ResearchPad - hydrology https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Selected wetland soil properties correlate to Rift Valley fever livestock mortalities reported in 2009-10 in central South Africa]]> https://www.researchpad.co/article/elastic_article_15754 Outbreaks of Rift Valley fever have devastating impacts on ruminants, humans, as well as on regional and national economies. Although numerous studies on the impact and outbreak of Rift Valley fever exist, relatively little is known about the role of environmental factors, especially soil, on the aestivation of the virus. This study thus selected 22 sites for study in central South Africa, known to be the recurrent epicenter of widespread Rift Valley fever outbreaks in Southern Africa. Soils were described, sampled and analyzed in detail at each site. Of all the soil variables analyzed for, only eight (cation exchange capacity, exchangeable Ca2+, exchangeable K+, exchangeable Mg2+, soluble Ca2+, medium sand, As, and Br) were statistically identified to be potential indicators of sites with reported Rift Valley fever mortalities, as reported for the 2009–2010 Rift Valley fever outbreak. Four soil characteristics (exchangeable K+, exchangeable Mg2+, medium sand, and Br) were subsequently included in a discriminant function that could potentially be used to predict sites that had reported Rift Valley fever-associated mortalities in livestock. This study therefore constitutes an initial attempt to predict sites prone to Rift Valley fever livestock mortality from soil properties and thus serves as a basis for broader research on the interaction between soil, mosquitoes and Rift Valley fever virus. Future research should include other environmental components such as vegetation, climate, and water properties as well as correlating soil properties with floodwater Aedes spp. abundance and Rift Valley fever virus prevalence.

]]>
<![CDATA[The improved and the unimproved: Factors influencing sanitation and diarrhoea in a peri-urban settlement of Lusaka, Zambia]]> https://www.researchpad.co/article/elastic_article_14479 Accounting for peri-urban sanitation poses a unique challenge due to its high density, unplanned stature, with limited space and funding for conventional sanitation instalment. To better understand users, needs and inform peri-urban sanitation policy, our study used multivariate stepwise logistic regression to assess the factors associated with use of improved (toilet) and unimproved (chamber) sanitation facilities among peri-urban residents. We analysed data from 205 household heads in 1 peri-urban settlement of Lusaka, Zambia on socio-demographics (economic status, education level, marital status, etc.), household sanitation characteristics (toilet facility, ownership and management) and household diarrhoea prevalence. Household water, sanitation and hygiene (WASH) facilities were assessed based on WHO-UNICEF criteria. Of particular interest was the simultaneous use of toilet facilities and chambers, an alternative form of unimproved sanitation with focus towards all-in-one suitable alternatives. Findings revealed that having a regular income, private toilet facility, improved drinking water and handwashing facility were all positively correlated to having an improved toilet facility. Interestingly, both improved toilets and chambers indicated increased odds for diarrhoea prevalence. Odds of chamber usage were also higher for females and users of unimproved toilet facilities. Moreover, when toilets were owned by residents, and hygiene was managed externally, use of chambers was more likely. Findings finally revealed higher diarrhoea prevalence for toilets with more users. Results highlight the need for a holistic, simultaneous approach to WASH for overall success in sanitation. To better access and increase peri-urban sanitation, this study recommends a separate sanitation ladder for high density areas which considers improved private and shared facilities, toilet management and all-inclusive usage (cancelling unimproved alternatives). It further calls for financial plans supporting urban poor access to basic sanitation and increased education on toilet facility models, hygiene, management and risk to help with choice and proper facility use to maximize toilet use benefit.

]]>
<![CDATA[Impacts of host gender on <i>Schistosoma mansoni</i> risk in rural Uganda—A mixed-methods approach]]> https://www.researchpad.co/article/elastic_article_13851 Globally, over 230 million people are infected with schistosomiasis, an infectious disease caused by parasitic helminths. Humans can get infected when they contact water which contains Schistosoma parasites. Although the disease can be treated with a drug, people get rapidly reinfected in certain high-transmission settings. Drug treatment alone may not be sufficient to eliminate this disease and additional interventions such as health promotion or improvements in water and sanitation need to be scaled up. To provide recommendations to these control programmes we carried out interdisciplinary research in Eastern Uganda to understand the influence of gender on schistosomiasis risk. We found that the water contact behaviour of boys and girls is quite similar, and we did not see differences in reinfection or genetic diversity of the parasite between boys and girls. Differences in water contact between genders is greater in adults, and further research is required for these individuals. In this setting, infection rates are high in school-aged children and there are no differences between genders. These results emphasise improved control efforts for all school-aged children in communities like these. Our interdisciplinary approach provided complementary findings. Such an integrated approach can therefore have more power to meaningfully inform policy on schistosomiasis control.

]]>
<![CDATA[Instigation of indigenous thermophilic bacterial consortia for enhanced oil recovery from high temperature oil reservoirs]]> https://www.researchpad.co/article/elastic_article_13812 The purpose of the study involves the development of an anaerobic, thermophilic microbial consortium TERIK from the high temperature reservoir of Gujarat for enhance oil recovery. To isolate indigenous microbial consortia, anaerobic baltch media were prepared and inoculated with the formation water; incubated at 65°C for 10 days. Further, the microbial metabolites were analyzed by gas chromatography, FTIR and surface tension. The efficiency of isolated consortia towards enhancing oil recovery was analyzed through core flood assay. The novelty of studied consortia was that, it produces biomass (600 mg/l), bio-surfactant (325 mg/l), and volatile fatty acids (250 mg/l) at 65°C in the span of 10 days, that are adequate to alter the surface tension (70 to 34 mNm -1) and sweep efficiency of zones facilitating the displacement of oil. TERIK was identified as Clostridium sp. The FTIR spectra of biosurfactant indicate the presence of N-H stretch, amides and polysaccharide. A core flooding assay was designed to explore the potential of TERIK towards enhancing oil recovery. The results showed an effective reduction in permeability at residual oil saturation from 2.14 ± 0.1 to 1.39 ± 0.05 mD and 19% incremental oil recovery.

]]>
<![CDATA[Investigating barriers and challenges to the integrated management of neglected tropical skin diseases in an endemic setting in Nigeria]]> https://www.researchpad.co/article/elastic_article_13828 Community perceptions of causation of neglected tropical diseases (NTDs) of the skin may play an important role in access to or utilization of health services. The World Health Organization (WHO) has recommended empowerment of populations affected by or at risk of NTDs in control interventions. Furthermore, the WHO recommends that social mobilisation needs to be maintained in order to create demand for integrated management of skin NTDs and to address specific community aspects and concerns related to the diseases. There are no studies on community knowledge, attitudes and practices (KAP) on skin NTDs co-occurring in the same community in Nigeria. We surveyed community members and health workers and also held group discussions with community members, health workers and individuals with lymphatic filariasis and Buruli ulcer in order to assess their understanding of the causes, treatment and effects of the skin NTDs (leprosy, Buruli ulcer and lymphatic filariasis) which were all occurring in the study communities. There was a shared understanding that these NTDs were caused by germ/infection or through witchcraft/curse/poison. Also, a substantial proportion of the community believed that these conditions are not amenable to treatment. The focus group discussions reinforced these findings.

]]>
<![CDATA[Effects of sea-level rise on physiological ecology of populations of a ground-dwelling ant]]> https://www.researchpad.co/article/N7f89605c-5421-4b76-a019-ba0e7ddd5b34

Introduction

Sea-level rise is a consequence of climate change that can impact the ecological and physiological changes of coastal, ground-dwelling species. Sea-level rise has a potential to inundate birds, rodents, spiders, and insects that live on the ground in coastal areas. Yet, there is still much to be learned concerning the specifics of these impacts. The red imported fire ant Solenopsis invicta (Buren) excavates soil for its home and is capable of surviving flooding. Because of their ground-dwelling life history and rapid reproduction, fire ants make an ideal model for discovery and prediction of changes that may be due to sea-level rise. There are up to 500,000 individuals in a colony, and these invasive ants naturally have a painful sting. However, observations suggest that colonies of fire ants that dwell in tidally-influenced areas are more aggressive with more frequent stings and more venom injected per sting (behavioral and physiological changes) than those located inland. This may be an adaption to sea-level rise. Therefore, the objective of this study is to elucidate differences in inland and coastal defensiveness via micro-dissection and comparison of head width, head length, stinger length, and venom sac volume. But first because fire ants’ ability to raft on brackish tidal water is unknown, it had to be determined if fire ants could indeed raft in brackish water and examine the behavior differences between those flooded with freshwater vs. saltwater.

Methods

To test the coastal-aggression hypothesis, inland colonies and coastal colonies, which experience relatively greater amounts of flooding, specifically regular tidal and windblown water and oscillations (i.e. El Nińo Southern Oscillation) from the Gulf of Mexico, were collected. To mimic sea-level rise, the colonies were flooded in salinities that correspond to both their collection site and conditions found in a variety of locales and situations (such as storm surge from a tropical storm). Individual ants were immediately taken from each colony for dissection before flooding, 1-hour into flooding, and 24-hours into flooding.

Results and discussion

Fire ants use their venom to defend themselves and to communicate alarm or aggression. Dissections and measurement of heads, venom sacs, and stingers revealed both coastal and inland colonies experience an increase in venom sac volume after 24 hours; in fact coastal colonies increased their venom volume by 75% after 24 h of flooding Whether this venom sac enlargement is due to diffusion of water or venom sac production is unknown. These ground-dwelling ants exhibit physiological and behavioral adaptations to ongoing sea-level rise possibly indicating that they are responding to increased flooding. Fire ants will raft on high-salinity water; and sea-level rise may cause stings by flooded ants to be more severe because of increased venom volume.

]]>
<![CDATA[Lake-depth related pattern of genetic and morphological diatom diversity in boreal Lake Bolshoe Toko, Eastern Siberia]]> https://www.researchpad.co/article/N3e538c26-938b-46fc-81d6-ffac689cc377

Large, old and heterogenous lake systems are valuable sources of biodiversity. The analysis of current spatial variability within such lakes increases our understanding of the origin and establishment of biodiversity. The environmental sensitivity and the high taxonomic richness of diatoms make them ideal organisms to investigate intra-lake variability. We investigated modern intra-lake diatom diversity in the large and old sub-arctic Lake Bolshoe Toko in Siberia. Our study uses diatom-specific metabarcoding, applying a short rbcL marker combined with next-generation sequencing and morphological identification to analyse the diatom diversity in modern sediment samples of 17 intra-lake sites. We analysed abundance-based compositional taxonomic diversity and generic phylogenetic diversity to investigate the relationship of diatom diversity changes with water depth. The two approaches show differences in taxonomic identification and alpha diversity, revealing a generally higher diversity with the genetic approach. With respect to beta diversity and ordination analyses, both approaches result in similar patterns. Water depth or related lake environmental conditions are significant factors influencing intra-lake diatom patterns, showing many significant negative correlations between alpha and beta diversity and water depth. Further, one near-shore and two lagoon lake sites characterized by low (0-10m) and medium (10-30m) water depth are unusual with unique taxonomic compositions. At deeper (>30m) water sites we identified strongest phylogenetic clustering in Aulacoseira, but generally much less in Staurosira, which supports that water depth is a strong environmental filter on the Aulacoseira communities. Our study demonstrates the utility of combining analyses of genetic and morphological as well as phylogenetic diversity to decipher compositional and generic phylogenetic patterns, which are relevant in understanding intra-lake heterogeneity as a source of biodiversity in the sub-arctic glacial Lake Bolshoe Toko.

]]>
<![CDATA[Modeling the Relationship of Groundwater Salinity to Neonatal and Infant Mortality From the Bangladesh Demographic Health Survey 2000 to 2014]]> https://www.researchpad.co/article/N282f9af1-03b6-46af-ab8d-637967f089d1

Abstract

We evaluated the relationship of drinking water salinity to neonatal and infant mortality using Bangladesh Demographic Health Surveys of 2000, 2004, 2007, 2011, and 2014. Point data of groundwater electrical conductivity (EC)— a measure of salinity—were collated from the Bangladesh Water Development Board and digitizing salinity contour map. Data for groundwater dissolved elements (sodium, calcium, magnesium, and potassium) data came from a national hydrochemistry survey in Bangladesh. Point EC and dissolved minerals data were then interpolated over entire Bangladesh and extracted to each cluster location, the primary sampling unit of Bangladesh Demographic Health Surveys. We used restricted cubic splines and survey design‐specific logistic regression models to determine the relationship of water salinity to neonatal and infant mortality. A U‐shaped association between drinking water salinity and neonatal and infant mortality was found, suggesting higher mortality when salinity was very low and high. Compared to mildly saline (EC ≥0.7 and < 2 mS/cm) water drinkers, freshwater (EC < 0.7 mS/cm) drinkers had 1.37 (95% CI: 1.01, 1.84) times higher neonatal mortality and 1.43 (95% CI: 1.08, 1.89) times higher infant mortality. Compared to mildly saline water drinkers, severe‐saline (EC ≥10 mS/cm) water drinkers had 1.77 (95% CI: 1.17, 2.68) times higher neonatal mortality and 1.93 (95% CI: 1.35, 2.76) times higher infant mortality. We found that mild‐salinity water had a high concentration of calcium and magnesium, whereas severe‐salinity water had a high concentration of sodium. Freshwater had the least concentrations of salubrious calcium and magnesium.

]]>
<![CDATA[Prevalence and Characterization of Staphylococcus aureus and Methicillin‐Resistant Staphylococcus aureus on Public Recreational Beaches in Northeast Ohio]]> https://www.researchpad.co/article/Nc2cf7d05-879f-4ce2-8ce7-439c7751833c

Abstract

Staphylococcus aureus can cause severe life‐threatening illnesses such as sepsis and endocarditis. Although S. aureus has been isolated from marine water and intertidal beach sand, only a few studies have been conducted to assess prevalence of S. aureus at freshwater recreational beaches. As such, we aimed to determine prevalence and molecular characteristics of S. aureus in water and sand at 10 freshwater recreational beaches in Northeast Ohio, USA. Samples were analyzed using standard microbiology methods, and resulting isolates were typed by spa typing and multilocus sequence typing. The overall prevalence of S. aureus in sand and water samples was 22.8% (64/280). The prevalence of methicillin‐resistant S. aureus (MRSA) was 8.2% (23/280). The highest prevalence was observed in summer (45.8%; 55/120) compared to fall (4.2%; 5/120) and spring (10.0%; 4/40). The overall prevalence of Panton‐Valentine leukocidin genes among S. aureus isolates was 21.4% (15/70), and 27 different spa types were identified. The results of this study indicate that beach sand and freshwater of Northeast Ohio were contaminated with S. aureus, including MRSA. The high prevalence of S. aureus in summer months and presence of human‐associated strains may indicate the possibility of role of human activity in S. aureus contamination of beach water and sand. While there are several possible routes for S. aureus contamination, S. aureus prevalence was higher in sites with wastewater treatment plants proximal to the beaches.

]]>
<![CDATA[Population of the temperate mosquito, Culex pipiens, decreases in response to habitat climatological changes in future]]> https://www.researchpad.co/article/Nc80f32d5-17e1-4238-9793-c85a5a3de49a

Abstract

Predictions of the temporal distribution of vector mosquitoes are an important issue for human health because the response of mosquito populations to climate change could have implications for the risk of vector‐borne diseases. To elucidate the effects of climate change on mosquito populations inhabiting temperate regions, we developed a Physiology‐based Climate‐driven Mosquito Population model for temperate regions. For accurately reproducing the temporal patterns observed in mosquito populations, the key factors were identified by implementing the combinations of factors into the model. We focused on three factors: the effect of diapause, the positive effect of rainfall on larval carrying capacity, and the negative effect of rainfall as the washout mortality on aquatic stages. For each model, parameters were calibrated using weekly observation data of a Culex pipiens adult population collected in Tokyo, Japan. Based on its likelihood value, the model incorporating diapause, constant carrying capacity, and washout mortality was the best to replicate the observed data. By using the selected model and applying global climate model data, our results indicated that the mosquito population would decrease and adults’ active season would be shortened under future climate conditions. We found that incorporating the washout effect in the model settings or not caused a difference in the temporal patterns in the projected mosquito populations. This suggested that water resources in mosquito habitats in temperate regions should be considered for predicting the risk of vector‐borne diseases in such regions.

]]>
<![CDATA[A case for Planetary Health/GeoHealth]]> https://www.researchpad.co/article/Nde3a46c2-5f2a-4a0f-9786-dd3e01de56f2

Abstract

Concern has been spreading across scientific disciplines that the pervasive human transformation of Earth's natural systems is an urgent threat to human health. The simultaneous emergence of “GeoHealth” and “Planetary Health” signals recognition that developing a new relationship between humanity and our natural systems is becoming an urgent global health priority—if we are to prevent a backsliding from the past century's great public health gains. Achieving meaningful progress will require collaboration across a broad swath of scientific disciplines as well as with policy makers, natural resource managers, members of faith communities, and movement builders around the world in order to build a rigorous evidence base of scientific understanding as the foundation for more robust policy and resource management decisions that incorporate both environmental and human health outcomes.

]]>
<![CDATA[Identifying Environmental Risk Factors and Mapping the Distribution of West Nile Virus in an Endemic Region of North America]]> https://www.researchpad.co/article/N1df86112-92c0-47c4-bc7e-b31b90b1d872

Abstract

Understanding the geographic distribution of mosquito‐borne disease and mapping disease risk are important for prevention and control efforts. Mosquito‐borne viruses (arboviruses), such as West Nile virus (WNV), are highly dependent on environmental conditions. Therefore, the use of environmental data can help in making spatial predictions of disease distribution. We used geocoded human case data for 2004–2017 and population‐weighted control points in combination with multiple geospatial environmental data sets to assess the environmental drivers of WNV cases and to map relative infection risk in South Dakota, USA. We compared the effectiveness of (1) land cover and physiography data, (2) climate data, and (3) spectral data for mapping the risk of WNV in South Dakota. A final model combining all data sets was used to predict spatial patterns of disease transmission and characterize the associations between environmental factors and WNV risk. We used a boosted regression tree model to identify the most important variables driving WNV risk and generated risk maps by applying this model across the entire state. We found that combining multiple sources of environmental data resulted in the most accurate predictions. Elevation, late‐season humidity, and early‐season surface moisture were the most important predictors of disease distribution. Indices that quantified interannual variability of climatic conditions and land surface moisture were better predictors than interannual means. We suggest that combining measures of interannual environmental variability with static land cover and physiography variables can help to improve spatial predictions of arbovirus transmission risk.

]]>
<![CDATA[Quantification of Rotavirus Diarrheal Risk Due to Hydroclimatic Extremes Over South Asia: Prospects of Satellite‐Based Observations in Detecting Outbreaks]]> https://www.researchpad.co/article/N1c514245-56ef-4185-b93e-7462d32dd374

Abstract

Rotavirus is the most common cause of diarrheal disease among children under 5. Especially in South Asia, rotavirus remains the leading cause of mortality in children due to diarrhea. As climatic extremes and safe water availability significantly influence diarrheal disease impacts in human populations, hydroclimatic information can be a potential tool for disease preparedness. In this study, we conducted a multivariate temporal and spatial assessment of 34 climate indices calculated from ground and satellite Earth observations to examine the role of temperature and rainfall extremes on the seasonality of rotavirus transmission in Bangladesh. We extracted rainfall data from the Global Precipitation Measurement and temperature data from the Moderate Resolution Imaging Spectroradiometer sensors to validate the analyses and explore the potential of a satellite‐based seasonal forecasting model. Our analyses found that the number of rainy days and nighttime temperature range from 16°C to 21°C are particularly influential on the winter transmission cycle of rotavirus. The lower number of wet days with suitable cold temperatures for an extended time accelerates the onset and intensity of the outbreaks. Temporal analysis over Dhaka also suggested that water logging during monsoon precipitation influences rotavirus outbreaks during a summer transmission cycle. The proposed model shows lag components, which allowed us to forecast the disease outbreaks 1 to 2 months in advance. The satellite data‐driven forecasts also effectively captured the increased vulnerability of dry‐cold regions of the country, compared to the wet‐warm regions.

]]>
<![CDATA[Spatial Accessibility and Social Inclusion: The Impact of Portugal's Last Health Reform]]> https://www.researchpad.co/article/Nfdc1fbe5-ff6a-4d7a-b20c-9f51d93f1a6a

Abstract

Health policies seek to promote access to health care and should provide appropriate geographical accessibility to each demographical functional group. The dispersal demand of health‐care services and the provision for such services at fixed locations contribute to the growth of inequality in their access. Therefore, the optimal distribution of health facilities over the space/area can lead to accessibility improvements and to the mitigation of the social exclusion of the groups considered most vulnerable. Requiring for such, the use of planning practices joined with accessibility measures. However, the capacities of Geographic Information Systems in determining and evaluating spatial accessibility in health system planning have not yet been fully exploited. This paper focuses on health‐care services planning based on accessibility measures grounded on the network analysis. The case study hinges on mainland Portugal. Different scenarios were developed to measure and compare impact on the population's accessibility. It distinguishes itself from other studies of accessibility measures by integrating network data in a spatial accessibility measure: the enhanced two‐step floating catchment area. The convenient location for health‐care facilities can increase the accessibility standards of the population and consequently reduce the economic and social costs incurred. Recently, the Portuguese government implemented a reform that aimed to improve, namely, the access and equity in meeting with the most urgent patients. It envisaged, in terms of equity, the allocation of 89 emergency network points that ensured more than 90% of the population be within 30 min from any one point in the network. Consequently, several emergency services were closed, namely, in rural areas. This reform highlighted the need to improve the quality of the emergency care, accessibility to each care facility, and equity in their access. Hence, accessibility measures become an efficient decision‐making tool, despite its absence in effective practice planning. According to an application of this type of measure, it was possible to verify which levels of accessibility were decreased, including the most disadvantaged people, with a larger time of dislocation of 12 min between 2001 and 2011.

]]>
<![CDATA[Impact of Deadly Dust Storms (May 2018) on Air Quality, Meteorological, and Atmospheric Parameters Over the Northern Parts of India]]> https://www.researchpad.co/article/N8387ef6b-b75b-4aaa-bb39-241535d00866

Abstract

The northern part of India, adjoining the Himalaya, is considered as one of the global hot spots of pollution because of various natural and anthropogenic factors. Throughout the year, the region is affected by pollution from various sources like dust, biomass burning, industrial and vehicular pollution, and myriad other anthropogenic emissions. These sources affect the air quality and health of millions of people who live in the Indo‐Gangetic Plains. The dust storms that occur during the premonsoon months of March–June every year are one of the principal sources of pollution and originate from the source region of Arabian Peninsula and the Thar desert located in north‐western India. In the year 2018, month of May, three back‐to‐back major dust storms occurred that caused massive damage, loss of human lives, and loss to property and had an impact on air quality and human health. In this paper, we combine observations from ground stations, satellites, and radiosonde networks to assess the impact of dust events in the month of May 2018, on meteorological parameters, aerosol properties, and air quality. We observed widespread changes associated with aerosol loadings, humidity, and vertical advection patterns with displacements of major trace and greenhouse gasses. We also notice drastic changes in suspended particulate matter concentrations, all of which can have significant ramifications in terms of human health and changes in weather pattern.

]]>
<![CDATA[Magma Degassing as a Source of Long‐Term Seismicity at Volcanoes: The Ischia Island (Italy) Case]]> https://www.researchpad.co/article/N978e9b20-749d-4a9f-ac68-8956762af4c2

Abstract

Transient seismicity at active volcanoes poses a significant risk in addition to eruptive activity. This risk is powered by the common belief that volcanic seismicity cannot be forecast, even on a long term. Here we investigate the nature of volcanic seismicity to try to improve our forecasting capacity. To this aim, we consider Ischia volcano (Italy), which suffered similar earthquakes along its uplifted resurgent block. We show that this seismicity marks an acceleration of decades‐long subsidence of the resurgent block, driven by degassing of magma that previously produced the uplift, a process not observed at other volcanoes. Degassing will continue for hundreds to thousands of years, causing protracted seismicity and will likely be accompanied by moderate and damaging earthquakes. The possibility to constrain the future duration of seismicity at Ischia indicates that our capacity to forecast earthquakes might be enhanced when seismic activity results from long‐term magmatic processes, such as degassing

]]>
<![CDATA[Bund removal to re-establish tidal flow, remove aquatic weeds and restore coastal wetland services—North Queensland, Australia]]> https://www.researchpad.co/article/Neac5db12-b809-4a22-afa7-0c243544d6ab

The shallow tidal and freshwater coastal wetlands adjacent to the Great Barrier Reef lagoon provide a vital nursery and feeding complex that supports the life cycles of marine and freshwater fish, important native vegetation and vital bird habitat. Urban and agricultural development threaten these wetlands, with many of the coastal wetlands becoming lost or changed due to the construction of artificial barriers (e.g. bunds, roads, culverts and floodgates). Infestation by weeds has become a major issue within many of the wetlands modified (bunded) for ponded pasture growth last century. A range of expensive chemical and mechanical control methods have been used in an attempt to restore some of these coastal wetlands, with limited success. This study describes an alternative approach to those methods, investigating the impact of tidal reinstatement after bund removal on weed infestation, associated changes in water quality, and fish biodiversity, in the Boolgooroo lagoon region of the Mungalla wetlands, East of Ingham in North Queensland. High resolution remote sensing, electrofishing and in-water logging was used to track changes over time– 1 year before and 4 years after removal of an earth bund. With tides only penetrating the wetland a few times yearly, gross changes towards a more natural system occurred within a relatively short timeframe, leading to a major reduction in infestation of olive hymenachne, water hyacinth and salvina, reappearance of native vegetation, improvements in water quality, and a tripling of fish diversity. Weed abundance and water quality does appear to oscillate however, dependent on summer rainfall, as changes in hydraulic pressure stops or allows tidal ingress (fresh/saline cycling). With an estimated 30% of coastal wetlands bunded in the Great Barrier Reef region, a passive remediation method such as reintroduction of tidal flow by removal of an earth bund or levee could provide a more cost effective and sustainable means of controlling freshwater weeds and improving coastal water quality into the future.

]]>
<![CDATA[A Precipitation Recycling Network to Assess Freshwater Vulnerability: Challenging the Watershed Convention]]> https://www.researchpad.co/article/N4ca51630-e297-4a80-be22-d5fd3b68a500

Abstract

Water resources and water scarcity are usually regarded as local aspects for which a watershed‐based management appears adequate. However, precipitation, as a main source of freshwater, may depend on moisture supplied through land evaporation from outside the watershed. This notion of evaporation as a local “green water” supply to precipitation is typically not considered in hydrological water assessments. Here we propose the concept of a watershed precipitation recycling network, which establishes atmospheric pathways and links land surface evaporation as a moisture supply to precipitation, hence contributing to local but also remote freshwater resources. Our results show that up to 74% of summer precipitation over European watersheds depends on moisture supplied from other watersheds, which contradicts the conventional consideration of autarkic watersheds. The proposed network approach illustrates atmospheric pathways and enables the objective assessment of freshwater vulnerability and water scarcity risks under global change. The illustrated watershed interdependence emphasizes the need for global water governance to secure freshwater availability.

]]>
<![CDATA[Soil Moisture Data Assimilation to Estimate Irrigation Water Use]]> https://www.researchpad.co/article/Ne7f87e80-1a31-43ba-924d-25cb6494665e

Abstract

Knowledge of irrigation is essential to support food security, manage depleting water resources, and comprehensively understand the global water and energy cycles. Despite the importance of understanding irrigation, little consistent information exists on the amount of water that is applied for irrigation. In this study, we develop and evaluate a new method to predict daily to seasonal irrigation magnitude using a particle batch smoother data assimilation approach, where land surface model soil moisture is applied in different configurations to understand how characteristics of remotely sensed soil moisture may impact the performance of the method. The study employs a suite of synthetic data assimilation experiments, allowing for systematic diagnosis of known error sources. Assimilation of daily synthetic soil moisture observations with zero noise produces irrigation estimates with a seasonal bias of 0.66% and a correlation of 0.95 relative to a known truth irrigation. When synthetic observations were subjected to an irregular overpass interval and random noise similar to the Soil Moisture Active Passive satellite (0.04 cm3 cm−3), irrigation estimates produced a median seasonal bias of <1% and a correlation of 0.69. When systematic biases commensurate with those between NLDAS‐2 land surface models and Soil Moisture Active Passive are imposed, irrigation estimates show larger biases. In this application, the particle batch smoother outperformed the particle filter. The presented framework has the potential to provide new information into irrigation magnitude over spatially continuous domains, yet its broad applicability is contingent upon identifying new method(s) of determining irrigation schedule and correcting biases between observed and simulated soil moisture, as these errors markedly degraded performance.

]]>
<![CDATA[Insignificant QBO‐MJO Prediction Skill Relationship in the SubX and S2S Subseasonal Reforecasts]]> https://www.researchpad.co/article/N80d62339-fdd5-4539-8af8-fbb9aaf795dd

Abstract

The impact of the stratospheric quasi‐biennial oscillation (QBO) on the prediction of the tropospheric Madden‐Julian oscillation (MJO) is evaluated in reforecasts from nine models participating in subseasonal prediction projects, including the Subseasonal Experiment (SubX) and Subseasonal to Seasonal (S2S) projects. When MJO prediction skill is analyzed for December to February, MJO prediction skill is higher in the easterly phase of the QBO than the westerly phase, consistent with previous studies. However, the relationship between QBO phase and MJO prediction skill is not statistically significant for most models. This insignificant QBO‐MJO skill relationship is further confirmed by comparing two subseasonal reforecast experiments with the Community Earth System Model v1 using both a high‐top (46‐level) and low‐top (30‐level) version of the Community Atmosphere Model v5. While there are clear differences in the forecasted QBO between the two model top configurations, a negligible change is shown in the MJO prediction, indicating that the QBO in this model may not directly control the MJO prediction and supporting the insignificant QBO‐MJO skill relationship found in SubX and S2S models.

]]>