ResearchPad - immunoassays https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Prevalence of anti-hepatitis E virus IgG antibodies in sera from hemodialysis patients in Tripoli, Lebanon]]> https://www.researchpad.co/article/elastic_article_15713 Hepatitis E virus (HEV) is an important global public health concern. Several studies reported a higher HEV prevalence in patients undergoing regular hemodialysis (HD). In Lebanon, the epidemiology of HEV among HD patients has never been investigated previously. In this study, we examine the seroprevalence of HEV infection among 171 HD patients recruited from three hospital dialysis units in Tripoli, North Lebanon. Prevalence of anti-HEV IgG antibodies was evaluated in participant’s sera using a commercial enzyme-linked immunosorbent assay (ELISA). The association of socio-demographic and clinical parameters with HEV infection in patients was also evaluated. Overall, 96 women and 75 men were enrolled in this study. Anti-HEV IgG antibodies were found positive in 37/171 HD patients showing a positivity rate of 21.63%. Among all examined variables, only the age of patients was significantly associated with seropositivity (P = 0.001). This first epidemiological study reveals a high seroprevalence of HEV infection among Lebanese HD patients. However, further evaluations that enroll larger samples and include control groups are required to identify exact causative factors of the important seropositivity rate in this population.

]]>
<![CDATA[The <i>Caenorhabditis elegans</i> CUB-like-domain containing protein RBT-1 functions as a receptor for <i>Bacillus thuringiensis</i> Cry6Aa toxin]]> https://www.researchpad.co/article/elastic_article_14753 Bacillus thuringiensis (Bt) crystal proteins belong to pore-forming toxins (PFTs), which display virulence against target hosts by forming holes in the cell membrane. Cry6A is a nematicidal PFT, which exhibits unique protein structure and different mode of action than Cry5B, another nematicidal PFT. However, little is known about the mode of action of Cry6A. Although an intracellular nematicidal necrosis pathway of Cry6A was reported, its extracellular mode of action remains unknown. We here demonstrate that the CUB-like-domain containing protein RBT-1 acts as a functional receptor of Cry6A, which mediates the intestinal cell interaction and nematicidal activity of this toxin. RBT-1 represents a new class of crystal protein receptors. RBT-1 is dispensable for Cry5B toxicity against nematodes, consistent with that Cry6A and Cry5B have different nematicidal mechanisms. We also find that Cry6A kills nematodes by complex mechanism since rbt-1 mutation did not affect Cry6A-mediated necrosis signaling pathway. This work not only enhances the understanding of Bt crystal protein-nematode mechanism, but is also in favor for the application of Cry6A in nematode control.

]]>
<![CDATA[Structure and functional analysis of the <i>Legionella pneumophila</i> chitinase ChiA reveals a novel mechanism of metal-dependent mucin degradation]]> https://www.researchpad.co/article/elastic_article_14652 A broad range of organisms produce chitinase enzymes that digest chitin, the second most abundant carbohydrate on earth. Chitinases have also been identified that are important factors in major bacterial diseases but it is unclear how. Legionella pneumophila causes Legionnaires’ disease, a severe form of pneumonia, and its chitinase ChiA is essential for the survival of L. pneumophila during infection of the lung. Using structural biology and microbiology methods we have determined that ChiA can associate with the L. pneumophila surface and along with other outer membrane proteins can also bind mammalian mucins. We also identified a new and unique enzyme mechanism where L. pneumophila ChiA can hydrolyse the peptide bonds of mucin-like proteins. Mucins are major components of the mucous that lines the surface of the respiratory, digestive, and urogenital tracts and acts as a first line of defence during infection. This is the first mechanistic understanding of how a chitinase can promote disease through additional peptidase activity and suggests that L. pneumophila ChiA can modulate host immune responses and disperse host mucosa during infection.

]]>
<![CDATA[SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response]]> https://www.researchpad.co/article/elastic_article_14645 MyD88 is a central adaptor that mediates initiation of the innate immune response and production of the proinflammatory cytokines that restrain pathogens and activate adaptive immunity. Although MyD88 is crucial for a host to prevent pathogenic infection, misregulation of its abundance might lead to autoimmune diseases. Thus, degradation of MyD88 is a key canonical mechanism for terminating cytokine production. Here, we characterized a novel E3 ligase, SPOP, that targets MyD88 for degradation. ChSPOP attenuated IL-1β production through K48-linked polyubiquitination and degradation of chMyD88, and thus impaired immune responses. Spop deficient mice showed more susceptibility to infection by Salmonella typhimurium. These findings demonstrate that SPOP is a negative regulator of MyD88-dependent pathway activation triggered by LPS and Salmonella typhimurium, which helps the host to maintain immune homeostasis.

]]>
<![CDATA[Characterization of limbal explant sites: Optimization of stem cell outgrowth in <i>in vitro</i> culture]]> https://www.researchpad.co/article/elastic_article_14624 Simple limbal epithelial transplantation (SLET) and cultivated limbal epithelial transplantation (CLET) are proven techniques for treating limbal stem cell deficiency (LSCD). However, the precise regions that are most suitable for preparing explants for transplantation have not been identified conclusively. Accordingly, this in vitro study aimed at determining ideal sites to be selected for tissue harvest for limbal stem cell culture and transplantation. We evaluated cell outgrowth potential and the expression of stem cell markers in cultures from 48 limbal explants from five cadaveric donors. The limbal explants were generated from the three specific sites: Lcor (located innermost and adjacent to the cornea), Lm (middle limbus), and Lconj (located outermost adjacent to the conjunctiva). We found that explants from the Lconj and Lm sites exhibited higher growth potential than those from the Lcor site. Transcript encoding the stem cell marker and p63 isoform, ΔNp63, was detected in cells from Lm and Lconj explants; expression levels were slightly, though significantly (p-value < 0.05), higher in Lm than in Lconj, although expression of ΔNp63α protein was similar in cells from all explants. Differential expression of ATP-Binding Cassette Subfamily G Member 2 (ABCG2) did not reach statistical significance. Immunohistochemistry by indirect immunofluorescence analysis of limbus tissue revealed that the basal layer in explant tissue from Lconj and Lm contained markedly more stem cells than found in Lcor explant tissue; these findings correlate with a higher capacity for growth. Collectively, our findings suggest that explants from the Lconj and Lm sites should be selected for limbal cell expansion for both CLET and SLET procedures. These new insights may guide surgeons toward specific limbal sites that are most suitable for stem cell culture and transplantation and may ultimately improve treatment outcomes in the patients with LSCD.

]]>
<![CDATA[Serological evidence for human exposure to <i>Bacillus cereus</i> biovar <i>anthracis</i> in the villages around Taï National Park, Côte d’Ivoire]]> https://www.researchpad.co/article/elastic_article_14539 Anthrax is a zoonotic disease transmitted from animals to humans and normally caused by B. anthracis mainly in savanna regions. However, untypical bacteria named Bacillus cereus biovar anthracis (Bcbva) were detected in a variety of wild animals in the rain forest region of the Taï National Park (TNP) in Côte d’Ivoire. No anthrax infections in humans living in the region around TNP were reported until now. Therefore, we assessed exposure to the pathogen by analysis of sera from human volunteers for the presence of antibodies against the protective antigen (PA), which is produced by B. anthracis and Bcbva, and against the Bcbva-specific protein pXO2-60. We found antibodies against PA in more than 20% of sera from humans living in the TNP region, and around 10% possessed also antibodies against pXO2-60, confirming exposure to Bcbva. As only Bcbva, but not classic B. anthracis was found in TNP, we assume that the majority of humans had contact with Bcbva and that pXO2-60 is less immunogenic than PA. Although most people reported animal contacts, there was no statistically significant correlation with the presence of antibodies against Bcbva. Nevertheless, our study confirmed that Bcbva represents a danger for humans living in the affected area.

]]>
<![CDATA[Murine gammaherpesvirus infection is skewed toward Igλ+ B cells expressing a specific heavy chain V-segment]]> https://www.researchpad.co/article/elastic_article_13826 Murine gammaherpesvirus 68 is a rodent pathogen that is closely related to the human gammaherpesviruses Epstein-Barr virus and Kaposi’s sarcoma-associated virus. All know gammaherpesviruses are associated with the development of lymphomas, as well as other cancers, in a small subset of infected individuals–particularly those with underlying defects in their immune system (i.e., transplant recipients and HIV infected patients). Because there are very limited small animal models for the human gammaherpesviruses, studies on murine gammaherepsviruses 68 can provide important insights into critical aspects of gammaherpesvirus infections and the association of these viruses with disease development. Another feature of all gammaherpesviruses is their ability to establish a chronic infection of their host–where the virus is maintained for the lifetime of the infected individual. The major target cell harboring chronic gammaherepsvirus infection are B lymphocytes–the cells in the immune system that produce antibodies in response to infections. Here we provide a detailed characterization of the populations of B lymphocytes that become infected by murine gammaherpesvirus 68. This has led to the identification of a specific population of B lymphocytes that is preferentially infected by the virus. This supports a model in which murine gammaherpesvirus infection of B lymphocytes is not random. However, it remains unclear why the virus targets this specific population of B cells for infection.

]]>
<![CDATA[A systematic review of alternative surveillance approaches for lymphatic filariasis in low prevalence settings: Implications for post-validation settings]]> https://www.researchpad.co/article/elastic_article_13802 Lymphatic filariasis (LF) is a mosquito-borne disease, which can result in complications including swelling affecting the limbs (lymphoedema) or scrotum (hydrocele). LF can be eliminated by mass drug administration (MDA) which involves whole communities taking drug treatment at regular intervals. After MDA programmes, country programmes conduct the Transmission Assessment Survey (TAS), which tests school children for LF. It is important to continue testing for LF after elimination because there can be a 10-year period between becoming infected and developing symptoms, but it is thought that the use of TAS in such settings is likely to be too expensive and also not sensitive enough to detect low-level infections. Our study assesses the results from 44 studies in areas of low LF prevalence that have investigated methods of surveillance for LF which differ from the standardised TAS approach. These include both human and mosquito studies. Results show that there is currently no standardised approach to testing, but that surveillance can be made more sensitive through the use of new diagnostic tests, such as antibody testing, and also by targeting higher risk populations. However, further research is needed to understand whether these approaches work in a range of settings and whether they are affordable on the ground.

]]>
<![CDATA[Clinical role, optimal timing and frequency of serum infliximab and anti-infliximab antibody level measurements in patients with inflammatory bowel disease]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc1f4

Background

Serum infliximab (IFX) and antibody-to-infliximab (ATI) levels are objective parameters, that may have a great role in the therapeutic decisions during maintenance biological therapy.

Research design and methods

48 inflammatory bowel disease patients receiving maintenance IFX therapy were prospectively enrolled and divided into adequate (complete remission N = 20) and inadequate responder (partial response, loss of response, dose escalation; N = 28) groups. Blood samples were collected just before (trough level, TL) and two (W2aTL) and six weeks (W6aTL) after the administration of IFX.

Results

Single measurement of ATI titer was insufficient for predicting therapeutic response due to transient expression of ATI, however, using the three points’ measurements, significant difference has been detected between the adequate and inadequate responder group (5.0% vs 35.7%; p = 0.016). The mean value of TL was significantly higher in the adequate responder group (3.11±1.64 vs.1.19±1.11; p<0.001) without further difference on the second and sixth week. Sensitivity and specificity for predicting the therapeutic response were 85.0% and 71.4% based on the cut-off value of TL 2.0 μg/ml.

Conclusion

Simultaneous measurement of serum IFX level prior to administration of regular IFX infusion and ATI titers significantly increase the diagnostic accuracy for the therapeutic decision in patients uncertainly responding to the therapy. The measurement of W2aTL and W6aTL levels did not result in further improvement in the prediction of therapeutic response.

]]>
<![CDATA[Risk factors associated to a high Mycobacterium tuberculosis complex seroprevalence in wild boar (Sus scrofa) from a low bovine tuberculosis prevalence area]]> https://www.researchpad.co/article/Nfbbd03ef-7cb8-4d82-b605-16cf8ee0d77e

Animal tuberculosis is a worldwide zoonotic disease caused principally by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex (MTC). In southern Iberian Peninsula, wild reservoirs such as the wild boar, among other factors, have prevented the eradication of bovine tuberculosis. However, most of the studies have been focused on south-central Spain, where the prevalence of tuberculosis is high among wild ungulates and cattle herds. In northern regions, where wild boar density and bovine tuberculosis prevalence are lower, fewer studies have been carried out and the role of this species is still under debate. The aim of this study was to describe the temporal and spatial distribution of antibodies against MTC in wild boar from the Basque Country, northern Spain. Sera from 1902 animals were collected between 2010 and 2016. The seroprevalence was determined with an in house enzyme-linked immunosorbent assay and the search of risk factors was assessed by Generalized Linear Models. Overall, 17% of wild boars (326/1902; 95%CI, [15.5%–18.9%]) showed antibodies against MTC. Risk factors associated with seropositivity were the year and location of sampling, the number of MTC positive cattle, the distance to positive farms and the percentage of shrub cover. Younger age classes were associated with increased antibody titres among seropositive individuals. The seroprevalence detected was higher than those previously reported in neighbouring regions. Hence, further studies are needed to better understand the role of wild boar in the epidemiology of tuberculosis in low tuberculosis prevalence areas and consequently, its relevance when developing control strategies.

]]>
<![CDATA[Lateral flow immunoassay (LFIA) for the detection of lethal amatoxins from mushrooms]]> https://www.researchpad.co/article/N089b971a-62b1-4256-a74f-acfba8aef66c

The mushroom poison that causes the most deaths is the class of toxins known as amatoxins. Current methods to sensitively and selectively detect these toxins are limited by the need for expensive equipment, or they lack accuracy due to cross-reactivity with other chemicals found in mushrooms. In this work, we report the development of a competition-based lateral flow immunoassay (LFIA) for the rapid, portable, selective, and sensitive detection of amatoxins. Our assay clearly indicates the presence of 10 ng/mL of α-AMA or γ-AMA and the method including extraction and detection can be completed in approximately 10 minutes. The test can be easily read by eye and has a presumed shelf-life of at least 1 year. From testing 110 wild mushrooms, the LFIA identified 6 out of 6 species that were known to contain amatoxins. Other poisonous mushrooms known not to contain amatoxins tested negative by LFIA. This LFIA can be used to quickly identify amatoxin-containing mushrooms.

]]>
<![CDATA[Production of a rabbit monoclonal antibody for highly sensitive detection of citrus mosaic virus and related viruses]]> https://www.researchpad.co/article/Nfb5e596f-2980-40fa-8fa6-576f474cd99c

Citrus mosaic virus (CiMV) is one of the causal viruses of citrus mosaic disease in satsuma mandarins (Citrus unshiu). Prompt detection of trees infected with citrus mosaic disease is important for preventing the spread of this disease. Although rabbit monoclonal antibodies (mAbs) exhibit high specificity and affinity, their applicability is limited by technical difficulties associated with the hybridoma-based technology used for raising these mAbs. Here, we demonstrate a feasible CiMV detection system using a specific rabbit mAb against CiMV coat protein. A conserved peptide fragment of the small subunit of CiMV coat protein was designed and used to immunize rabbits. Antigen-specific antibody-producing cells were identified by the immunospot array assay on a chip method. After cloning of variable regions in heavy or light chain by RT-PCR from these cells, a gene set of 33 mAbs was constructed and these mAbs were produced using Expi293F cells. Screening with the AlphaScreen system revealed eight mAbs exhibiting strong interaction with the antigen peptide. From subsequent sequence analysis, they were grouped into three mAbs denoted as No. 4, 9, and 20. Surface plasmon resonance analysis demonstrated that the affinity of these mAbs for the antigen peptide ranged from 8.7 × 10−10 to 5.5 × 10−11 M. In addition to CiMV, mAb No. 9 and 20 could detect CiMV-related viruses in leaf extracts by ELISA. Further, mAb No. 20 showed a high sensitivity to CiMV and CiMV-related viruses, simply by dot blot analysis. The anti-CiMV rabbit mAbs obtained in this study are envisioned to be extremely useful for practical applications of CiMV detection, such as in a virus detection kit.

]]>
<![CDATA[Line Immunoassay for Confirmation and Discrimination of Human T-Cell Lymphotropic Virus Infections in Inconclusive Western Blot Serum Samples from Brazil]]> https://www.researchpad.co/article/N820ab84b-4b0e-407f-b7f8-b8b3d40d029e

Difficulties in confirming and discriminating human T-cell lymphotropic virus type 1 (HTLV-1) and HTLV-2 infections by serological Western blot (WB) assays (HTLV Blot 2.4; MP Biomedicals) have been reported in Brazil, mainly in HIV/AIDS patients, with a large number of WB-indeterminate and WB-positive but HTLV-untypeable results. Nonetheless, a line immunoassay (LIA) (INNO-LIA HTLV-I/II; Fujirebio) provided enhanced specificity and sensitivity for confirming HTLV-1/2 infections.

]]>
<![CDATA[Urea-mediated dissociation alleviate the false-positive Treponema pallidum-specific antibodies detected by ELISA]]> https://www.researchpad.co/article/5c8823e2d5eed0c484639234

The serological detection of antibodies to Treponema pallidum is essential to the diagnosis of syphilis. However, for the presence of cross-reaction, the specific antibody tests [e.g., enzyme-linked immunosorbent assay (ELISA)] always have false-positive results. In this study, we derived and validated the dissociation of urea in an attempt to alleviate the situation of false-positive antibodies to T. pallidum detected by ELISA. Six serum samples that were false-positive antibodies to T. pallidum detected by ELISA, and 16 control serum samples (8 sera positive for both specific IgG and IgM, and 8 IgG-positive and IgM-negative sera) were collected to select the appropriate dissociated concentration and time of urea. Our goal was to establish improved an ELISA method based on the original detection system of ELISA. The sensitivity of the improved ELISA was evaluated by 275 serum samples with class IgM-positive antibodies to T. pallidum. At 6 mol/L with 10 minutes dissociation of urea, 6 samples with false-positive antibodies to T. pallidum were converted to negative, and compared with true-positive antibodies to T. pallidum. The sensitivity of the improved ELISA was 100% by detecting the class IgM-positive antibodies to T. pallidum in sera of patients with syphilis. Considering the importance at the diagnosis of syphilis, antibodies to T. pallidum in serum samples should be retested by the improved ELISA method to avoid false-positive results.

]]>
<![CDATA[Boosting subdominant neutralizing antibody responses with a computationally designed epitope-focused immunogen]]> https://www.researchpad.co/article/5c784fe8d5eed0c4840078de

Throughout the last several decades, vaccination has been key to prevent and eradicate infectious diseases. However, many pathogens (e.g., respiratory syncytial virus [RSV], influenza, dengue, and others) have resisted vaccine development efforts, largely because of the failure to induce potent antibody responses targeting conserved epitopes. Deep profiling of human B cells often reveals potent neutralizing antibodies that emerge from natural infection, but these specificities are generally subdominant (i.e., are present in low titers). A major challenge for next-generation vaccines is to overcome established immunodominance hierarchies and focus antibody responses on crucial neutralization epitopes. Here, we show that a computationally designed epitope-focused immunogen presenting a single RSV neutralization epitope elicits superior epitope-specific responses compared to the viral fusion protein. In addition, the epitope-focused immunogen efficiently boosts antibodies targeting the palivizumab epitope, resulting in enhanced neutralization. Overall, we show that epitope-focused immunogens can boost subdominant neutralizing antibody responses in vivo and reshape established antibody hierarchies.

]]>
<![CDATA[Coincident airway exposure to low-potency allergen and cytomegalovirus sensitizes for allergic airway disease by viral activation of migratory dendritic cells]]> https://www.researchpad.co/article/5c8acc7ed5eed0c48498f892

Despite a broad cell-type tropism, cytomegalovirus (CMV) is an evidentially pulmonary pathogen. Predilection for the lungs is of medical relevance in immunocompromised recipients of hematopoietic cell transplantation, in whom interstitial CMV pneumonia is a frequent and, if left untreated, fatal clinical manifestation of human CMV infection. A conceivable contribution of CMV to airway diseases of other etiology is an issue that so far attracted little medical attention. As the route of primary CMV infection upon host-to-host transmission in early childhood involves airway mucosa, coincidence of CMV airway infection and exposure to airborne environmental antigens is almost unavoidable. For investigating possible consequences of such a coincidence, we established a mouse model of airway co-exposure to CMV and ovalbumin (OVA) representing a protein antigen of an inherently low allergenic potential. Accordingly, intratracheal OVA exposure alone failed to sensitize for allergic airway disease (AAD) upon OVA aerosol challenge. In contrast, airway infection at the time of OVA sensitization predisposed for AAD that was characterized by airway inflammation, IgE secretion, thickening of airway epithelia, and goblet cell hyperplasia. This AAD histopathology was associated with a T helper type 2 (Th2) transcription profile in the lungs, including IL-4, IL-5, IL-9, and IL-25, known inducers of Th2-driven AAD. These symptoms were all prevented by a pre-challenge depletion of CD4+ T cells, but not of CD8+ T cells. As to the underlying mechanism, murine CMV activated migratory CD11b+ as well as CD103+ conventional dendritic cells (cDCs), which have been associated with Th2 cytokine-driven AAD and with antigen cross-presentation, respectively. This resulted in an enhanced OVA uptake and recruitment of the OVA-laden cDCs selectively to the draining tracheal lymph nodes for antigen presentation. We thus propose that CMV, through activation of migratory cDCs in the airway mucosa, can enhance the allergenic potential of otherwise poorly allergenic environmental protein antigens.

]]>
<![CDATA[Antibody responses to Plasmodium vivax Duffy binding and Erythrocyte binding proteins predict risk of infection and are associated with protection from clinical Malaria]]> https://www.researchpad.co/article/5c706793d5eed0c4847c7266

Background

The Plasmodium vivax Duffy Binding Protein (PvDBP) is a key target of naturally acquired immunity. However, region II of PvDBP, which contains the receptor-binding site, is highly polymorphic. The natural acquisition of antibodies to different variants of PvDBP region II (PvDBPII), including the AH, O, P and Sal1 alleles, the central region III-V (PvDBPIII-V), and P. vivax Erythrocyte Binding Protein region II (PvEBPII) and their associations with risk of clinical P. vivax malaria are not well understood.

Methodology

Total IgG and IgG subclasses 1, 2, and 3 that recognize four alleles of PvDBPII (AH, O, P, and Sal1), PvDBPIII-V and PvEBPII were measured in samples collected from a cohort of 1 to 3 year old Papua New Guinean (PNG) children living in a highly endemic area of PNG. The levels of binding inhibitory antibodies (BIAbs) to PvDBPII (AH, O, and Sal1) were also tested in a subset of children. The association of presence of IgG with age, cumulative exposure (measured as the product of age and malaria infections during follow-up) and prospective risk of clinical malaria were evaluated.

Results

The increase in antigen-specific total IgG, IgG1, and IgG3 with age and cumulative exposure was only observed for PvDBPII AH and PvEBPII. High levels of total IgG and predominant subclass IgG3 specific for PvDBPII AH were associated with decreased incidence of clinical P. vivax episodes (aIRR = 0.56–0.68, P≤0.001–0.021). High levels of total IgG and IgG1 to PvEBPII correlated strongly with protection against clinical vivax malaria compared with IgGs against all PvDBPII variants (aIRR = 0.38, P<0.001). Antibodies to PvDBPII AH and PvEBPII showed evidence of an additive effect, with a joint protective association of 70%.

Conclusion

Antibodies to the key parasite invasion ligands PvDBPII and PvEBPII are good correlates of protection against P. vivax malaria in PNG. This further strengthens the rationale for inclusion of PvDBPII in a recombinant subunit vaccine for P. vivax malaria and highlights the need for further functional studies to determine the potential of PvEBPII as a component of a subunit vaccine for P. vivax malaria.

]]>
<![CDATA[Hospitalisations and outpatient visits for undifferentiated fever attributable to scrub typhus in rural South India: Retrospective cohort and nested case-control study]]> https://www.researchpad.co/article/5c7d95f2d5eed0c48473500b

Background

The burden of scrub typhus in endemic areas is poorly understood. This study aimed at estimating the proportion of hospitalisations and outpatient visits for undifferentiated fever in the community that may be attributable to scrub typhus.

Methodology and principal findings

The study was a retrospective cohort with a nested case-control study conducted in the South Indian state of Tamil Nadu. We conducted house-to-house screening in 48 villages (42965 people, 11964 households) to identify hospitalised or outpatient cases due to undifferentiated fever during the preceding scrub typhus season. We used scrub typhus IgG to determine past infection. We calculated adjusted odds ratios for the association between IgG positivity and case status. Odds ratios were used to estimate population attributable fractions (PAF) indicating the proportion of hospitalised and outpatient fever cases attributable to scrub typhus. We identified 58 cases of hospitalisation and 236 outpatient treatments. 562 people were enrolled as control group to estimate the background IgG sero-prevalence. IgG prevalence was 20.3% in controls, 26.3% in outpatient cases and 43.1% in hospitalised cases. The PAFs suggested that 29.5% of hospitalisations and 6.1% of outpatient cases may have been due to scrub typhus. In villages with a high IgG prevalence (defined as ≥15% among controls), the corresponding PAFs were 43.4% for hospitalisations and 5.6% for outpatients. The estimated annual incidence of scrub typhus was 0.8/1000 people (0.3/1000 in low, and 1.3/1000 in high prevalence villages). Evidence for recall error suggested that the true incidences may be about twice as high as these figures.

Conclusions

The study suggests scrub typhus as an important cause for febrile hospitalisations in the community. The results confirm the adequacy of empirical treatment for scrub typhus in hospitalised cases with undifferentiated fever. Since scrub typhus may be rare among stable outpatients, the use of empirical treatment remains doubtful in these.

]]>
<![CDATA[Modulation of calcium signaling pathway by hepatitis C virus core protein stimulates NLRP3 inflammasome activation]]> https://www.researchpad.co/article/5c803c6cd5eed0c484ad893f

Hepatitis C virus (HCV) infection remains a major cause of hepatic inflammation and liver disease. HCV triggers NLRP3 inflammasome activation and interleukin-1β (IL-1β) production from hepatic macrophages, or Kupffer cells, to drive the hepatic inflammatory response. Here we examined HCV activation of the NLRP3 inflammasome signaling cascade in primary human monocyte derived macrophages and THP-1 cell models of hepatic macrophages to define the HCV-specific agonist and cellular processes of inflammasome activation. We identified the HCV core protein as a virion-specific factor of inflammasome activation. The core protein was both necessary and sufficient for IL-1β production from macrophages exposed to HCV or soluble core protein alone. NLRP3 inflammasome activation by the HCV core protein required calcium mobilization linked with phospholipase-C activation. Our findings reveal a molecular basis of hepatic inflammasome activation and IL-1β release triggered by HCV core protein.

]]>
<![CDATA[Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway]]> https://www.researchpad.co/article/5c5ca280d5eed0c48441e4da

Candida albicans is among the most common causes of human fungal infections and is an important source of mortality. C. albicans is able to diminish its detection by innate immune cells through masking of β (1,3)-glucan in the inner cell wall with an outer layer of heavily glycosylated mannoproteins (mannan). However, mutations or drugs that disrupt the cell wall can lead to exposure of β (1,3)-glucan (unmasking) and enhanced detection by innate immune cells through receptors like Dectin-1, the C-type signaling lectin. Previously, our lab showed that the pathway for synthesizing the phospholipid phosphatidylserine (PS) plays a role in β (1,3)-glucan masking. The homozygous PS synthase knockout mutant, cho1Δ/Δ, exhibits increased exposure of β (1,3)-glucan. Several Mitogen Activated Protein Kinase (MAPK) pathways and their upstream Rho-type small GTPases are important for regulating cell wall biogenesis and remodeling. In the cho1Δ/Δ mutant, both the Cek1 and Mkc1 MAPKs are constitutively activated, and they act downstream of the small GTPases Cdc42 and Rho1, respectively. In addition, Cdc42 activity is up-regulated in cho1Δ/Δ. Thus, it was hypothesized that activation of Cdc42 or Rho1 and their downstream kinases cause unmasking. Disruption of MKC1 does not decrease unmasking in cho1Δ/Δ, and hyperactivation of Rho1 in wild-type cells increases unmasking and activation of both Cek1 and Mkc1. Moreover, independent hyperactivation of the MAP kinase kinase kinase Ste11 in wild-type cells leads to Cek1 activation and increased β (1,3)-glucan exposure. Thus, upregulation of the Cek1 MAPK pathway causes unmasking, and may be responsible for unmasking in cho1Δ/Δ.

]]>