ResearchPad - hypocotyl https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Production location of the gelling agent Phytagel has a significant impact on <i>Arabidopsis thaliana</i> seedling phenotypic analysis]]> https://www.researchpad.co/article/elastic_article_14611 Recently, it was found that 1% Phytagel plates used to conduct Arabidopsis thaliana seedling phenotypic analysis no longer reproduced previously published results. This Phytagel, which is produced in China (Phytagel C), has replace American-made Phytagel (Phytagel), which is no longer commercially available. In this study, we present the impact of Phytagel produced in the United States vs. China on seedling phenotypic analysis. As a part of this study, an alternative gelling agent has been identified that is capable of reproducing previously published seedling morphometrics.ResultsPhytagel and Phytagel C were investigated based on their ability to reproduce the subtle phenotype of the sob3-4 esc-8 double mutant. Fluence-rate-response analysis of seedlings grown on 1% Phytagel C plates failed to replicate the sob3-4 esc-8 subtle phenotype seen on 1% Phytagel. Furthermore, root penetrance analysis showed a significant difference between sob3-4 esc-8 seedlings grown on 1% Phytagel and 1% Phytagel C. It was also found that 1% Phytagel C was significantly harder than 1% Phytagel. As a replacement for Phytagel C, Gellan was tested. 1% Gellan was able to reproduce the subtle phenotype of sob3-4 esc-8. Furthermore, there was no significant difference in root penetration of the wild type or sob3-4 esc-8 seedlings between 1% Phytagel and 1% Gellan. This may be due to the significant reduction in hardness in 1% Gellan plates compared to 1% Phytagel plates. Finally, we tested additional concentrations of Gellan and found that seedlings on 0.6% Gellan looked more uniform while also being able to reproduce previously published results.ConclusionsPhytagel has been the standard gelling agent for several studies involving the characterization of subtle seedling phenotypes. After production was moved to China, Phytagel C was no longer capable of reproducing these previously published results. An alternative gelling agent, Gellan, was able to reproduce previously published seedling phenotypes at both 1% and 0.6% concentrations. The information provided in this manuscript is beneficial to the scientific community as whole, specifically phenomics labs, as it details key problematic differences between gelling agents that should be performing identically (Phytagel and Phytagel C). ]]> <![CDATA[MYB1 transcription factor is a candidate responsible for red root skin in radish (Raphanus sativus L.)]]> https://www.researchpad.co/article/5bae98f440307c0c23a1c152

Root skin color is one of the economically important traits in radish (Raphanus sativus), and the pigmentation in red skin varieties is largely attributable to anthocyanin accumulation. Pelargonidin was found as a major anthocyanin pigment accumulated in the sub-epidermal layer of red radish roots. In the 20 F2 population generated from the F1 with red root skins, root skins with red and white colors segregated in a 3:1 ratio. Additionally, a test cross between a red F3 individual and a white skin individual gave rise to 1:1 segregation of red and white, indicating that the root skin color of radish is determined by a single locus and red color is dominant over white. We performed association mapping for root skin color using SNPs obtained from RNA-seq analysis. Segregation analysis on the 152 F3 test-cross population revealed an RsMyb1 transcription factor as a candidate gene to determine root skin color. A PCR marker based on the polymorphism within 2 kb of RsMyb1 was developed and tested on 12 and 152 individuals from F2 and F3 test cross populations, respectively, and red and white root skin colors were completely distinguished corresponding to the genotypes. Expression levels of RsMyb1 in red or purple root cultivars were significantly higher than in white root cultivars. These findings suggest that RsMyb1 is a crucial determinant for anthocyanin biosynthesis in radish roots, and the molecular marker developed in this study will be useful for marker-assisted selection for red skin individuals at early seedling stages.

]]>
<![CDATA[Comparative transcriptomics reveals shared gene expression changes during independent evolutionary origins of stem and hypocotyl/root tubers in Brassica (Brassicaceae)]]> https://www.researchpad.co/article/5c032dfed5eed0c4844f8aab

Plant succulence provides a classic example of evolutionary convergence in over 40 plant families. If evolutionary parallelism is in fact responsible for separate evolutionary origins of expanded storage tissues in stems, hypocotyls, and roots, we expect similar gene expression profiles in stem and hypocotyl / root tubers. We analyzed RNA-Seq transcript abundance patterns in stem and hypocotyl / root tubers of the Brassica crops kohlrabi (B. oleracea) and turnip (B. rapa) and compared their transcript expression profiles to those in the conspecific thin-stemmed and thin-rooted crops flowering kale and pak choi, respectively. Across these four cultivars, 38,192 expressed gene loci were identified. Of the 3,709 differentially-expressed genes (DEGs) in the turnip: pak choi comparison and the 6,521 DEGs in the kohlrabi: kale comparison, turnips and kohlrabies share a statistically disproportionate overlap of 841 DEG homologs in their tubers (p value < 1e-10). This overlapping set is statistically enriched in biochemical functions that are also associated with tuber induction in potatoes and sweet potatoes: sucrose metabolism, lipoxygenases, auxin metabolism, and meristem development. These shared expression profiles in tuberous stems and root / hypocotyls in Brassica suggest parallel employment of shared molecular genetic pathways during the evolution of tubers in stems, hypocotyls and roots of Brassica crops and more widely in other tuberous plants as well.

]]>
<![CDATA[Molecular actions of two synthetic brassinosteroids, iso-carbaBL and 6-deoxoBL, which cause altered physiological activities between Arabidopsis and rice]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc2b6

Brassinosteroid (BR) is an important plant hormone that is perceived by the BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor. BRI1 is conserved among dicot and monocot species; however, the molecular mechanism underlying BR perception in monocots is not fully understood. We synthesised two BRs, iso-carbabrassinolide (iso-carbaBL) and 6-deoxoBL, which have different BR activities in Arabidopsis thaliana (Arabidopsis) and rice. Our bioassay indicated that iso-carbaBL has relatively strong BR activity in Arabidopsis, but is inactive in rice and competitively inhibits BR activity. The bioactivity of 6-deoxoBL was similar to that of BL in Arabidopsis, but was much lower in rice. Binding experiments using recombinant Arabidopsis and rice BRI1 protein fragments suggested that iso-carbaBL and 6-deoxoBL bind to both receptors. These results showed that iso-carbaBL and 6-deoxoBL act as an antagonist and agonist, respectively, of BRs in rice. A docking simulation analysis suggested that iso-carbaBL fits deeper in the binding pocket to block the binding of active BR to rice BRI1. The simulated binding energy of 6-deoxoBL with rice BRI1 is much lower than that with Arabidopsis BRI1. The possible structural characteristics of rice BRI1 were determined based on the difference in the BR activities of iso-carbaBL and 6-deoxoBL in Arabidopsis and rice.

]]>
<![CDATA[PIF4 and ELF3 Act Independently in Arabidopsis thaliana Thermoresponsive Flowering]]> https://www.researchpad.co/article/5989daf9ab0ee8fa60bc409e

Plants have evolved elaborate mechanisms controlling developmental responses to environmental stimuli. A particularly important stimulus is temperature. Previous work has identified the interplay of PIF4 and ELF3 as a central circuit underlying thermal responses in Arabidopsis thaliana. However, thermal responses vary widely among strains, possibly offering mechanistic insights into the wiring of this circuit. ELF3 contains a polyglutamine (polyQ) tract that is crucial for ELF3 function and varies in length across strains. Here, we use transgenic analysis to test the hypothesis that natural polyQ variation in ELF3 is associated with the observed natural variation in thermomorphogenesis. We found little evidence that the polyQ tract plays a specific role in thermal responses beyond modulating general ELF3 function. Instead, we made the serendipitous discovery that ELF3 plays a crucial, PIF4-independent role in thermoresponsive flowering under conditions more likely to reflect field conditions. We present evidence that ELF3 acts through the photoperiodic pathway, pointing to a previously unknown symmetry between low and high ambient temperature responses. Moreover, in analyzing two strain backgrounds with different thermal responses, we demonstrate that responses may be shifted rather than fundamentally rewired across strains. Our findings tie together disparate observations into a coherent framework in which multiple pathways converge in accelerating flowering in response to temperature, with some such pathways modulated by photoperiod.

]]>
<![CDATA[Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf318

Copper ions play an important role in ethylene receptor biogenesis and proper function. The copper transporter RESPONSIVE-TO-ANTAGONIST1 (RAN1) is essential for copper ion transport in Arabidopsis thaliana. However it is still unclear how copper ions are delivered to RAN1 and how copper ions affect ethylene receptors. There is not a specific copper chelator which could be used to explore these questions. Here, by chemical genetics, we identified a novel small molecule, triplin, which could cause a triple response phenotype on dark-grown Arabidopsis seedlings through ethylene signaling pathway. ran1-1 and ran1-2 are hypersensitive to triplin. Adding copper ions in growth medium could partially restore the phenotype on plant caused by triplin. Mass spectrometry analysis showed that triplin could bind copper ion. Compared to the known chelators, triplin acts more specifically to copper ion and it suppresses the toxic effects of excess copper ions on plant root growth. We further showed that mutants of ANTIOXIDANT PROTEIN1 (ATX1) are hypersensitive to tiplin, but with less sensitivity comparing with the ones of ran1-1 and ran1-2. Our study provided genetic evidence for the first time that, copper ions necessary for ethylene receptor biogenesis and signaling are transported from ATX1 to RAN1. Considering that triplin could chelate copper ions in Arabidopsis, and copper ions are essential for plant and animal, we believe that, triplin not only could be useful for studying copper ion transport of plants, but also could be useful for copper metabolism study in animal and human.

]]>
<![CDATA[An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity]]> https://www.researchpad.co/article/5989d9e4ab0ee8fa60b6ab45

COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.

]]>
<![CDATA[Mitogen-Activated Protein Kinase Cascade MKK7-MPK6 Plays Important Roles in Plant Development and Regulates Shoot Branching by Phosphorylating PIN1 in Arabidopsis]]> https://www.researchpad.co/article/5989db09ab0ee8fa60bc989a

Emerging evidences exhibit that mitogen-activated protein kinase (MAPK/MPK) signaling pathways are connected with many aspects of plant development. The complexity of MAPK cascades raises challenges not only to identify the MAPK module in planta but also to define the specific role of an individual module. So far, our knowledge of MAPK signaling has been largely restricted to a small subset of MAPK cascades. Our previous study has characterized an Arabidopsis bushy and dwarf1 (bud1) mutant, in which the MAP Kinase Kinase 7 (MKK7) was constitutively activated, resulting in multiple phenotypic alterations. In this study, we found that MPK3 and MPK6 are the substrates for phosphorylation by MKK7 in planta. Genetic analysis showed that MKK7-MPK6 cascade is specifically responsible for the regulation of shoot branching, hypocotyl gravitropism, filament elongation, and lateral root formation, while MKK7-MPK3 cascade is mainly involved in leaf morphology. We further demonstrated that the MKK7-MPK6 cascade controls shoot branching by phosphorylating Ser 337 on PIN1, which affects the basal localization of PIN1 in xylem parenchyma cells and polar auxin transport in the primary stem. Our results not only specify the functions of the MKK7-MPK6 cascade but also reveal a novel mechanism for PIN1 phosphorylation, establishing a molecular link between the MAPK cascade and auxin-regulated plant development.

]]>
<![CDATA[Age Effects on Hypocotyl Mechanics]]> https://www.researchpad.co/article/5989da31ab0ee8fa60b848d2

Numerous studies deal with composition and molecular processes involved in primary cell wall formation and alteration in Arabidopsis. However, it still remains difficult to assess the relation between physiological properties and mechanical function at the cell wall level. The thin and fragile structure of primary cell walls and their large biological variability, partly related to structural changes during growth, make mechanical experiments challenging. Since, to the best of our knowledge, there is no reliable data in the literature about how the properties of the fully elongated zone of hypocotyls change with age. We studied in a series of experiments on two different seed batches the tensile properties the region below the growth zone of 4 to 7 day old etiolated Arabidopsis hypocotyls. Additionally, we analysed geometrical parameters, hypocotyl density and cellulose content as individual traits and their relation to tissue mechanics. No significant differences of the mechanical parameters of the non-growing region between 5–7 day old plants could be found whereas in 4 day old plants both tensile stiffness and ultimate tensile stress were significantly lower than in the older plants. Furthermore hypocotyl diameters and densities remain almost the same for 5, 6 and 7 day old seedlings. Naturally, hypocotyl lengths increase with age. The evaluation whether the choice–age or length—influences the mechanical properties showed that both are equally applicable sampling parameters. Additionally, our detailed study allows for the estimation of biological variability, connections between mechanics and hypocotyl age could be established and complement the knowledge on biochemistry and genetics affecting primary plant cell wall growth. The application of two different micromechanical devices for testing living Arabidopsis hypocotyls allows for emphasizing and discussing experimental limitations and for presenting a wide range of possibilities to address current and future questions related to plant cell wall mechanics, synthesis and growth in combination with molecular biology methodologies.

]]>
<![CDATA[The Shade Avoidance Syndrome in Arabidopsis: The Antagonistic Role of Phytochrome A and B Differentiates Vegetation Proximity and Canopy Shade]]> https://www.researchpad.co/article/5989dac2ab0ee8fa60bb1326

Light limitation caused by dense vegetation is one of the greatest threats to plant survival in natural environments. Plants detect such neighboring vegetation as a reduction in the red to far-red ratio (R:FR) of the incoming light. The low R:FR signal, perceived by phytochromes, initiates a set of responses collectively known as the shade avoidance syndrome, intended to reduce the degree of current or future shade from neighbors by overtopping such competitors or inducing flowering to ensure seed production. At the seedling stage these responses include increased hypocotyl elongation. We have systematically analyzed the Arabidopsis seedling response and the contribution of phyA and phyB to perception of decreased R:FR, at three different levels of photosynthetically active radiation. Our results show that the shade avoidance syndrome, induced by phyB deactivation, is gradually antagonized by phyA, operating through the so-called FR-High Irradiance Response, in response to high FR levels in a range that simulates plant canopy shade. The data indicate that the R:FR signal distinguishes between the presence of proximal, but non-shading, neighbors and direct foliar shade, via a intrafamily photosensory attenuation mechanism that acts to suppress excessive reversion toward skotomorphogenic development under prolonged direct vegetation shade.

]]>
<![CDATA[Bottom-up Assembly of the Phytochrome Network]]> https://www.researchpad.co/article/5989dad2ab0ee8fa60bb67f7

Plants have developed sophisticated systems to monitor and rapidly acclimate to environmental fluctuations. Light is an essential source of environmental information throughout the plant’s life cycle. The model plant Arabidopsis thaliana possesses five phytochromes (phyA-phyE) with important roles in germination, seedling establishment, shade avoidance, and flowering. However, our understanding of the phytochrome signaling network is incomplete, and little is known about the individual roles of phytochromes and how they function cooperatively to mediate light responses. Here, we used a bottom-up approach to study the phytochrome network. We added each of the five phytochromes to a phytochrome-less background to study their individual roles and then added the phytochromes by pairs to study their interactions. By analyzing the 16 resulting genotypes, we revealed unique roles for each phytochrome and identified novel phytochrome interactions that regulate germination and the onset of flowering. Furthermore, we found that ambient temperature has both phytochrome-dependent and -independent effects, suggesting that multiple pathways integrate temperature and light signaling. Surprisingly, none of the phytochromes alone conferred a photoperiodic response. Although phyE and phyB were the strongest repressors of flowering, both phyB and phyC were needed to confer a flowering response to photoperiod. Thus, a specific combination of phytochromes is required to detect changes in photoperiod, whereas single phytochromes are sufficient to respond to light quality, indicating how phytochromes signal different light cues.

]]>
<![CDATA[Comparative Validation of Conventional and RNA-Seq Data-Derived Reference Genes for qPCR Expression Studies of Colletotrichum kahawae ]]> https://www.researchpad.co/article/5989da77ab0ee8fa60b96f61

Colletotrichum kahawae is an emergent fungal pathogen causing severe epidemics of Coffee Berry Disease on Arabica coffee crops in Africa. Currently, the molecular mechanisms underlying the Coffea arabica—C. kahawae interaction are still poorly understood, as well as the differences in pathogen aggressiveness, which makes the development of functional studies for this pathosystem a crucial step. Quantitative real time PCR (qPCR) has been one of the most promising approaches to perform gene expression analyses. However, proper data normalization with suitable reference genes is an absolute requirement. In this study, a set of 8 candidate reference genes were selected based on two different approaches (literature and Illumina RNA-seq datasets) to assess the best normalization factor for qPCR expression analysis of C. kahawae samples. The gene expression stability of candidate reference genes was evaluated for four isolates of C. kahawae bearing different aggressiveness patterns (Ang29, Ang67, Zim12 and Que2), at different stages of fungal development and key time points of the plant-fungus interaction process. Gene expression stability was assessed using the pairwise method incorporated in geNorm and the model-based method used by NormFinder software. For C. arabica—C. kahawae interaction samples, the best normalization factor included the combination of PP1, Act and ck34620 genes, while for C. kahawae samples the combination of PP1, Act and ck20430 revealed to be the most appropriate choice. These results suggest that RNA-seq analyses can provide alternative sources of reference genes in addition to classical reference genes. The analysis of expression profiles of bifunctional catalase-peroxidase (cat2) and trihydroxynaphthalene reductase (thr1) genes further enabled the validation of the selected reference genes. This study provides, for the first time, the tools required to conduct accurate qPCR studies in C. kahawae considering its aggressiveness pattern, developmental stage and host interaction.

]]>
<![CDATA[NUCLEAR FACTOR Y, Subunit C (NF-YC) Transcription Factors Are Positive Regulators of Photomorphogenesis in Arabidopsis thaliana]]> https://www.researchpad.co/article/5989da96ab0ee8fa60ba1f14

Recent reports suggest that NF-Y transcription factors are positive regulators of skotomorphogenesis in Arabidopsis thaliana. Three NF-YC genes (NF-YC3, NF-YC4, and NF-YC9) are known to have overlapping functions in photoperiod dependent flowering and previous studies demonstrated that they interact with basic leucine zipper (bZIP) transcription factors. This included ELONGATED HYPOCOTYL 5 (HY5), which has well-demonstrated roles in photomorphogenesis. Similar to hy5 mutants, we report that nf-yc3 nf-yc4 nf-yc9 triple mutants failed to inhibit hypocotyl elongation in all tested light wavelengths. Surprisingly, nf-yc3 nf-yc4 nf-yc9 hy5 mutants had synergistic defects in light perception, suggesting that NF-Ys represent a parallel light signaling pathway. As with other photomorphogenic transcription factors, nf-yc3 nf-yc4 nf-yc9 triple mutants also partially suppressed the short hypocotyl and dwarf rosette phenotypes of CONSTITUTIVE PHOTOMORPHOGENIC 1 (cop1) mutants. Thus, our data strongly suggest that NF-Y transcription factors have important roles as positive regulators of photomorphogenesis, and in conjunction with other recent reports, implies that the NF-Y are multifaceted regulators of early seedling development.

]]>
<![CDATA[Morphology, Carbohydrate Composition and Vernalization Response in a Genetically Diverse Collection of Asian and European Turnips (Brassica rapa subsp. rapa)]]> https://www.researchpad.co/article/5989db42ab0ee8fa60bd74e4

Brassica rapa displays enormous morphological diversity, with leafy vegetables, turnips and oil crops. Turnips (Brassica rapa subsp. rapa) represent one of the morphotypes, which form tubers and can be used to study the genetics underlying storage organ formation. In the present study we investigated several characteristics of an extensive turnip collection comprising 56 accessions from both Asia (mainly Japanese origin) and Europe. Population structure was calculated using data from 280 evenly distributed SNP markers over 56 turnip accessions. We studied the anatomy of turnip tubers and measured carbohydrate composition of the mature turnip tubers of a subset of the collection. The variation in 16 leaf traits, 12 tuber traits and flowering time was evaluated in five independent experiments for the entire collection. The effect of vernalization on flowering and tuber formation was also investigated. SNP marker profiling basically divided the turnip accessions into two subpopulations, with admixture, generally corresponding with geographical origin (Europe or Asia). The enlarged turnip tuber consists of both hypocotyl and root tissue, but the proportion of the two tissues differs between accessions. The ratio of sucrose to fructose and glucose differed among accessions, while generally starch content was low. The evaluated traits segregated in both subpopulations, with leaf shape, tuber colour and number of shoots per tuber explaining most variation between the two subpopulations. Vernalization resulted in reduced flowering time and smaller tubers for the Asian turnips whereas the European turnips were less affected by vernalization.

]]>
<![CDATA[BRL3 and AtRGS1 cooperate to fine tune growth inhibition and ROS activation]]> https://www.researchpad.co/article/5989db5cab0ee8fa60bdfec0

Plasma membrane-localized leucine-rich repeat receptor-like kinases directly activates G protein complex via interaction with seven transmembrane domain Regulator of G-protein Signaling 1 (AtRGS1) protein. Brassinosteroid insensitive 1 (BRI1) LIKE3 (BRL3) phosphorylates AtRGS1 in vitro. FRET analysis showed that BRL3 and AtRGS1 interaction dynamics change in response to glucose and flg22. Both BRL3 and AtRGS1 function in glucose sensing and brl3 and rgs1-2 single mutants are hyposensitive to high glucose as well as the brl3/rgs1 double mutant. BRL3 and AtRGS1 function in the same pathway linked to high glucose sensing. Hypocotyl elongation, another sugar-mediated pathway, is also implicated to be partially mediated by BRL3 and AtRGS1 because rgs1-2, brl3-2 and brl3-2/ rgs1-2 mutants share the long hypocotyl phenotype. BRL3 and AtRGS1 modulate the flg22-induced ROS burst and block one or more components positively regulating ROS production because the brl3/rgs1 double mutant has ~60% more ROS production than wild type while rgs1-2 has a partial ROS burst impairment and brl3 has slightly more ROS production. Here, we proposed a simple model where both BRL3 and AtRGS1 are part of a fine-tuning mechanism sensing glucose and flg22 to prevent excess ROS burst and control growth inhibition.

]]>
<![CDATA[The Tomato Hoffman’s Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures]]> https://www.researchpad.co/article/5989da66ab0ee8fa60b91f6f

Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.

]]>
<![CDATA[TCS1, a Microtubule-Binding Protein, Interacts with KCBP/ZWICHEL to Regulate Trichome Cell Shape in Arabidopsis thaliana]]> https://www.researchpad.co/article/5989da1eab0ee8fa60b7df46

How cell shape is controlled is a fundamental question in developmental biology, but the genetic and molecular mechanisms that determine cell shape are largely unknown. Arabidopsis trichomes have been used as a good model system to investigate cell shape at the single-cell level. Here we describe the trichome cell shape 1 (tcs1) mutants with the reduced trichome branch number in Arabidopsis. TCS1 encodes a coiled-coil domain-containing protein. Pharmacological analyses and observations of microtubule dynamics show that TCS1 influences the stability of microtubules. Biochemical analyses and live-cell imaging indicate that TCS1 binds to microtubules and promotes the assembly of microtubules. Further results reveal that TCS1 physically associates with KCBP/ZWICHEL, a microtubule motor involved in the regulation of trichome branch number. Genetic analyses indicate that kcbp/zwi is epistatic to tcs1 with respect to trichome branch number. Thus, our findings define a novel genetic and molecular mechanism by which TCS1 interacts with KCBP to regulate trichome cell shape by influencing the stability of microtubules.

]]>
<![CDATA[A first insight into the involvement of phytohormones pathways in coffee resistance and susceptibility to Colletotrichum kahawae]]> https://www.researchpad.co/article/5989db5cab0ee8fa60bdfefe

Understanding the molecular mechanisms underlying coffee-pathogen interactions are of key importance to aid disease resistance breeding efforts. In this work the expression of genes involved in salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) pathways were studied in hypocotyls of two coffee varieties challenged with the hemibiotrophic fungus Colletotrichum kahawae, the causal agent of Coffee Berry Disease. Based on a cytological analysis, key time-points of the infection process were selected and qPCR was used to evaluate the expression of phytohormones biosynthesis, reception and responsive-related genes. The resistance to C. kahawae was characterized by restricted fungal growth associated with early accumulation of phenolic compounds in the cell walls and cytoplasmic contents, and deployment of hypersensitive reaction. Similar responses were detected in the susceptible variety, but in a significantly lower percentage of infection sites and with no apparent effect on disease development. Gene expression analysis suggests a more relevant involvement of JA and ET phytohormones than SA in this pathosystem. An earlier and stronger activation of the JA pathway observed in the resistant variety, when compared with the susceptible one, seems to be responsible for the successful activation of defense responses and inhibition of fungal growth. For the ET pathway, the down or non-regulation of ET receptors in the resistant variety, together with a moderate expression of the responsive-related gene ERF1, indicates that this phytohormone may be related with other functions besides the resistance response. However, in the susceptible variety, the stronger activation of ERF1 gene at the beginning of the necrotrophic phase, suggests the involvement of ET in tissue senescence. As far as we know, this is the first attempt to unveil the role of phytohormones in coffee-C. kahawae interactions, thus contributing to deepen our understanding on the complex mechanisms of plant signaling and defense.

]]>