ResearchPad - ions https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Concept of an artificial muscle design on polypyrrole nanofiber scaffolds]]> https://www.researchpad.co/article/elastic_article_8464 Here we present the synthesis and characterization of two new conducting materials having a high electro-chemo-mechanical activity for possible applications as artificial muscles or soft smart actuators in biomimetic structures. Glucose-gelatin nanofiber scaffolds (CFS) were coated with polypyrrole (PPy) first by chemical polymerization followed by electrochemical polymerization doped with dodecylbenzensulfonate (DBS-) forming CFS-PPy/DBS films, or with trifluoromethanesulfonate (CF3SO3-, TF) giving CFS-PPy/TF films. The composition, electronic and ionic conductivity of the materials were determined using different techniques. The electro-chemo-mechanical characterization of the films was carried out by cyclic voltammetry and square wave potential steps in bis(trifluoromethane)sulfonimide lithium solutions of propylene carbonate (LiTFSI-PC). Linear actuation of the CFS-PPy/DBS material exhibited 20% of strain variation with a stress of 0.14 MPa, rather similar to skeletal muscles. After 1000 cycles, the creeping effect was as low as 0,2% having a good long-term stability showing a strain variation per cycle of -1.8% (after 1000 cycles). Those material properties are excellent for future technological applications as artificial muscles, batteries, smart membranes, and so on.

]]>
<![CDATA[Cobalt ion interaction with TMEM16A calcium-activated chloride channel: Inhibition and potentiation]]> https://www.researchpad.co/article/Nba3bff3f-41a4-460d-bc9b-3a7adada8996

TMEM16A, a Ca2+-sensitive Cl- channel, plays key roles in many physiological functions related to Cl- transport across lipid membranes. Activation of this channel is mediated via binding intracellular Ca2+ to the channel with a relatively high apparent affinity, roughly in the sub-μM to low μM concentration range. Recently available high-resolution structures of TMEM16 molecules reveal that the high-affinity Ca2+ activation sites are formed by several acidic amino acids, using their negatively charged sidechain carboxylates to coordinate the bound Ca2+. In this study, we examine the interaction of TMEM16A with a divalent cation, Co2+, which by itself cannot activate current in TMEM16A. This divalent cation, however, has two effects when applied intracellularly. It inhibits the Ca2+-induced TMEM16A current by competing with Ca2+ for the aforementioned high-affinity activation sites. In addition, Co2+ also potentiates the Ca2+-induced current with a low affinity. This potentiation effect requires high concentration (mM) of Co2+, similar to our previous findings that high concentrations (mM) of intracellular Ca2+ ([Ca2+]i) can induce more TMEM16A current after the Ca2+-activation sites are saturated by tens of μM [Ca2+]i. The degrees of potentiation by Co2+ and Ca2+ also roughly correlate with each other. Interestingly, mutating a pore residue of TMEM16A, Y589, alters the degree of potentiation in that the smaller the sidechain of the replaced residue, the larger the potentiation induced by divalent cations. We suggest that the Co2+ potentiation and the Ca2+ potentiation share a similar mechanism by increasing Cl- flux through the channel pore, perhaps due to an increase of positive pore potential after the binding of divalent cations to phospholipids in the pore. A smaller sidechain of a pore residue may allow the pore to accommodate more phospholipids, thus enhancing the current potentiation caused by high concentrations of divalent cations.

]]>
<![CDATA[Effects of different pretreatments on flavonoids and antioxidant activity of Dryopteris erythrosora leave]]> https://www.researchpad.co/article/5c3667dad5eed0c4841a66be

Flavonoids are secondary metabolites of plants that often have medical applications. The influences of different sample drying pretreatments on flavonoids and antioxidant activity of ferns have not studies. Dryopteris erythrosora leaves used to analyze flavonoid alterations resulting from drying pretreatments. The total flavonoid content of D. erythrosora leaves exposed to different pretreatments was significantly different. The total flavonoid content of samples initially air-dried in shade and then oven-dried at 75°C were the highest (7.6%), while samples initially dried at 75°C had the lowest content (2.17%). Antioxidant activities of D. erythrosora leaves with different pretreatments varied. Group B first air-dried in the shade and then oven-dried at 75°C and group C first air-dried in the sun and then oven-dried at 75°C, both showed relatively stronger antioxidant activity. The best pretreatment for preserving the flavonoids was to first dry the plant material in the shade and then complete the drying process in an oven at 75°C. It was tentatively identified 22 flavonoids among the four different pretreatments by HPLC-ESI-TOF-MS.

]]>
<![CDATA[Pimaradienoic Acid Inhibits Carrageenan-Induced Inflammatory Leukocyte Recruitment and Edema in Mice: Inhibition of Oxidative Stress, Nitric Oxide and Cytokine Production]]> https://www.researchpad.co/article/5989da1fab0ee8fa60b7e548

Pimaradienoic acid (PA; ent-pimara-8(14),15-dien-19-oic acid) is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae) in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1β. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation.

]]>
<![CDATA[Different effects of fluid loading with saline, gelatine, hydroxyethyl starch or albumin solutions on acid-base status in the critically ill]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc2d4

Introduction

Fluid administration in critically ill patients may affect acid-base balance. However, the effect of the fluid type used for resuscitation on acid-base balance remains controversial.

Methods

We studied the effect of fluid resuscitation of normal saline and the colloids gelatine 4%, hydroxyethyl starch (HES) 6%, and albumin 5% on acid-base balance in 115 clinically hypovolemic critically ill patients during a 90 minute filling pressure-guided fluid challenge by a post-hoc analysis of a prospective randomized clinical trial.

Results

About 1700 mL was infused per patient in the saline and 1500 mL in each of the colloid groups (P<0.001). Overall, fluid loading slightly decreased pH (P<0.001) and there was no intergroup difference. This mildly metabolic acidifying effect was caused by a small increase in chloride concentration and decrease in strong ion difference in the saline- and HES-, and an increase in (uncorrected) anion gap in gelatine- and albumin-loaded patients, independent of lactate concentrations.

Conclusion

In clinically hypovolemic, critically ill patients, fluid resuscitation by only 1500–1700 mL of normal saline, gelatine, HES or albumin, resulted in a small decrease in pH, irrespective of the type of fluid used. Therefore, a progressive metabolic acidosis, even with increased anion gap, should not be erroneously attributed to insufficient fluid resuscitation.

Trial registration

ISRCTN Registry ISRCTN19023197

]]>
<![CDATA[Evaluation of Chlorella as a Decorporation Agent to Enhance the Elimination of Radioactive Strontium from Body]]> https://www.researchpad.co/article/5989dafcab0ee8fa60bc4eff

Background

Release of radionuclides, such as 137Cs and 90Sr, into the atmosphere and the ocean presents an important problem because internal exposure to 137Cs and 90Sr could be very harmful to humans. Chlorella has been reported to be effective in enhancing the excretion of heavy metals; thus, we hypothesized that Chlorella could also enhance the elimination of 137Cs or 90Sr from the body. We evaluated the potential of Chlorella as a decorporation agent in vitro and in vivo, using 85Sr instead of 90Sr.

Methods

In vitro experiments of adsorption of 137Cs and 85Sr to Chlorella were performed under wide pH conditions. The maximum sorption capacity of Chlorella to strontium was estimated using the Langmuir model. A 85Sr solution was orally administrated to mice pretreated with Chlorella. At 48 h after 85Sr administration, the biodistribution of radioactivity was determined.

Results

In the in vitro experiments, although 85Sr barely adsorbed to Chlorella at low pH, the 85Sr adsorption ratio to Chlorella increased with increasing pH. The maximum sorption capacity of Chlorella to strontium was 9.06 mg / g. 137Cs barely adsorbed to Chlorella under any pH conditions. In the biodistribution experiments, bone accumulation of radioactivity after 85Sr administration was significantly decreased in the Chlorella pretreatment group compared with the non-treatment control group.

Conclusions

In conclusion, these results indicated that Chlorella could inhibit the absorption of 90Sr into the blood and enhance the elimination of 90Sr from the body through adsorption in intestine. Further studies are required to elucidate the mechanism and the components of Chlorella needed for adsorption to strontium and could promote the development of more effective decorporation agents.

]]>
<![CDATA[Observation of σ-pore currents in mutant hKv1.2_V370C potassium channels]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc5dc

Current through the σ-pore was first detected in hKv1.3_V388C channels, where the V388C mutation in hKv1.3 channels opened a new pathway (σ-pore) behind the central α-pore. Typical for this mutant channel was inward current at potentials more negative than -100 mV when the central α-pore was closed. The α-pore blockers such as TEA+ and peptide toxins (CTX, MTX) could not reduce current through the σ-pore of hKv1.3_V388C channels. This new pathway would proceed in parallel to the α-pore in the S6-S6 interface gap. To see whether this phenomenon is restricted to hKv1.3 channels we mutated hKv1.2 at the homologue position (hKv1.2_V370C). By overexpression of hKv1.2_V370C mutant channels in COS-7 cells we could show typical σ-currents. The electrophysiological properties of the σ-pore in hKv1.3_V388C and hKv1.2_V370C mutant channels were similar. The σ-pore of hKv1.2_V370C channels was most permeable to Na+ and Li+ whereas Cl- and protons did not influence current through the σ-pore. Tetraethylammonium (TEA+), charybdotoxin (CTX) and maurotoxin (MTX), known α-pore blockers, could not reduce current through the σ-pore of hKv1.2_V370C channels. Taken together we conclude that the observation of σ-pore currents is not restricted to Kv1.3 potassium channels but can also be observed in a closely related potassium channel. This finding could have implications in the treatment of different ion channel diseases linked to mutations of the respective channels in regions close to homologue position investigated by us.

]]>
<![CDATA[Electrode Mass Balancing as an Inexpensive and Simple Method to Increase the Capacitance of Electric Double-Layer Capacitors]]> https://www.researchpad.co/article/5989da87ab0ee8fa60b9c71e

Symmetric electric double-layer capacitors (EDLCs) have equal masses of the same active material in both electrodes. However, having equal electrode masses may prevent the EDLC to have the largest possible specific capacitance if the sizes of the hydrated anions and cations in the electrolyte differ because the electrodes and the electrolyte may not be completely utilized. Here we demonstrate how this issue can be resolved by mass balancing. If the electrode masses are adjusted according to the size of the ions, one can easily increase an EDLC’s specific capacitance. To that end, we performed galvanostatic cycling to measure the capacitances of symmetric EDLCs with different electrode mass ratios using four aqueous electrolytes— Na2SO4, H2SO4, NaOH, and KOH (all with a concentration of 1 M)—and compared these to the theoretical optimal electrode mass ratio that we calculated using the sizes of the hydrated ions. Both the theoretical and experimental values revealed lower-than-1 optimal electrode ratios for all electrolytes except KOH. The largest increase in capacitance was obtained for EDLCs with NaOH as electrolyte. Specifically, we demonstrate an increase of the specific capacitance by 8.6% by adjusting the electrode mass ratio from 1 to 0.86. Our findings demonstrate that electrode mass balancing is a simple and inexpensive method to increase the capacitance of EDLCs. Furthermore, our results imply that one can reduce the amount of unused material in EDLCs and thus decrease their weight, volume and cost.

]]>
<![CDATA[Characterizing nutrient uptake kinetics for efficient crop production during Solanum lycopersicum var. cerasiforme Alef. growth in a closed indoor hydroponic system]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf66c

A balanced nutrient supply is essential for the healthy growth of plants in hydroponic systems. However, the commonly used electrical conductivity (EC)-based nutrient control for plant cultivation can provide amounts of nutrients that are excessive or inadequate for proper plant growth. In this study, we investigated the kinetics of major and minor nutrient uptake in a nutrient solution during the growth of tomato (Solanum lycopersicum var. cerasiforme Alef.) in a closed hydroponic system. The concentrations of major and minor ions in the nutrient solution were determined by various analytical methods including inductively coupled plasma-optical emission spectroscopy (ICP-OES), ion chromatography (IC), ion specific electrodes, and/or colorimetric methods. The concentrations of the individual nutrient ions were compared with changes in the EC. The EC of the nutrient solution varied according to the different growth stages of tomato plants. Variation in the concentrations of NO3, SO42−, Mg2+, Ca2+, and K+ was similar to the EC variation. However, in the cases of PO43−, Na+, Cl, dissolved Fe and Mn, Cu2+, and Zn2+, variation did not correspond with that of EC. These ions were generally depleted (to 0 mg L−1) during tomato growth, suggesting that these specific ions should be monitored individually and their supply increased. Nutrient uptake rates of major ions increased gradually at different growth stages until harvest (from < 3 mg L−1 d−1 to > 15 mg L−1 d−1). Saturation indices determined by MINEQL+ simulation and a mineral precipitation experiment demonstrated the potential for amorphous calcium phosphate precipitation, which may facilitate the abiotic adsorptive removal of dissolved Fe, dissolved Mn, Cu2+, and Zn2+.

]]>
<![CDATA[Natural Variation in Arabidopsis Cvi-0 Accession Reveals an Important Role of MPK12 in Guard Cell CO2 Signaling]]> https://www.researchpad.co/article/5989db3eab0ee8fa60bd5ccf

Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO2 for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO2-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO2-insensitivity phenotypes of a mutant cis (CO2-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)—a central node in guard cell CO2 signaling—and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO2 signaling controls plant water management.

]]>
<![CDATA[Redox Activity of Copper(II) Complexes with NSFRY Pentapeptide and Its Analogues]]> https://www.researchpad.co/article/5989d9ebab0ee8fa60b6c725

The influence of cation-π interactions on the electrochemical properties of copper(II) complexes with synthesized pentapeptide C-terminal fragment of Atrial Natriuretic Factor (ANF) hormone was studied in this work. Molecular modeling performed for Cu(II)-NSFRY-NH2 complex indicated that the cation-π interactions between Tyr and Cu(II), and also between Phe-Arg led to specific conformation defined as peptide box, in which the metal cation is isolated from the solvent by peptide ligand. Voltammetry experiments enabled to compare the redox properties and stability of copper(II) complexes with NSFRY-NH2 and its analogues (namely: NSFRA-NH2, NSFRF-NH2, NSAAY-NH2, NSAAA-NH2, AAAAA-NH2) as well as to evaluate the contribution of individual amino acid residues to these properties. The obtained results led to the conclusion, that cation-π interactions play a crucial role in the effective stabilization of copper(II) complexes with the fragments of ANF peptide hormone and therefore could control the redox processes in other metalloproteins.

]]>
<![CDATA[Water radiolysis by low-energy carbon projectiles from first-principles molecular dynamics]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcbde

Water radiolysis by low-energy carbon projectiles is studied by first-principles molecular dynamics. Carbon projectiles of kinetic energies between 175 eV and 2.8 keV are shot across liquid water. Apart from translational, rotational and vibrational excitation, they produce water dissociation. The most abundant products are H and OH fragments. We find that the maximum spatial production of radiolysis products, not only occurs at low velocities, but also well below the maximum of energy deposition, reaching one H every 5 Å at the lowest speed studied (1 Bohr/fs), dissociative collisions being more significant at low velocity while the amount of energy required to dissociate water is constant and much smaller than the projectile’s energy. A substantial fraction of the energy transferred to fragments, especially for high velocity projectiles, is in the form of kinetic energy, such fragments becoming secondary projectiles themselves. High velocity projectiles give rise to well-defined binary collisions, which should be amenable to binary approximations. This is not the case for lower velocities, where multiple collision events are observed. H secondary projectiles tend to move as radicals at high velocity, as cations when slower. We observe the generation of new species such as hydrogen peroxide and formic acid. The former occurs when an O radical created in the collision process attacks a water molecule at the O site. The latter when the C projectile is completely stopped and reacts with two water molecules.

]]>
<![CDATA[Modeling the adsorption of hydrogen, sodium, chloride and phthalate on goethite using a strict charge-neutral ion-exchange theory]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf520

Simultaneous adsorption modeling of four ions was predicted with a strict net charge-neutral ion-exchange theory and its corresponding equilibrium and mass balance equations. An important key to the success of this approach was the proper collection of all the data, particularly the proton adsorption data, and the inclusion of variable concentrations of conjugate ions from the experimental pH adjustments. Using IExFit software, the ion-exchange model used here predicted the competitive retention of several ions on goethite by assuming that the co-adsorption or desorption of all ions occurred in the correct stoichiometries needed to maintain electroneutrality. This approach also revealed that the retention strength of Cl ions on goethite increases in the presence of phthalate ions. That is, an anion-anion enhancement effect was observed. The retention of Cl ions was much weaker than phthalate ions, and this also resulted in a higher sensitivity of the Cl ions toward minor variations in the surface reactivity. The proposed model uses four goethite surface sites. The drop in retention of phthalate ions at low pH was fully described here as resulting from competitive Cl reactions, which were introduced in increasing concentrations into the matrix as the conjugate base to the acid added to lower the pH.

]]>
<![CDATA[Development of a Blue Emitting Calcium-Aluminate Phosphor]]> https://www.researchpad.co/article/5989daabab0ee8fa60ba9717

We report methodological advances that enhance the phosphorescence efficiency of a blue-emitting calcium aluminate phosphor (CaAl2O4: Eu2+, Nd3+). The investigation of long-persistence blue-emitting phosphors is highly desirable due to their promising applications, such as white LEDs; however, the development of highly efficient blue-emitting phosphors is still challenging. Here, we have quantitatively characterized the phosphorescence properties of the blue-emitting phosphor CaAl2O4:Eu2+, Nd3+ with various compositions and directly related these properties to the quality of its luminescence. We optimized the composition of the activator Eu2+ and the co-activator Nd3+, the doping conditions with alkaline earth metals, alkali metals, and Si to create crystallographic distortions and, finally, the flux conditions to find the best parameters for bright and persistent blue-emitting phosphors. Our research has identified several doping compositions with good to excellent performance, with which we have demonstrated bright and persistent phosphors with afterglow characteristics superior to those of conventional phosphors.

]]>
<![CDATA[Response of Npt2a knockout mice to dietary calcium and phosphorus]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf22c

Mutations in the renal sodium-dependent phosphate co-transporters NPT2a and NPT2c have been reported in patients with renal stone disease and nephrocalcinosis, but the relative contribution of genotype, dietary calcium and phosphate to the formation of renal mineral deposits is unclear. We previously reported that renal calcium phosphate deposits persist and/or reappear in older Npt2a-/- mice supplemented with phosphate despite resolution of hypercalciuria while no deposits are seen in wild-type (WT) mice on the same diet. Addition of calcium to their diets further increased calcium phosphate deposits in Npt2a-/-, but not WT mice. The response of PTH to dietary phosphate of Npt2a-/- was blunted when compared to WT mice and the response of the urinary calcium x phosphorus product to the addition of calcium and phosphate to the diet of Npt2a-/- was increased. These finding suggests that Npt2a-/- mice respond differently to dietary phosphate when compared to WT mice. Further evaluation in the Npt2a-/- cohort on different diets suggests that urinary calcium excretion, plasma phosphate and FGF23 levels appear to be positively correlated to renal mineral deposit formation while urine phosphate levels and the urine anion gap, an indirect measure of ammonia excretion, appear to be inversely correlated. Our observations in Npt2a-/- mice, if confirmed in humans, may be relevant for the optimization of existing and the development of novel therapies to prevent nephrolithiasis and nephrocalcinosis in human carriers of NPT2a and NPT2c mutations.

]]>
<![CDATA[Curcumin Generates Oxidative Stress and Induces Apoptosis in Adult Schistosoma mansoni Worms]]> https://www.researchpad.co/article/5989daf0ab0ee8fa60bc0ef1

Inducing apoptosis is an interesting therapeutic approach to develop drugs that act against helminthic parasites. Researchers have investigated how curcumin (CUR), a biologically active compound extracted from rhizomes of Curcuma longa, affects Schistosoma mansoni and several cancer cell lines. This study evaluates how CUR influences the induction of apoptosis and oxidative stress in couples of adult S. mansoni worms. CUR decreased the viability of adult worms and killed them. The tegument of the parasite suffered morphological changes, the mitochondria underwent alterations, and chromatin condensed. Different apoptotic parameters were determined in an attempt to understand how CUR affected adult S. mansoni worms. CUR induced DNA damage and fragmentation and increased the expression of SmCASP3/7 transcripts and the activity of Caspase 3 in female and male worms. However, CUR did not intensify the activity of Caspase 8 in female or male worms. Evaluation of the superoxide anion and different antioxidant enzymes helped to explore the mechanism of parasite death further. The level of superoxide anion and the activity of Superoxide Dismutase (SOD) increased, whereas the activity of Glutathione-S-Transferase (GST), Glutathione reductase (GR), and Glutathione peroxidase (GPX) decreased, which culminated in the oxidation of proteins in adult female and male worms incubated with CUR. In conclusion, CUR generated oxidative stress followed by apoptotic-like-events in both adult female and male S. mansoni worms, ultimately killing them.

]]>
<![CDATA[Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite]]> https://www.researchpad.co/article/5989d9fbab0ee8fa60b71f4a

Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00) synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21–25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM). The results revealed that saturation magnetization (Ms) and coercivity (Hc) of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles.

]]>
<![CDATA[Identification of Anion Channels Responsible for Fluoride Resistance in Oral Streptococci]]> https://www.researchpad.co/article/5989db0bab0ee8fa60bca214

Recently, it has been reported that eriC and crcB are involved in bacterial fluoride resistance. However, the fluoride-resistance mechanism in oral streptococci remains unclear. BLAST studies showed that two types of eriCs (eriC1 and eriC2) and two types of crcBs (crcB1 and crcB2) are present across 18 oral streptococci, which were identified in ≥ 10% of 166 orally healthy subjects with ≥ 0.01% of the mean relative abundance. They were divided into three groups based on the distribution of these four genes: group I, only eriC1; group II, eriC1 and eriC2; and group III, eriC2, crcB1, and crcB2. Group I consisted of Streptococcus mutans, in which one of the two eriC1s predominantly affected fluoride resistance. Group II consisted of eight species, and eriC1 was responsible for fluoride resistance, but eriC2 was not, in Streptococcus anginosus as a representative species. Group III consisted of nine species, and both crcB1 and crcB2 were crucial for fluoride resistance, but eriC2 was not, in Streptococcus sanguinis as a representative species. Based on these results, either EriC1 or CrcBs play a role in fluoride resistance in oral streptococci. Complementation between S. mutans EriC1 and S. sanguinis CrcB1/CrcB2 was confirmed in both S. mutans and S. sanguinis. However, neither transfer of S. sanguinis CrcB1/CrcB2 into wild-type S. mutans nor S. mutans EriC1 into wild-type S. sanguinis increased the fluoride resistance of the wild-type strain. Co-existence of different F channels (EriC and CrcB) did not cause the additive effect on fluoride resistance in oral Streptococcus species.

]]>
<![CDATA[Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc18e

The current work deals with the phenomenon of silver cations uptake by two kinds of bacteria isolated from dairy products. The mechanism of sorption of silver cations by Lactococcus lactis and Lactobacillus casei bacteria was investigated. Inductively coupled plasma–mass spectrometry (ICP-MS) was used for determination of silver concentration sorbed by bacteria. Analysis of charge distribution was conducted by diffraction light scattering method. Changes in the ultrastructure of Lactococcus lactis and Lactobacillus casei cells after treatment with silver cations were investigated using transmission electron microscopy observation. Molecular spectroscopy methods, namely Fourier transform-infrared spectroscopy (FT-IR) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) were employed for description of the sorption mechanism. Moreover, an analysis of volatile organic compounds (VOCs) extracted from bacterial cells was performed.

]]>
<![CDATA[Chloride alterations in hospitalized patients: Prevalence and outcome significance]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc14b

Serum Cl (sCl) alterations in hospitalized patients have not been comprehensively studied in recent years. The aim of this study is to investigate the prevalence and outcome significance of (1) sCl alterations on hospital admission, and (2) sCl evolution within the first 48 hr of hospital admission. We conducted a retrospective study of all hospital admissions in the years 2011–2013 at Mayo Clinic Rochester, a 2000-bed tertiary medical center. Outcome measures included hospital mortality, length of hospital stay and discharge disposition. 76,719 unique admissions (≥18 years old) were studied. Based on hospital mortality, sCl in the range of 105–108 mmol/L was found to be optimal. sCl <100 (n = 13,611) and >108 (n = 11,395) mmol/L independently predicted a higher risk of hospital mortality, longer hospital stay and being discharged to a care facility. 13,089 patients (17.1%) had serum anion gap >12 mmol/L; their hospital mortality, when compared to 63,630 patients (82.9%) with anion gap ≤12 mmol/L, was worse. Notably, patients with elevated anion gap displayed a progressively worsening mortality with rising sCl. sCl elevation within 48 hr of admission was associated with a higher proportion of 0.9% saline administration and was an independent predictor for hospital mortality. Moreover, the magnitude of sCl rise was inversely correlated to the days of patient survival. In conclusion, serum Cl alterations on admission predict poor clinical outcomes. Post-admission sCl increase, due to Cl-rich fluid infusion, independently predicts hospital mortality. These results raise a critical question of whether iatrogenic cause of hyperchloremia should be avoided, a question to be addressed by future prospective studies.

]]>