ResearchPad - kinematics https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Discriminant validity of 3D joint kinematics and centre of mass displacement measured by inertial sensor technology during the unipodal stance task]]> https://www.researchpad.co/article/elastic_article_14569 The unipodal stance task is a clinical task that quantifies postural stability and alignment of the lower limb joints, while weight bearing on one leg. As persons with knee osteoarthritis (KOA) have poor postural and knee joint stability, objective assessment of this task might be useful.ObjectiveTo investigate the discriminant validity of three-dimensional joint kinematics and centre of mass displacement (COM) between healthy controls and persons with knee KOA, during unipodal stance using inertial sensors. Additionally, the reliability, agreement and construct validity are assessed to determine the reproducibility and accuracy of the discriminating parameters.MethodsTwenty healthy controls and 19 persons with unilateral severe KOA were included. Five repetitions of the unipodal stance task were simultaneously recorded by an inertial sensor system and a camera-based system (gold standard). Statistical significant differences in kinematic waveforms between healthy controls and persons with severe knee KOA were determined using one-dimensional statistical parametric mapping (SPM1D).ResultsPersons with severe knee KOA had more lateral trunk lean towards the contralateral leg, more hip flexion throughout the performance of the unipodal stance task, more pelvic obliquity and COM displacement towards the contralateral side. However, for the latter two parameters the minimum detectable change was greater than the difference between healthy controls and persons with severe knee KOA. The construct validity was good (coefficient of multiple correlation 0.75, 0.83 respectively) and the root mean squared error (RMSE) was low (RMSE <1.5°) for the discriminant parameters.ConclusionInertial sensor based movement analysis can discriminate between healthy controls and persons with severe knee KOA for lateral trunk lean and hip flexion, but unfortunately not for the knee angles. Further research is required to improve the reproducibility and accuracy of the inertial sensor measurements before they can be used to assess differences in tasks with a small range of motion. ]]> <![CDATA[Special footwear designed for pregnant women and its effect on kinematic gait parameters during pregnancy and postpartum period]]> https://www.researchpad.co/article/elastic_article_13821 During pregnancy, an array of changes occurs in women body to enable the growth and development of the future baby and the consequent delivery. These changes are reflected in the range of motion of trunk, pelvis, lower limbs and other body segments, affect the locomotion and some of these changes may persist to the postpartum period. The aim of this study was to describe the changes affecting the gait during pregnancy and to determine the effect of tested footwear on kinematic gait characteristics during pregnancy as previous studies indicate that special orthopaedic insoles and footwear might be useful in prevention of the common musculoskeletal pain and discomfort related to pregnancy. Participants from the control group (n = 18), without any intervention, and the experimental group (n = 23), which was wearing the tested shoes, were measured at their 14, 28 and 37 gestational weeks and 28 weeks postpartum to capture the complete pregnancy-related changes in gait. The gait 3D kinematic data were obtained using Simi Motion System. The differences between the control and experimental group at the first data collection session in most of the analysed variables, as well as relatively high standard deviations of analysed variables indicate large individual differences in the gait pattern. The effect of tested footwear on kinematic gait pattern changes may be explained by its preventive effect against the foot arches falling. In the control group, changes associated previously with the foot arches falling and hindfoot hyperpronation were observed during advanced phases of pregnancy and postpartum, e.g. increase in knee flexion or increase in spinal curvature. For the comprehensive evaluation of the tested footwear on pregnancy gait pattern, future studies combining the kinematic and dynamic plantographic methods are needed.

]]>
<![CDATA[Effects of realistic sheep elbow kinematics in inverse dynamic simulation]]> https://www.researchpad.co/article/5c8823cbd5eed0c48463901b

Looking for new opportunities in mechanical design, we are interested in studying the kinematic behaviour of biological joints. The real kinematic behaviour of the elbow of quadruped animals (which is submitted to high mechanical stresses in comparison with bipeds) remains unexplored. The sheep elbow joint was chosen because of its similarity with a revolute joint. The main objective of this study is to estimate the effects of elbow simplifications on the prediction of joint reaction forces in inverse dynamic simulations. Rigid motions between humerus and radius-ulna were registered during full flexion-extension gestures on five cadaveric specimens. The experiments were initially conducted with fresh specimens with ligaments and repeated after removal of all soft tissue, including cartilage. A digital image correlation system was used for tracking optical markers fixed on the bones. The geometry of the specimens was digitized using a 3D optical scanner. Then, the instantaneous helical axis of the joint was computed for each acquisition time. Finally, an OpenSim musculoskeletal model of the sheep forelimb was used to quantify effects of elbow joint approximations on the prediction of joint reaction forces. The motion analysis showed that only the medial-lateral translation is sufficiently large regarding the measuring uncertainty of the experiments. This translation assimilates the sheep elbow to a screw joint instead of a revolute joint. In comparison with fresh specimens, the experiments conducted with dry bone specimens (bones without soft tissue) provided different kinematic behaviour. From the results of our inverse dynamic simulations, it was noticed that the inclusion of the medial-lateral translation to the model made up with the mean flexion axis does not affect the predicted joint reaction forces. A geometrical difference between the axis of the best fitting cylinder and the mean flexion axis (derived from the motion analysis) of fresh specimens was highlighted. This geometrical difference impacts slightly the prediction of joint reactions.

]]>
<![CDATA[Structure and variability of delay activity in premotor cortex]]> https://www.researchpad.co/article/5c990204d5eed0c484b9749c

Voluntary movements are widely considered to be planned before they are executed. Recent studies have hypothesized that neural activity in motor cortex during preparation acts as an ‘initial condition’ which seeds the proceeding neural dynamics. Here, we studied these initial conditions in detail by investigating 1) the organization of neural states for different reaches and 2) the variance of these neural states from trial to trial. We examined population-level responses in macaque premotor cortex (PMd) during the preparatory stage of an instructed-delay center-out reaching task with dense target configurations. We found that after target onset the neural activity on single trials converges to neural states that have a clear low-dimensional structure which is organized by both the reach endpoint and maximum speed of the following reach. Further, we found that variability of the neural states during preparation resembles the spatial variability of reaches made in the absence of visual feedback: there is less variability in direction than distance in neural state space. We also used offline decoding to understand the implications of this neural population structure for brain-machine interfaces (BMIs). We found that decoding of angle between reaches is dependent on reach distance, while decoding of arc-length is independent. Thus, it might be more appropriate to quantify decoding performance for discrete BMIs by using arc-length between reach end-points rather than the angle between them. Lastly, we show that in contrast to the common notion that direction can better be decoded than distance, their decoding capabilities are comparable. These results provide new insights into the dynamical neural processes that underline motor control and can inform the design of BMIs.

]]>
<![CDATA[Affordable gait analysis using augmented reality markers]]> https://www.researchpad.co/article/5c6f1519d5eed0c48467adab

A typical optical based gait analysis laboratory uses expensive stereophotogrammetric motion capture systems. The study aims to propose and validate an affordable gait analysis method using augmented reality (AR) markers with a single action camera. Image processing software calculates the position and orientation of the AR markers. Anatomical landmark calibration is applied on the subject to calibrate each of the anatomical points with respect to their corresponding AR markers. This way, anatomical points are tracked through AR markers using homogeneous coordinate transformations, and the further processing of gait analysis is identical with conventional solutions. The proposed system was validated on nine participants of varying age using a conventional motion capture system on simultaneously measured treadmill gait trials on 2, 3 and 4.5 km/h walking speeds. Coordinates of the virtual anatomical points were compared using the Bland-Altman analysis. Spatial-temporal gait parameters (step length, stride length, walking base, cadence, pelvis range of motion) and angular gait parameters (range of motion of knee, hip and pelvis angles) were compared between measurement systems by RMS error and Bland-Altman analysis. The proposed method shows some differences in the raw coordinates of virtually tracked anatomical landmarks and gait parameters compared to the reference system. RMS errors of spatial parameters were below 23 mm, while the angular range of motion RMS errors varies from 2.55° to 6.73°. Some of these differences (e.g. knee angle range of motion) is comparable to previously reported differences between commercial motion capture systems and gait variability. The proposed method can be a very cheap gait analysis solution, but precision is not guaranteed for every aspect of gait analysis using the currently exemplified implementation of the AR marker tracking approach.

]]>
<![CDATA[Automatic real-time gait event detection in children using deep neural networks]]> https://www.researchpad.co/article/5c5ca2a9d5eed0c48441e836

Annotation of foot-contact and foot-off events is the initial step in post-processing for most quantitative gait analysis workflows. If clean force plate strikes are present, the events can be automatically detected. Otherwise, annotation of gait events is performed manually, since reliable automatic tools are not available. Automatic annotation methods have been proposed for normal gait, but are usually based on heuristics of the coordinates and velocities of motion capture markers placed on the feet. These heuristics do not generalize to pathological gait due to greater variability in kinematics and anatomy of patients, as well as the presence of assistive devices. In this paper, we use a data-driven approach to predict foot-contact and foot-off events from kinematic and marker time series in children with normal and pathological gait. Through analysis of 9092 gait cycle measurements we build a predictive model using Long Short-Term Memory (LSTM) artificial neural networks. The best-performing model identifies foot-contact and foot-off events with an average error of 10 and 13 milliseconds respectively, outperforming popular heuristic-based approaches. We conclude that the accuracy of our approach is sufficient for most clinical and research applications in the pediatric population. Moreover, the LSTM architecture enables real-time predictions, enabling applications for real-time control of active assistive devices, orthoses, or prostheses. We provide the model, usage examples, and the training code in an open-source package.

]]>
<![CDATA[Evaluation of functional methods of joint centre determination for quasi-planar movement]]> https://www.researchpad.co/article/5c605a9ed5eed0c4847cd32a

Functional methods identify joint centres as the centre of rotation (CoR) of two adjacent movements during an ad-hoc movement. The methods have been used for functionally determining hip joint centre in gait analysis and have revealed advantages compared to predictive regression techniques. However, the current implementation of functional methods hinders its application in clinical use when subjects have difficulties performing multi-plane movements over the required range. In this study, we systematically investigated whether functional methods can be used to localise the CoR during a quasi-planar movement. The effects of the following factors were analysed: the algorithms, the range and speed of the movement, marker cluster location, marker cluster size and distance to the joint centre. A mechanical linkage was used in our study to isolate the factors of interest and give insight to variation in implementation of functional methods. Our results showed the algorithms and cluster locations significantly affected the estimate results. For all algorithms, a significantly positive relationship between CoR errors and the distance of proximal cluster coordinate location to the joint centre along the medial-lateral direction was observed while the distal marker clusters were best located as close as possible to the joint centre. By optimising the analytical and experimental factors, the transformation algorithms achieved a root mean square error (RMSE) of 5.3 mm while the sphere fitting methods yielded the best estimation with an RMSE of 2.6 mm. The transformation algorithms performed better in presence of random noise and simulated soft tissue artefacts.

]]>
<![CDATA[Modeling musculoskeletal kinematic and dynamic redundancy using null space projection]]> https://www.researchpad.co/article/5c366805d5eed0c4841a6e05

The coordination of the human musculoskeletal system is deeply influenced by its redundant structure, in both kinematic and dynamic terms. Noticing a lack of a relevant, thorough treatment in the literature, we formally address the issue in order to understand and quantify factors affecting the motor coordination. We employed well-established techniques from linear algebra and projection operators to extend the underlying kinematic and dynamic relations by modeling the redundancy effects in null space. We distinguish three types of operational spaces, namely task, joint and muscle space, which are directly associated with the physiological factors of the system. A method for consistently quantifying the redundancy on multiple levels in the entire space of feasible solutions is also presented. We evaluate the proposed muscle space projection on segmental level reflexes and the computation of the feasible muscle forces for arbitrary movements. The former proves to be a convenient representation for interfacing with segmental level models or implementing controllers for tendon driven robots, while the latter enables the identification of force variability and correlations between muscle groups, attributed to the system’s redundancy. Furthermore, the usefulness of the proposed framework is demonstrated in the context of estimating the bounds of the joint reaction loads, where we show that misinterpretation of the results is possible if the null space forces are ignored. This work presents a theoretical analysis of the redundancy problem, facilitating application in a broad range of fields related to motor coordination, as it provides the groundwork for null space characterization. The proposed framework rigorously accounts for the effects of kinematic and dynamic redundancy, incorporating it directly into the underlying equations using the notion of null space projection, leading to a complete description of the system.

]]>
<![CDATA[Identification of knee gait waveform pattern alterations in individuals with patellofemoral pain using fast Fourier transform]]> https://www.researchpad.co/article/5c1d5b55d5eed0c4846eb613

Patellofemoral pain (PFP) is one of the most common overuse injuries of the knee. Previous research has found that individuals with PFP exhibit differences in peak hip kinematics; however, differences in peak knee kinematics, where the pain originates, are difficult to elucidate. To better understand the mechanism behind PFP, we sought to characterize differences in knee gait kinematic waveform patterns in individuals with PFP compared to healthy individuals using fast Fourier transform (FFT). Sixteen control and sixteen individuals with PFP participated in a fast walk protocol. FFT was used to decompose the sagittal, frontal and transverse plane knee gait waveforms into sinusoidal signals. A two-way ANOVA and Bonferroni post hoc analysis compared group, limb and interaction effects on sagittal, frontal and transverse amplitude, frequency and phase components between control and PFP individuals gait waveforms. Differences in frequency and phase values were found in the sagittal and frontal plane knee waveforms between the control and PFP groups. The signal-to-noise ratio also reported significant differences between the PFP and control limbs in the sagittal (p<0.01) and frontal planes (p = 0.04). The findings indicate that differences in gait patterns in the individuals with PFP were not the result of amplitude differences, but differences attributed to temporal changes in gait patterns detected by the frequency and phase metrics. These changes suggest that individuals with PFP adopted a more deliberate, stiffer gait and exhibit altered joint coordination. And the FFT technique could serve as a fast, quantifiable tool for clinicians to detect PFP.

]]>
<![CDATA[Cranio-caudal and medio-lateral navicular translation are representative surrogate measures of foot function in asymptomatic adults during walking]]> https://www.researchpad.co/article/5c117b4fd5eed0c4846989f5

Introduction

The translation of the navicular bone is thought to be a representative surrogate measure to assess foot pronation and hence foot function; however, it is not known how it is related to multi-segment foot kinematics.

Methods

Cranio-caudal (NCC) and medio-lateral (NML) navicular translation and multi-segment foot kinematics from the Oxford Foot Model (OFM) were simultaneously assessed during the stance phase of walking in 20 healthy adults. Relationships to forefoot to hindfoot (FFtoHF), hindfoot to tibia (HFtoTBA) and global hindfoot (HFL) motion were explored by cross-correlations at zero phase shift.

Results

FFtoHF sagittal, transversal and frontal plane angles showed median cross correlations of -0.95, 0.82 and 0.53 with NCC and of 0.78, -0.81 and -0.90 with NML. HFtoTBA transversal and frontal plane angles had correlations of 0.15 and 0.74 with NCC and of -0.38 and -0.83 with NML. The HFL frontal plane angle showed correlations of 0.41 and -0.44 with NCC and NML, respectively.

Discussion

The strongest relationships were found between FFtoHF sagittal plane angles and NCC and between FFtoHF frontal plane angles and NML. However, cranio-caudal and medio-lateral navicular translation seem to be reasonable surrogates for the triplanar motion between the fore- and hindfoot. The medial longitudinal arch dropped and bulged medially, while the forefoot dorsiflexed, abducted and everted with respect to the hindfoot and vice-versa. The lower cross-correlation coefficients between the rear foot parameters and NCC/NML indicated no distinct relationships between rearfoot frontal plane and midfoot kinematics. The validity of rearfoot parameters, like Achilles tendon or Calcaneal angle, to assess midfoot function must be therefore questioned. The study could also not confirm a systematic relationship between midfoot kinematics and the internal/external rotation between the hindfoot and the tibia. The measurement of navicular translation is suggested as an alternative to more complex multi-segment foot models to assess foot function.

]]>
<![CDATA[Optimizing beat synchronized running to music]]> https://www.researchpad.co/article/5c12cf88d5eed0c4849148c2

The use of music and specifically tempo-matched music has been shown to affect running performance. But can we maximize the synchronization of movements to music and does maximum synchronization influence kinematics and motivation? In this study, we explore the effect of different types of music-to-movement alignment strategies on phase coherence, cadence and motivation. These strategies were compared to a control condition where the music tempo was deliberately not aligned to the running cadence. Results show that without relative phase alignment, a negative mean asynchrony (NMA) of footfall timings with respect to the beats is obtained. This means that footfalls occurred slightly before the beat and that beats were anticipated. Convergence towards this NMA or preferred relative phase angle was facilitated when the first music beat of a new song started close to the step, which means that entrainment occurred. The results also show that using tempo and phase alignment, the relative phase can be manipulated or forced in a certain angle with a high degree of accuracy. Ensuring negative angles larger than NMA (step before beat) results in increased motivation and decreasing cadence. Running in NMA or preferred relative phase angles results in a null effect on cadence. Ensuring a positive phase angle with respect to NMA results in higher motivation and higher cadence. None of the manipulations resulted in change in perceived exhaustion or a change in velocity. Results also indicate that gender plays an important role when using forced phase algorithms: effects were more pronounced for the female population than for the male population. The implementation of the proposed alignment strategies and control of beat timing while running opens possibilities optimizing the individual running cadence and motivation.

]]>
<![CDATA[Predicting the length of volleyball serves: The role of early auditory and visual information]]> https://www.researchpad.co/article/5c0ed743d5eed0c484f13dd0

In light of the growing body of research that is revealing the significant role of the auditory domain in sport, the present study aims to investigate the contribution of early auditory and visual information to the prediction of volleyball serves’ length. To this purpose, three within-subjects experiments were run, which differed among them in terms of stimuli (audiovisual congruent vs audiovisual incongruent; audio only vs video only) and/or in terms of number of possible answers. In particular, expert volleyball players were asked to predict the length of temporally occluded overhand serves, choosing among either two or three possible landing sectors. Response accuracy and response times were measured. For the incongruent stimuli, the results revealed that the percentage of predictions in line with early auditory information was significantly higher than the respective percentage of predictions in line with early visual information. For unimodal stimuli, prediction accuracy was significantly higher on the basis of auditory information than on the basis of visual information, without any difference on response times. Taken together, the results highlighted the relevance of early auditory information for the prediction of volleyball serves’ length.

]]>
<![CDATA[Understanding the impact loading characteristics of a badminton lunge among badminton players]]> https://www.researchpad.co/article/5bca48e640307c0516656417

Background

The rapid and repetitive badminton lunges would produce strenuous impact loading on the lower extremities of players and these loading are thought to be the contributing factors of chronic knee injuries. This study examined the impact loading characteristics in various groups of badminton athletes performing extreme lunges.

Methods

Fifty-two participants classified into male skilled, female skilled, male unskilled, and female unskilled groups performed badminton lunge with their maximum-effort. Shoe-ground kinematics, ground reaction forces, and knee moments were measured by using synchronised force platform and motion analysis system. A 2 (gender) x 2 (skill-level) factorial ANOVA was performed to determine the effects of different gender and different playing levels, as well as the interaction of two factors on all variables.

Results

Male athletes had faster approaching speed (male 3.87 and female 1.08 m/s), longer maximum lunge distance (male 1.47 and female 1.16 m), larger maximum (male 215.7 and female 121.65 BW/s) and mean loading rate (male 178.43 and female 81.77 BW/s) and larger peak knee flexion moment (male 0.75 and female 0.69) compared with female athletes (P < 0.001). Unskilled athletes exhibited smaller footstrike angle (skilled 45.78 and unskilled 32.35°), longer contact time (skilled 0.69 and unskilled 0.75 s), larger peak horizontal GRF (skilled 1.61 and unskilled 2.40 BW), smaller mean loading rate (skilled 150.15 and unskilled 110.05 BW/s) and larger peak knee flexion moment (P < .05; skilled 0.69 and unskilled 0.75 Nm/BW) than the skilled athletes. In addition, the interaction indicated greater peak GRF impact in female unskilled athletes compared with female skilled athletes (P < 0.001; female skilled 2.01 and female unskilled 2.95 BW), while there was no difference between male participants (P > 0.05; male skilled 2.19 and male unskilled 2.49 BW).

Conclusions

These data suggested that male athletes and/or unskilled athletes experience greater impact loading rates and peak knee flexion moment during lunge compared with female and skilled athletes, respectively. This may expose them to higher risk of overuse injuries. Furthermore, female unskilled athletes seemed to be more vulnerable to lower extremity injuries.

]]>
<![CDATA[Effects of different medial arch support heights on rearfoot kinematics]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbd74

Background

Foot orthoses are usually assumed to be effective by optimizing mechanically dynamic rearfoot configuration. However, the effect from a foot orthosis on kinematics that has been demonstrated scientifically has only been marginal. The aim of this study was to examine the effect of different heights in medial arch-supported foot orthoses on rear foot motion during gait.

Methods

Nineteen asymptomatic runners (36±11years, 180±5cm, 79±10kg; 41±22km/week) participated in the study. Trials were recorded at 3.1 mph (5 km/h) on a treadmill. Athletes walked barefoot and with 4 different not customized medial arch-supported foot orthoses of various arch heights (N:0 mm, M:30 mm, H:35 mm, E:40mm). Six infrared cameras and the `Oxford Foot Model´ were used to capture motion. The average stride in each condition was calculated from 50 gait cycles per condition. Eversion excursion and internal tibia rotation were analyzed. Descriptive statistics included calculating the mean ± SD and 95% CIs. Group differences by condition were analyzed by one factor (foot orthoses) repeated measures ANOVA (α = 0.05).

Results

Eversion excursion revealed the lowest values for N and highest for H (B:4.6°±2.2°; 95% CI [3.1;6.2]/N:4.0°±1.7°; [2.9;5.2]/M:5.2°±2.6°; [3.6;6.8]/H:6.2°±3.3°; [4.0;8.5]/E:5.1°±3.5°; [2.8;7.5]) (p>0.05). Range of internal tibia rotation was lowest with orthosis H and highest with E (B:13.3°±3.2°; 95% CI [11.0;15.6]/N:14.5°±7.2°; [9.2;19.6]/M:13.8°±5.0°; [10.8;16.8]/H:12.3°±4.3°; [9.0;15.6]/E:14.9°±5.0°; [11.5;18.3]) (p>0.05). Differences between conditions were small and the intrasubject variation high.

Conclusion

Our results indicate that different arch support heights have no systematic effect on eversion excursion or the range of internal tibia rotation and therefore might not exert a crucial influence on rear foot alignment during gait.

]]>
<![CDATA[Bimanual reach to grasp movements after cervical spinal cord injury]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc491

Injury to the cervical spinal cord results in bilateral deficits in arm/hand function reducing functional independence and quality of life. To date little research has been undertaken to investigate control strategies of arm/hand movements following cervical spinal cord injury (cSCI). This study aimed to investigate unimanual and bimanual coordination in patients with acute cSCI using 3D kinematic analysis as they performed naturalistic reach to grasp actions with one hand, or with both hands together (symmetrical task), and compare this to the movement patterns of uninjured younger and older adults. Eighteen adults with a cSCI (mean 61.61 years) with lesions at C4-C8, with an American Spinal Injury Association (ASIA) grade B to D and 16 uninjured younger adults (mean 23.68 years) and sixteen uninjured older adults (mean 70.92 years) were recruited. Participants with a cSCI produced reach-to-grasp actions which took longer, were slower, and had longer deceleration phases than uninjured participants. These differences were exacerbated during bimanual reach-to-grasp tasks. Maximal grasp aperture was no different between groups, but reached earlier by people with cSCI. Participants with a cSCI were less synchronous than younger and older adults but all groups used the deceleration phase for error correction to end the movement in a synchronous fashion. Overall, this study suggests that after cSCI a level of bimanual coordination is retained. While there seems to be a greater reliance on feedback to produce both the reach to grasp, we observed minimal disruption of the more impaired limb on the less impaired limb. This suggests that bimanual movements should be integrated into therapy.

]]>
<![CDATA[The influence of a hydraulic prosthetic ankle on residual limb loading during sloped walking]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc46f

In recent years, numerous prosthetic ankle-foot devices have been developed to address the demands of sloped walking for individuals with lower-limb amputation. The goal of this study was to compare the performance of a passive, hydraulic ankle-foot prosthesis to two related, non-hydraulic ankles based on their ability to minimize the socket reaction moments of individuals with transtibial amputation during a range of sloped walking tasks. After a two-week accommodation period, kinematic data were collected on seven subjects with a transtibial amputation walking on an instrumented treadmill set at various slopes. Overall, this study was unable to find significant differences in the torque at the distal end of the prosthetic socket between an ankle-foot prosthesis with a hydraulic range-of-motion and other related ankle-foot prosthesis designs (rigid ankle, multiaxial ankle) during the single-support phase of walking. In addition, socket comfort and perceived exertion were not significantly different for any of the ankle-foot prostheses tested in this study. These results suggest the need for further work to determine if more advanced designs (e.g., those with microprocessor control of hydraulic features, powered ankle-foot designs) can provide more biomimetic function to prosthesis users.

]]>
<![CDATA[Anticipation of wheelchair and rollerblade actions in spinal cord injured people, rollerbladers, and physiotherapists]]> https://www.researchpad.co/article/5c95523ad5eed0c4846f31ba

Embodied Cognition Theories (ECT) postulate that higher-order cognition is heavily influenced by sensorimotor signals. We explored the active role of somatosensory afferents and motor efferents in modulating the perception of actions in people who have suffered a massive body-brain disconnection because of spinal cord injury (SCI), which leads to sensory-motor loss below the lesion. We assessed whether the habitual use of a wheelchair enhances the capacity to anticipate the endings of tool-related actions, with respect to actions that have become impossible. In a Temporal Occlusion task, three groups of participants (paraplegics, rollerbladers and physiotherapists) observed two sets of videos depicting an actor who attempted to climb onto a platform using a wheelchair or rollerblades. Three different outcomes were possible, namely: a) success (the actor went up the step); b) fail (the actor stopped before the step without going up) and c) fall (the actor fell without going up). Each video set comprised 5 different durations increasing in complexity: in the shortest (600ms) only preparatory body movements were shown and in the longest (3000ms) the complete action was shown. The participants were requested to anticipate the outcome (success, fail, fall). The main result showed that the SCI group performed better with the wheelchair videos and poorer with rollerblade videos than both groups, even if the physiotherapists group never used rollerblades. In line with the ECT, this suggests that the action anticipation skills are not only influenced by motor expertise, but also by motor connection.

]]>
<![CDATA[Disability and Fatigue Can Be Objectively Measured in Multiple Sclerosis]]> https://www.researchpad.co/article/5989d9ffab0ee8fa60b736a2

Background

The available clinical outcome measures of disability in multiple sclerosis are not adequately responsive or sensitive.

Objective

To investigate the feasibility of inertial sensor-based gait analysis in multiple sclerosis.

Methods

A cross-sectional study of 80 multiple sclerosis patients and 50 healthy controls was performed. Lower-limb kinematics was evaluated by using a commercially available magnetic inertial measurement unit system. Mean and standard deviation of range of motion (mROM, sROM) for each joint of lower limbs were calculated in one minute walking test. A motor performance index (E) defined as the sum of sROMs was proposed.

Results

We established two novel observer-independent measures of disability. Hip mROM was extremely sensitive in measuring lower limb motor impairment, being correlated with muscle strength and also altered in patients without clinically detectable disability. On the other hand, E index discriminated patients according to disability, being altered only in patients with moderate and severe disability, regardless of walking speed. It was strongly correlated with fatigue and patient-perceived health status.

Conclusions

Inertial sensor-based gait analysis is feasible and can detect clinical and subclinical disability in multiple sclerosis.

]]>
<![CDATA[Collecting Kinematic Data on a Ski Track with Optoelectronic Stereophotogrammetry: A Methodological Study Assessing the Feasibility of Bringing the Biomechanics Lab to the Field]]> https://www.researchpad.co/article/5989da0fab0ee8fa60b79259

In the laboratory, optoelectronic stereophotogrammetry is one of the most commonly used motion capture systems; particularly, when position- or orientation-related analyses of human movements are intended. However, for many applied research questions, field experiments are indispensable, and it is not a priori clear whether optoelectronic stereophotogrammetric systems can be expected to perform similarly to in-lab experiments. This study aimed to assess the instrumental errors of kinematic data collected on a ski track using optoelectronic stereophotogrammetry, and to investigate the magnitudes of additional skiing-specific errors and soft tissue/suit artifacts. During a field experiment, the kinematic data of different static and dynamic tasks were captured by the use of 24 infrared-cameras. The distances between three passive markers attached to a rigid bar were stereophotogrammetrically reconstructed and, subsequently, were compared to the manufacturer-specified exact values. While at rest or skiing at low speed, the optoelectronic stereophotogrammetric system’s accuracy and precision for determining inter-marker distances were found to be comparable to those known for in-lab experiments (< 1 mm). However, when measuring a skier’s kinematics under “typical” skiing conditions (i.e., high speeds, inclined/angulated postures and moderate snow spraying), additional errors were found to occur for distances between equipment-fixed markers (total measurement errors: 2.3 ± 2.2 mm). Moreover, for distances between skin-fixed markers, such as the anterior hip markers, additional artifacts were observed (total measurement errors: 8.3 ± 7.1 mm). In summary, these values can be considered sufficient for the detection of meaningful position- or orientation-related differences in alpine skiing. However, it must be emphasized that the use of optoelectronic stereophotogrammetry on a ski track is seriously constrained by limited practical usability, small-sized capture volumes and the occurrence of extensive snow spraying (which results in marker obscuration). The latter limitation possibly might be overcome by the use of more sophisticated cluster-based marker sets.

]]>
<![CDATA[The Role of Arch Compression and Metatarsophalangeal Joint Dynamics in Modulating Plantar Fascia Strain in Running]]> https://www.researchpad.co/article/5989da99ab0ee8fa60ba2d82

Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running.

]]>