. To conclude, normal results of routine serum VLCFA and branched-chain fatty acid measurement do not exclude mild forms of ZSD. The investigation of C26:0-lysoPC should be included in the diagnostic work-up in patients with cataract, hearing loss, and leukodystrophy on MR images suspected to suffer from ZSD.

]]>
<![CDATA[Genome-wide haplotype-based association analysis of key traits of plant lodging and architecture of maize identifies major determinants for leaf angle: hapLA4]]> https://www.researchpad.co/article/5c89773ed5eed0c4847d27e7

Traits related to plant lodging and architecture are important determinants of plant productivity in intensive maize cultivation systems. Motivated by the identification of genomic associations with the leaf angle, plant height (PH), ear height (EH) and the EH/PH ratio, we characterized approximately 7,800 haplotypes from a set of high-quality single nucleotide polymorphisms (SNPs), in an association panel consisting of tropical maize inbred lines. The proportion of the phenotypic variations explained by the individual SNPs varied between 7%, for the SNP S1_285330124 (located on chromosome 9 and associated with the EH/PH ratio), and 22%, for the SNP S1_317085830 (located on chromosome 6 and associated with the leaf angle). A total of 40 haplotype blocks were significantly associated with the traits of interest, explaining up to 29% of the phenotypic variation for the leaf angle, corresponding to the haplotype hapLA4.04, which was stable over two growing seasons. Overall, the associations for PH, EH and the EH/PH ratio were environment-specific, which was confirmed by performing a model comparison analysis using the information criteria of Akaike and Schwarz. In addition, five stable haplotypes (83%) and 15 SNPs (75%) were identified for the leaf angle. Finally, approximately 62% of the associated haplotypes (25/40) did not contain SNPs detected in the association study using individual SNP markers. This result confirms the advantage of haplotype-based genome-wide association studies for examining genomic regions that control the determining traits for architecture and lodging in maize plants.

]]>
<![CDATA[Ser96Ala genetic variant of the human histidine-rich calcium-binding protein is a genetic predictor of recurrence after catheter ablation in patients with paroxysmal atrial fibrillation]]> https://www.researchpad.co/article/5c897742d5eed0c4847d2858

Background

Atrial fibrillation (AF) recurrence after radiofrequency catheter ablation (RFCA) still remains a serious issue. Ca2+ handling has a considerable effect on AF recurrence. The histidine-rich calcium-binding protein (HRC) genetic single nucleotide polymorphism (SNP), rs3745297 (T>G, Ser96Ala), is known to cause a sarcoplasmic reticulum Ca2+ leak. We investigated the association between HRC Ser96Ala and AF recurrence after RFCA in paroxysmal AF (PAF) patients.

Methods and results

We enrolled PAF patients who underwent RFCA (N = 334 for screening and N = 245 for replication) and were genotyped for HRC SNP (rs3745297). The patient age was younger and rate of diabetes and hypertension lower in the PAF patients with Ser96Ala than in those without (TT/TG/GG, 179/120/35; 64±10/60±12/59±13 y, P = 0.001; 18.5/ 9.2/8.6%, P = 0.04 and 66.1/50.0/37.1%, P = 0.001, respectively). During a mean 19 month follow-up, 57 (17.1%) patients suffered from AF recurrences. The rate of an Ser96Ala was significantly higher in patients with AF recurrence than in those without in the screening set (allele frequency model: odds ratio [OR], 1.80; P = 0.006). We also confirmed this significant association in the replication set (OR 1.74; P = 0.03) and combination (P = 0.0008). A multivariate analysis revealed that the AF duration, sinus node dysfunction, and HRC Ser96Ala were independent predictors of an AF recurrence (hazard ratio [HR], 1.04, P = 0.037; HR 2.42, P = 0.018; and HR 2.66, P = 0.007, respectively).

Conclusion

HRC SNP Ser96Ala is important as a new genetic marker of AF recurrence after RFCA.

]]>
<![CDATA[Genetic association and transcriptome integration identify contributing genes and tissues at cystic fibrosis modifier loci]]> https://www.researchpad.co/article/5c7ee7c7d5eed0c4848f4db2

Cystic Fibrosis (CF) exhibits morbidity in several organs, including progressive lung disease in all patients and intestinal obstruction at birth (meconium ileus) in ~15%. Individuals with the same causal CFTR mutations show variable disease presentation which is partly attributed to modifier genes. With >6,500 participants from the International CF Gene Modifier Consortium, genome-wide association investigation identified a new modifier locus for meconium ileus encompassing ATP12A on chromosome 13 (min p = 3.83x10-10); replicated loci encompassing SLC6A14 on chromosome X and SLC26A9 on chromosome 1, (min p<2.2x10-16, 2.81x10−11, respectively); and replicated a suggestive locus on chromosome 7 near PRSS1 (min p = 2.55x10-7). PRSS1 is exclusively expressed in the exocrine pancreas and was previously associated with non-CF pancreatitis with functional characterization demonstrating impact on PRSS1 gene expression. We thus asked whether the other meconium ileus modifier loci impact gene expression and in which organ. We developed and applied a colocalization framework called the Simple Sum (SS) that integrates regulatory and genetic association information, and also contrasts colocalization evidence across tissues or genes. The associated modifier loci colocalized with expression quantitative trait loci (eQTLs) for ATP12A (p = 3.35x10-8), SLC6A14 (p = 1.12x10-10) and SLC26A9 (p = 4.48x10-5) in the pancreas, even though meconium ileus manifests in the intestine. The meconium ileus susceptibility locus on chromosome X appeared shifted in location from a previously identified locus for CF lung disease severity. Using the SS we integrated the lung disease association locus with eQTLs from nasal epithelia of 63 CF participants and demonstrated evidence of colocalization with airway-specific regulation of SLC6A14 (p = 2.3x10-4). Cystic Fibrosis is realizing the promise of personalized medicine, and identification of the contributing organ and understanding of tissue specificity for a gene modifier is essential for the next phase of personalizing therapeutic strategies.

]]>
<![CDATA[HCV transmission in high-risk communities in Bulgaria]]> https://www.researchpad.co/article/5c882406d5eed0c4846395b0

Background

The rate of HIV infection in Bulgaria is low. However, the rate of HCV-HIV-coinfection and HCV infection is high, especially among high-risk communities. The molecular epidemiology of those infections has not been studied before.

Methods

Consensus Sanger sequences of HVR1 and NS5B from 125 cases of HIV/HCV coinfections, collected during 2010–2014 in 15 different Bulgarian cities, were used for preliminary phylogenetic evaluation. Next-generation sequencing (NGS) data of the hypervariable region 1 (HVR1) analyzed via the Global Hepatitis Outbreak and Surveillance Technology (GHOST) were used to evaluate genetic heterogeneity and possible transmission linkages. Links between pairs that were below and above the established genetic distance threshold, indicative of transmission, were further examined by generating k-step networks.

Results

Preliminary genetic analyses showed predominance of HCV genotype 1a (54%), followed by 1b (20.8%), 2a (1.4%), 3a (22.3%) and 4a (1.4%), indicating ongoing transmission of many HCV strains of different genotypes. NGS of HVR1 from 72 cases showed significant genetic heterogeneity of intra-host HCV populations, with 5 cases being infected with 2 different genotypes or subtypes and 6 cases being infected with 2 strains of same subtype. GHOST revealed 8 transmission clusters involving 30 cases (41.7%), indicating a high rate of transmission.

Four transmission clusters were found in Sofia, three in Plovdiv, and one in Peshtera. The main risk factor for the clusters was injection drug use. Close genetic proximity among HCV strains from the 3 Sofia clusters, and between HCV strains from Peshtera and one of the two Plovdiv clusters confirms a long and extensive transmission history of these strains in Bulgaria.

Conclusions

Identification of several HCV genotypes and many HCV strains suggests a frequent introduction of HCV to the studied high-risk communities. GHOST detected a broad transmission network, which sustains circulation of several HCV strains since their early introduction in the 3 cities. This is the first report on the molecular epidemiology of HIV/HCV coinfections in Bulgaria.

]]>
<![CDATA[Fast and flexible linear mixed models for genome-wide genetics]]> https://www.researchpad.co/article/5c6730aed5eed0c484f37eb1

Linear mixed effect models are powerful tools used to account for population structure in genome-wide association studies (GWASs) and estimate the genetic architecture of complex traits. However, fully-specified models are computationally demanding and common simplifications often lead to reduced power or biased inference. We describe Grid-LMM (https://github.com/deruncie/GridLMM), an extendable algorithm for repeatedly fitting complex linear models that account for multiple sources of heterogeneity, such as additive and non-additive genetic variance, spatial heterogeneity, and genotype-environment interactions. Grid-LMM can compute approximate (yet highly accurate) frequentist test statistics or Bayesian posterior summaries at a genome-wide scale in a fraction of the time compared to existing general-purpose methods. We apply Grid-LMM to two types of quantitative genetic analyses. The first is focused on accounting for spatial variability and non-additive genetic variance while scanning for QTL; and the second aims to identify gene expression traits affected by non-additive genetic variation. In both cases, modeling multiple sources of heterogeneity leads to new discoveries.

]]>
<![CDATA[An African-specific haplotype in MRGPRX4 is associated with menthol cigarette smoking]]> https://www.researchpad.co/article/5c706741d5eed0c4847c6cc6

In the U.S., more than 80% of African-American smokers use mentholated cigarettes, compared to less than 30% of Caucasian smokers. The reasons for these differences are not well understood. To determine if genetic variation contributes to mentholated cigarette smoking, we performed an exome-wide association analysis in a multiethnic population-based sample from Dallas, TX (N = 561). Findings were replicated in an independent cohort of African Americans from Washington, DC (N = 741). We identified a haplotype of MRGPRX4 (composed of rs7102322[G], encoding N245S, and rs61733596[G], T43T), that was associated with a 5-to-8 fold increase in the odds of menthol cigarette smoking. The variants are present solely in persons of African ancestry. Functional studies indicated that the variant G protein-coupled receptor encoded by MRGPRX4 displays reduced agonism in both arrestin-based and G protein-based assays, and alteration of agonism by menthol. These data indicate that genetic variation in MRGPRX4 contributes to inter-individual and inter-ethnic differences in the preference for mentholated cigarettes, and that the existence of genetic factors predisposing vulnerable populations to mentholated cigarette smoking can inform tobacco control and public health policies.

]]>
<![CDATA[Using topic modeling via non-negative matrix factorization to identify relationships between genetic variants and disease phenotypes: A case study of Lipoprotein(a) (LPA)]]> https://www.researchpad.co/article/5c6dc9d5d5eed0c48452a2b4

Genome-wide and phenome-wide association studies are commonly used to identify important relationships between genetic variants and phenotypes. Most studies have treated diseases as independent variables and suffered from the burden of multiple adjustment due to the large number of genetic variants and disease phenotypes. In this study, we used topic modeling via non-negative matrix factorization (NMF) for identifying associations between disease phenotypes and genetic variants. Topic modeling is an unsupervised machine learning approach that can be used to learn patterns from electronic health record data. We chose the single nucleotide polymorphism (SNP) rs10455872 in LPA as the predictor since it has been shown to be associated with increased risk of hyperlipidemia and cardiovascular diseases (CVD). Using data of 12,759 individuals with electronic health records (EHR) and linked DNA samples at Vanderbilt University Medical Center, we trained a topic model using NMF from 1,853 distinct phenotypes and identified six topics. We tested their associations with rs10455872 in LPA. Topics enriched for CVD and hyperlipidemia had positive correlations with rs10455872 (P < 0.001), replicating a previous finding. We also identified a negative correlation between LPA and a topic enriched for lung cancer (P < 0.001) which was not previously identified via phenome-wide scanning. We were able to replicate the top finding in a separate dataset. Our results demonstrate the applicability of topic modeling in exploring the relationship between genetic variants and clinical diseases.

]]>
<![CDATA[A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population]]> https://www.researchpad.co/article/5c6c75dbd5eed0c4843d0337

Bacterial blight (BB) caused by the Xanthomonas oryzae pv. oryzae (Xoo) pathogen is a significant disease in most rice cultivation areas. The disease is estimated to cause annual rice production losses of 20–30 percent throughout rice-growing countries in Asia. The discovery and deployment of durable resistance genes for BB is an effective and sustainable means of mitigating production losses. In this study QTL analysis and fine mapping were performed using an F2 and a BC2F2 population derived from a cross with a new R-donor having broad spectrum resistance to Korean BB races. The QTL qBB11 was identified by composite interval mapping and explained 31.25% of the phenotypic variation (R2) with LOD values of 43.44 harboring two SNP markers. The single major R-gene was designated Xa43 (t). Through dissection of the target region we were able to narrow the region to within 27.83–27.95 Mbp, a physical interval of about 119-kb designated by the two flanking markers IBb27os11_14 and S_BB11.ssr_9. Of nine ORFs in the target region two ORFs revealed significantly different expression levels of the candidate genes. From these results we developed a marker specific to this R-gene, which will have utility for future BB resistance breeding and/or R-gene pyramiding using marker assisted selection. Further characterization of the R-gene would be helpful to enhance understanding of mechanisms of BB resistance in rice.

]]>
<![CDATA[Convergent perturbation of the human domain-resolved interactome by viruses and mutations inducing similar disease phenotypes]]> https://www.researchpad.co/article/5c6dc9afd5eed0c484529ff0

An important goal of systems medicine is to study disease in the context of genetic and environmental perturbations to the human interactome network. For diseases with both genetic and infectious contributors, a key postulate is that similar perturbations of the human interactome by either disease mutations or pathogens can have similar disease consequences. This postulate has so far only been tested for a few viral species at the level of whole proteins. Here, we expand the scope of viral species examined, and test this postulate more rigorously at the higher resolution of protein domains. Focusing on diseases with both genetic and viral contributors, we found significant convergent perturbation of the human domain-resolved interactome by endogenous genetic mutations and exogenous viral proteins inducing similar disease phenotypes. Pan-cancer, pan-oncovirus analysis further revealed that domains of human oncoproteins either physically targeted or structurally mimicked by oncoviruses are enriched for cancer driver rather than passenger mutations, suggesting convergent targeting of cancer driver pathways by diverse oncoviruses. Our study provides a framework for high-resolution, network-based comparison of various disease factors, both genetic and environmental, in terms of their impacts on the human interactome.

]]>
<![CDATA[Variance components for bovine tuberculosis infection and multi-breed genome-wide association analysis using imputed whole genome sequence data]]> https://www.researchpad.co/article/5c6f1539d5eed0c48467af0c

Bovine tuberculosis (bTB) is an infectious disease of cattle generally caused by Mycobacterium bovis, a bacterium that can elicit disease humans. Since the 1950s, the objective of the national bTB eradication program in Republic of Ireland was the biological extinction of bTB; that purpose has yet to be achieved. Objectives of the present study were to develop the statistical methodology and variance components to undertake routine genetic evaluations for resistance to bTB; also of interest was the detection of regions of the bovine genome putatively associated with bTB infection in dairy and beef breeds. The novelty of the present study, in terms of research on bTB infection, was the use of beef breeds in the genome-wide association and the utilization of imputed whole genome sequence data. Phenotypic bTB data on 781,270 animals together with imputed whole genome sequence data on 7,346 of these animals’ sires were available. Linear mixed models were used to quantify variance components for bTB and EBVs were validated. Within-breed and multi-breed genome-wide associations were undertaken using a single-SNP regression approach. The estimated genetic standard deviation (0.09), heritability (0.12), and repeatability (0.30) substantiate that genetic selection help to eradicate bTB. The multi-breed genome-wide association analysis identified 38 SNPs and 64 QTL regions associated with bTB infection; two QTL regions (both on BTA23) identified in the multi-breed analysis overlapped with the within-breed analyses of Charolais, Limousin, and Holstein-Friesian. Results from the association analysis, coupled with previous studies, suggest bTB is controlled by an infinitely large number of loci, each having a small effect. The methodology and results from the present study will be used to develop national genetic evaluations for bTB in the Republic of Ireland. In addition, results can also be used to help uncover the biological architecture underlying resistance to bTB infection in cattle.

]]>
<![CDATA[Training set optimization of genomic prediction by means of EthAcc]]> https://www.researchpad.co/article/5c75ac8dd5eed0c484d08a24

Genomic prediction is a useful tool for plant and animal breeding programs and is starting to be used to predict human diseases as well. A shortcoming that slows down the genomic selection deployment is that the accuracy of the prediction is not known a priori. We propose EthAcc (Estimated THeoretical ACCuracy) as a method for estimating the accuracy given a training set that is genotyped and phenotyped. EthAcc is based on a causal quantitative trait loci model estimated by a genome-wide association study. This estimated causal model is crucial; therefore, we compared different methods to find the one yielding the best EthAcc. The multilocus mixed model was found to perform the best. We compared EthAcc to accuracy estimators that can be derived via a mixed marker model. We showed that EthAcc is the only approach to correctly estimate the accuracy. Moreover, in case of a structured population, in accordance with the achieved accuracy, EthAcc showed that the biggest training set is not always better than a smaller and closer training set. We then performed training set optimization with EthAcc and compared it to CDmean. EthAcc outperformed CDmean on real datasets from sugar beet, maize, and wheat. Nonetheless, its performance was mainly due to the use of an optimal but inaccessible set as a start of the optimization algorithm. EthAcc’s precision and algorithm issues prevent it from reaching a good training set with a random start. Despite this drawback, we demonstrated that a substantial gain in accuracy can be obtained by performing training set optimization.

]]>