ResearchPad - ion-channels-receptors-and-transporters https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Impact of intracellular hemin on N-type inactivation of voltage-gated K<sup>+</sup> channels]]> https://www.researchpad.co/article/elastic_article_9972 N-type inactivation of voltage-gated K+ channels is conferred by the N-terminal “ball” domains of select pore-forming α subunits or of auxiliary β subunits, and influences electrical cellular excitability. Here, we show that hemin impairs inactivation of K+ channels formed by Kv3.4 α subunits as well as that induced by the subunits Kvβ1.1, Kvβ1.2, and Kvβ3.1 when coexpressed with α subunits of the Kv1 subfamily. In Kvβ1.1, hemin interacts with cysteine and histidine residues in the N terminus (C7 and H10) with high affinity (EC50 100 nM). Similarly, rapid inactivation of Kv4.2 channels induced by the dipeptidyl peptidase-like protein DPP6a is also sensitive to hemin, and the DPP6a mutation C13S eliminates this dependence. The results suggest a common mechanism for a dynamic regulation of Kv channel inactivation by heme/hemin in N-terminal ball domains of Kv α and auxiliary β subunits. Free intracellular heme therefore has the potential to regulate cellular excitability via modulation of Kv channel inactivation.

Electronic supplementary materialThe online version of this article (10.1007/s00424-020-02386-1) contains supplementary material, which is available to authorized users. ]]>
<![CDATA[Upward movement of IS4 and IIIS4 is a rate-limiting stage in Cav1.2 activation]]> https://www.researchpad.co/article/5b2a466a463d7e3200a80b09

In order to specify the role of individual S4 segments in CaV1.2 gating, charged residues of segments IS4-IVS4 were replaced by glutamine and the corresponding effects on activation/deactivation of calcium channel currents were analysed. Almost all replacements of charges in IS4 and IIIS4 decreased the slope of the Boltzmann curve of channel activation (activation curve) while charge neutralisations in IIS4 and IVS4 did not significantly affect the slope. S4 mutations caused either left or rightward shifts of the activation curve, and in wild-type channels, these S4 mutations hardly affected current kinetics.

In slowly gating pore (S6) mutants (G432W, A780T, G1193T or A1503G), neutralisations in S4 segments significantly accelerated current kinetics. Likewise in wild type, charge replacements in IS4 and IIIS4 of pore mutants reduced the slope of the activation curves while substitutions of charges in IIS4 and IVS4 had less or no impact. We propose a gating model where the structurally different S4 segments leave their resting positions not simultaneously. Upward movement of segments IS4 and (to a lesser extend) IIIS4 appear to be a rate-limiting stage for releasing the pore gates. These segments carry most of the effective charge for channel activation. Our study suggests that S4 segments of CaV1.2 control the closed state in domain specific manner while stabilizing the open state in a non-specific manner.

Electronic supplementary material

The online version of this article (doi:10.1007/s00424-016-1895-5) contains supplementary material, which is available to authorized users.

]]>