ResearchPad - laboratory-animals https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Megaesophagus Is a Major Pathological Condition in Rats With a Large Deletion in the <i>Rbm20</i> Gene]]> https://www.researchpad.co/article/elastic_article_15525 A spontaneously arising, loss-of-function mutation in the RNA binding motif protein 20 (Rbm20) gene, which encodes a nuclear splicing protein, was previously identified as the underlying reason for expression of an abnormally large TITIN (TTN) protein in a rat model of cardiomyopathy. An outbreak of Pseudomonas aeruginosa led to submission of rats with dyspnea, sneezing, lethargy, nasal discharge, and/or unexpected death for diagnostic evaluation. Necropsy revealed underlying megaesophagus in Rbm20–/– rats. Further phenotyping of this rat strain and determination of the size of esophageal TTN was undertaken. The Rbm20-defective rats developed megaesophagus at an early age (26 weeks) with high frequency (13/32, 41%). They also often exhibited secondary rhinitis (9/32, 28%), aspiration pneumonia (8/32, 25%), and otitis media/interna (6/32, 19%). In addition, these rats had a high prevalence of hydronephrosis (13/32, 41%). RBM20 is involved in splicing multiple RNA transcripts, one of which is the muscle-specific protein TTN. Rbm20 mutations are a significant cause of dilated cardiomyopathy in humans. In Rbm20-defective rats, TTN size was significantly increased in the skeletal muscle of the esophagus. Megaesophagus in this rat strain (maintained on a mixed genetic background) is hypothesized to result from altered TTN stretch signaling in esophageal skeletal muscle. This study describes a novel mechanism for the development of megaesophagus, which may be useful for understanding the pathogenesis of megaesophagus in humans and offers insights into potential myogenic causes of this condition. This is the first report of megaesophagus and other noncardiac pathogenic changes associated with mutation of Rbm20 in any species.

]]>
<![CDATA[Researchers’ attitudes to the 3Rs—An upturned hierarchy?]]> https://www.researchpad.co/article/5b8acdd940307c144d0de04f

Animal use in biomedical research is generally justified by its potential benefits to the health of humans, or other animals, or the environment. However, ethical acceptability also requires scientists to limit harm to animals in their research. Training in laboratory animal science (LAS) helps scientists to do this by promoting best practice and the 3Rs. This study evaluated scientists’ awareness and application of the 3Rs, and their approach to other ethical issues in animal research. It was based on an online survey of participants in LAS courses held in eight venues in four European countries: Portugal (Porto, Braga), Germany (Munich, Heidelberg), Switzerland (Basel, Lausanne, Zurich), and Denmark (Copenhagen). The survey questions were designed to assess general attitudes to animal use in biomedical research, Replacement alternatives, Reduction and Refinement conflicts, and harm-benefit analysis. The survey was conducted twice: immediately before the course (‘BC’, N = 310) and as a follow-up six months after the course (‘AC’, N = 127). While courses do appear to raise awareness of the 3Rs, they had no measurable effect on the existing low level of belief that animal experimentation can be fully replaced by non-animal methods. Most researchers acknowledged ethical issues with their work and reported that they discussed these with their peers. The level of an animal’s welfare, and especially the prevention of pain, was regarded as the most pressing ethical issue, and as more important than the number of animals used or the use of animals as such. Refinement was considered more feasible than Replacement, as well as more urgent, and was also favoured over Reduction. Respondents in the survey reversed the ‘hierarchy’ of the 3Rs proposed by their architects, Russell and Burch, prioritizing Refinement over Reduction, and Reduction over Replacement. This ordering may conflict with the expectations of the public and regulators.

]]>
<![CDATA[An Experimental Toxoplasma gondii Dose Response Challenge Model to Study Therapeutic or Vaccine Efficacy in Cats]]> https://www.researchpad.co/article/5989daf0ab0ee8fa60bc1166

High numbers of Toxoplasma gondii oocysts in the environment are a risk factor to humans. The environmental contamination might be reduced by vaccinating the definitive host, cats. An experimental challenge model is necessary to quantitatively assess the efficacy of a vaccine or drug treatment. Previous studies have indicated that bradyzoites are highly infectious for cats. To infect cats, tissue cysts were isolated from the brains of mice infected with oocysts of T. gondii M4 strain, and bradyzoites were released by pepsin digestion. Free bradyzoites were counted and graded doses (1000, 100, 50, 10), and 250 intact tissue cysts were inoculated orally into three cats each. Oocysts shed by these five groups of cats were collected from faeces by flotation techniques, counted microscopically and estimated by real time PCR. Additionally, the number of T. gondii in heart, tongue and brains were estimated, and serology for anti T. gondii antibodies was performed. A Beta-Poisson dose-response model was used to estimate the infectivity of single bradyzoites and linear regression was used to determine the relation between inoculated dose and numbers of oocyst shed. We found that real time PCR was more sensitive than microscopic detection of oocysts, and oocysts were detected by PCR in faeces of cats fed 10 bradyzoites but by microscopic examination. Real time PCR may only detect fragments of T. gondii DNA without the presence of oocysts in low doses. Prevalence of tissue cysts of T. gondii in tongue, heart and brains, and anti T. gondii antibody concentrations were all found to depend on the inoculated bradyzoite dose. The combination of the experimental challenge model and the dose response analysis provides a suitable reference for quantifying the potential reduction in human health risk due to a treatment of domestic cats by vaccination or by therapeutic drug application.

]]>
<![CDATA[Submovement Composition of Head Movement]]> https://www.researchpad.co/article/5989d9e2ab0ee8fa60b69ea8

Limb movement is smooth and corrections of movement trajectory and amplitude are barely noticeable midflight. This suggests that skeletomuscular motor commands are smooth in transition, such that the rate of change of acceleration (or jerk) is minimized. Here we applied the methodology of minimum-jerk submovement decomposition to a member of the skeletomuscular family, the head movement. We examined the submovement composition of three types of horizontal head movements generated by nonhuman primates: head-alone tracking, head-gaze pursuit, and eye-head combined gaze shifts. The first two types of head movements tracked a moving target, whereas the last type oriented the head with rapid gaze shifts toward a target fixed in space. During head tracking, the head movement was composed of a series of episodes, each consisting of a distinct, bell-shaped velocity profile (submovement) that rarely overlapped with each other. There was no specific magnitude order in the peak velocities of these submovements. In contrast, during eye-head combined gaze shifts, the head movement was often comprised of overlapping submovements, in which the peak velocity of the primary submovement was always higher than that of the subsequent submovement, consistent with the two-component strategy observed in goal-directed limb movements. These results extend the previous submovement composition studies from limb to head movements, suggesting that submovement composition provides a biologically plausible approach to characterizing the head motor recruitment that can vary depending on task demand.

]]>
<![CDATA[Gut Microbiota Composition Is Correlated to Grid Floor Induced Stress and Behavior in the BALB/c Mouse]]> https://www.researchpad.co/article/5989da41ab0ee8fa60b8a2d4

Stress has profound influence on the gastro-intestinal tract, the immune system and the behavior of the animal. In this study, the correlation between gut microbiota composition determined by Denaturing Grade Gel Electrophoresis (DGGE) and tag-encoded 16S rRNA gene amplicon pyrosequencing (454/FLX) and behavior in the Tripletest (Elevated Plus Maze, Light/Dark Box, and Open Field combined), the Tail Suspension Test, and Burrowing in 28 female BALB/c mice exposed to two weeks of grid floor induced stress was investigated. Cytokine and glucose levels were measured at baseline, during and after exposure to grid floor. Stressing the mice clearly changed the cecal microbiota as determined by both DGGE and pyrosequencing. Odoribacter, Alistipes and an unclassified genus from the Coriobacteriaceae family increased significantly in the grid floor housed mice. Compared to baseline, the mice exposed to grid floor housing changed the amount of time spent in the Elevated Plus Maze, in the Light/Dark Box, and burrowing behavior. The grid floor housed mice had significantly longer immobility duration in the Tail Suspension Test and increased their number of immobility episodes from baseline. Significant correlations were found between GM composition and IL-1α, IFN-γ, closed arm entries of Elevated Plus Maze, total time in Elevated Plus Maze, time spent in Light/Dark Box, and time spent in the inner zone of the Open Field as well as total time in the Open Field. Significant correlations were found to the levels of Firmicutes, e.g. various species of Ruminococccaceae and Lachnospiraceae. No significant difference was found for the evaluated cytokines, except an overall decrease in levels from baseline to end. A significant lower level of blood glucose was found in the grid floor housed mice, whereas the HbA1c level was significantly higher. It is concluded that grid floor housing changes the GM composition, which seems to influence certain anxiety-related parameters.

]]>
<![CDATA[Physiological and Pathological Impact of Blood Sampling by Retro-Bulbar Sinus Puncture and Facial Vein Phlebotomy in Laboratory Mice]]> https://www.researchpad.co/article/5989db42ab0ee8fa60bd7070

Retro-bulbar sinus puncture and facial vein phlebotomy are two widely used methods for blood sampling in laboratory mice. However, the animal welfare implications associated with these techniques are currently debated, and the possible physiological and pathological implications of blood sampling using these methods have been sparsely investigated. Therefore, this study was conducted to assess and compare the impacts of blood sampling by retro-bulbar sinus puncture and facial vein phlebotomy. Blood was obtained from either the retro-bulbar sinus or the facial vein from male C57BL/6J mice at two time points, and the samples were analyzed for plasma corticosterone. Body weights were measured at the day of blood sampling and the day after blood sampling, and the food consumption was recorded automatically during the 24 hours post-procedure. At the end of study, cheeks and orbital regions were collected for histopathological analysis to assess the degree of tissue trauma. Mice subjected to facial vein phlebotomy had significantly elevated plasma corticosterone levels at both time points in contrast to mice subjected to retro-bulbar sinus puncture, which did not. Both groups of sampled mice lost weight following blood sampling, but the body weight loss was higher in mice subjected to facial vein phlebotomy. The food consumption was not significantly different between the two groups. At gross necropsy, subcutaneous hematomas were found in both groups and the histopathological analyses revealed extensive tissue trauma after both facial vein phlebotomy and retro-bulbar sinus puncture. This study demonstrates that both blood sampling methods have a considerable impact on the animals' physiological condition, which should be considered whenever blood samples are obtained.

]]>
<![CDATA[LPS-Induced Lung Inflammation in Marmoset Monkeys – An Acute Model for Anti-Inflammatory Drug Testing]]> https://www.researchpad.co/article/5989d9d6ab0ee8fa60b65e07

Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS)-induced inflammation model was established in marmoset monkeys (Callithrix jacchus) to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS) were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4) inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and macrophage inflammatory protein-1 beta (MIP-1β) were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL) was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC50). LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs.

]]>
<![CDATA[Development of a Mouse Model of Abdominal Cutaneous Flaps for Breast Reconstruction]]> https://www.researchpad.co/article/5989da0cab0ee8fa60b77d14

Autologous tissue transfer, in addition to replacing tissue that was lost during injury or surgery, offers women an excellent option to improve cosmetic appearance and self-confidence following mastectomy due to breast cancer. However, flap necrosis is a complication in obese patients undergoing this procedure. We created a mouse model to study the flap-related complications that leads to decreased flap survival in autologous breast reconstruction.

Methods

Left superficial inferior epigastric (SIE) pedicle abdominal-cutaneous flaps were elevated in 8 week-old, obese ob/ob male mice and their lean littermates. Flaps were followed by serial photography. Area of flap necrosis was measured at 7 days. Statistical analysis was performed.

Results

Necrosis was observed at the distal margin of the flaps, in both lean and obese groups. Lean left SIE flaps (n = 8) had a total area flap necrosis of 9.1% at 7 days whereas obese left SIE flaps (n = 8) had a total area flap necrosis of 45.5% at 7 days. Obese flaps had a statistically significant increase in necrosis compared to the lean flaps, p = 0.001.

Conclusions

There was a significant difference between flap survival in lean and obese SIE pedicle flaps in our mouse model. We have developed the first flap model of obesity utilizing the superficial epigastric pedicle in the mouse. This model is optimal for future studies to dissect out mechanisms that lead to the complications related to flap survival for breast reconstruction, especially in obese subjects.

]]>
<![CDATA[Protective Efficacy of Newcastle Disease Virus Expressing Soluble Trimeric Hemagglutinin against Highly Pathogenic H5N1 Influenza in Chickens and Mice]]> https://www.researchpad.co/article/5989dad4ab0ee8fa60bb771d

Background

Highly pathogenic avian influenza virus (HPAIV) causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to humans. One effective way to combat avian influenza with pandemic potential is through the vaccination of poultry. Several live vaccines based on attenuated Newcastle disease virus (NDV) that express influenza hemagglutinin (HA) have been developed to protect chickens or mammalian species against HPAIV. However, the zoonotic potential of NDV raises safety concerns regarding the use of live NDV recombinants, as the incorporation of a heterologous attachment protein may result in the generation of NDV with altered tropism and/or pathogenicity.

Methodology/Principal Findings

In the present study we generated recombinant NDVs expressing either full length, membrane-anchored HA of the H5 subtype (NDV-H5) or a soluble trimeric form thereof (NDV-sH53). A single intramuscular immunization with NDV-sH53 or NDV-H5 fully protected chickens against disease after a lethal challenge with H5N1 and reduced levels of virus shedding in tracheal and cloacal swabs. NDV-sH53 was less protective than NDV-H5 (50% vs 80% protection) when administered via the respiratory tract. The NDV-sH53 was ineffective in mice, regardless of whether administered oculonasally or intramuscularly. In this species, NDV-H5 induced protective immunity against HPAIV H5N1, but only after oculonasal administration, despite the poor H5-specific serum antibody response it elicited.

Conclusions/Significance

Although NDV expressing membrane anchored H5 in general provided better protection than its counterpart expressing soluble H5, chickens could be fully protected against a lethal challenge with H5N1 by using the latter NDV vector. This study thus provides proof of concept for the use of recombinant vector vaccines expressing a soluble form of a heterologous viral membrane protein. Such vectors may be advantageous as they preclude the incorporation of heterologous membrane proteins into the viral vector particles.

]]>
<![CDATA[Plasma and Liver Lipidomics Response to an Intervention of Rimonabant in ApoE*3Leiden.CETP Transgenic Mice]]> https://www.researchpad.co/article/5989daabab0ee8fa60ba92f3

Background

Lipids are known to play crucial roles in the development of life-style related risk factors such as obesity, dyslipoproteinemia, hypertension and diabetes. The first selective cannabinoid-1 receptor blocker rimonabant, an anorectic anti-obesity drug, was frequently used in conjunction with diet and exercise for patients with a body mass index greater than 30 kg/m2 with associated risk factors such as type II diabetes and dyslipidaemia in the past. Less is known about the impact of this drug on the regulation of lipid metabolism in plasma and liver in the early stage of obesity.

Methodology/Principal Findings

We designed a four-week parallel controlled intervention on apolipoprotein E3 Leiden cholesteryl ester transfer protein (ApoE*3Leiden.CETP) transgenic mice with mild overweight and hypercholesterolemia. A liquid chromatography–linear ion trap-Fourier transform ion cyclotron resonance-mass spectrometric approach was employed to investigate plasma and liver lipid responses to the rimonabant intervention. Rimonabant was found to induce a significant body weight loss (9.4%, p<0.05) and a significant plasma total cholesterol reduction (24%, p<0.05). Six plasma and three liver lipids in ApoE*3Leiden.CETP transgenic mice were detected to most significantly respond to rimonabant treatment. Distinct lipid patterns between the mice were observed for both plasma and liver samples in rimonabant treatment vs. non-treated controls. This study successfully applied, for the first time, systems biology based lipidomics approaches to evaluate treatment effects of rimonabant in the early stage of obesity.

Conclusion

The effects of rimonabant on lipid metabolism and body weight reduction in the early stage obesity were shown to be moderate in ApoE*3Leiden.CETP mice on high-fat diet.

]]>
<![CDATA[Compensatory Growth of Congenital Solitary Kidneys in Pigs Reflects Increased Nephron Numbers Rather Than Hypertrophy]]> https://www.researchpad.co/article/5989da0bab0ee8fa60b77bb3

Background

Patients with unilateral MultiCystic Kidney Dysplasia (MCKD) or unilateral renal agenesis (URA) have a congenital solitary functioning kidney (CSFK) that is compensatory enlarged. The question whether this enlargement is due to increased nephron numbers and/or to nephron hypertrophy is unresolved. This question is of utmost clinical importance, since hypertrophy is associated with a risk of developing hypertension and proteinuria later in life with consequent development of CKD and cardiovascular disease.

Methodology/Principal Findings

In a cohort of 32,000 slaughter pigs, 7 congenital solitary functioning kidneys and 7 control kidneys were identified and harvested. Cortex volume was measured and with a 3-dimensional stereologic technique the number and volume of glomeruli was determined and compared. The mean total cortex volume was increased by more than 80% and the mean number of glomeruli per kidney was 50% higher in CSFKs than in a single control kidney, equaling 75% of the total nephron number in both kidneys of control subjects. The mean total glomerular volume in the CSFKs was not increased relative to the controls.

Conclusions/Significance

Thus, in pigs, compensatory enlargement of a CSFK is based on increased nephron numbers. Extrapolation of these findings to the human situation suggests that patients with a CSFK might not be at increased risk for developing hyperfiltration-associated renal and cardiovascular disease in later life due to a lower nephron number.

]]>
<![CDATA[Chronic Delivery of Antibody Fragments Using Immunoisolated Cell Implants as a Passive Vaccination Tool]]> https://www.researchpad.co/article/5989db28ab0ee8fa60bd0a64

Background

Monoclonal antibodies and antibody fragments are powerful biotherapeutics for various debilitating diseases. However, high production costs, functional limitations such as inadequate pharmacokinetics and tissue accessibility are the current principal disadvantages for broadening their use in clinic.

Methodology and Principal Findings

We report a novel method for the long-term delivery of antibody fragments. We designed an allogenous immunoisolated implant consisting of polymer encapsulated myoblasts engineered to chronically release scFv antibodies targeted against the N-terminus of the Aβ peptide. Following a 6-month intracerebral therapy we observed a significant reduction of the production and aggregation of the Aβ peptide in the APP23 transgenic mouse model of Alzheimer's disease. In addition, functional assessment showed prevention of behavioral deficits related to anxiety and memory traits.

Conclusions and Significance

The chronic local release of antibodies using immunoisolated polymer cell implants represents an alternative passive vaccination strategy in Alzheimer's disease. This novel technique could potentially benefit other diseases presently treated by local and systemic antibody administration.

]]>
<![CDATA[Decapitation in Rats: Latency to Unconsciousness and the ‘Wave of Death’]]> https://www.researchpad.co/article/5989da48ab0ee8fa60b8c521

The question whether decapitation is a humane method of euthanasia in awake animals is being debated. To gather arguments in this debate, obsolete rats were decapitated while recording the EEG, both of awake rats and of anesthetized rats. Following decapitation a fast and global loss of power of the EEG was observed; the power in the 13–100 Hz frequency band, expressing cognitive activity, decreased according to an exponential decay function to half the initial value within 4 seconds. Whereas the pre-decapitation EEG of the anesthetized animals showed a burst suppression pattern quite different from the awake animals, the power in the postdecapitation EEG did not differ between the two groups. This might indicate that either the power of the EEG does not correlate well with consciousness or that consciousness is briefly regained in the anesthetized group after decapitation. Remarkably, after 50 seconds (awake group) or 80 seconds (anesthetized group) following decapitation, a high amplitude slow wave was observed. The EEG before this wave had more power than the signal after the wave. This wave might be due to a simultaneous massive loss of membrane potentials of the neurons. Still functioning ion channels, which keep the membrane potential intact before the wave, might explain the observed power difference. Two conclusions were drawn from this experiment. It is likely that consciousness vanishes within seconds after decapitation, implying that decapitation is a quick and not an inhumane method of euthanasia. It seems that the massive wave which can be recorded approximately one minute after decapitation reflects the ultimate border between life and death. This observation might have implications in the discussions on the appropriate time for organ donation.

]]>
<![CDATA[Autocrine Sonic Hedgehog Attenuates Inflammation in Cerulein-Induced Acute Pancreatitis in Mice via Upregulation of IL-10]]> https://www.researchpad.co/article/5989da59ab0ee8fa60b8f742

Hedgehog signaling plays critical roles in pancreatic oncogenesis and chronic pancreatitis, but its roles in acute pancreatitis (AP) are largely ambiguous. In this study, we provide evidence that Sonic hedgehog (Shh), but neither Desert hedgehog (Dhh) nor Indian hedgehog (Ihh), is the main protein whose expression is activated during the development of cerulein-induced acute pancreatitis in mice, and the Shh serves as an anti-inflammation factor in an autocrine manner. Blocking autocrine Shh signaling with anti-Shh neutralizing antibody aggravates the progression of acute pancreatitis. Mechanistic insight into Shh signaling activation in acute pancreatitis indicates that inflammatory stimulation activates Shh expression and secretion, and subsequently upregulates the expression and secretion of interleukin-10 (IL-10). Moreover, inhibition of Shh signaling with neutralizing antibody abolishes IL-10 production in vivo and in vitro. Molecular biological studies show that autocrine Shh signaling activates the key transcriptional factor Gli1 so that the target gene IL-10 is upregulated, leading to the protective and anti-inflammatory functions in the mouse model of acute pancreatitis. Thus, this study suggests autocrine Shh signaling functions as a protective signaling in the progression of acute pancreatitis.

]]>
<![CDATA[Leukocyte ABCA1 Remains Atheroprotective in Splenectomized LDL Receptor Knockout Mice]]> https://www.researchpad.co/article/5989d9f5ab0ee8fa60b700f5

Aim

ATP-binding cassette transporter A1 (ABCA1) is an important mediator of macrophage cholesterol efflux. It mediates the efflux of cellular cholesterol to lipid-poor apolipoprotein A-I. LDL receptor (LDLr) knockout (KO) mice deficient for leukocyte ABCA1 (ABCA1 KO→LDLr KO) show increased atherosclerosis and splenic lipid accumulation despite largely attenuated serum cholesterol levels. In the present study, we aimed to explore the importance of the spleen for the atheroprotective effects of leukocyte ABCA1.

Methods

LDLr KO mice were transplanted with bone marrow from ABCA1 KO mice or wild-type (WT) controls. After 8 weeks recovery, mice were either splenectomized (SP-x) or underwent a sham operation, and were subsequently challenged with a Western-type diet (WTD).

Results

In agreement with previous studies, the atherosclerotic lesion area in ABCA1 KO→LDLr KO sham animals (655±82×103 µm2) was 1.4-fold (p = 0.03) larger compared to sham WT→LDLr KO mice (459±33×103 µm2) after 8 weeks WTD feeding, despite 1.7-fold (p<0.001) lower serum cholesterol levels. Interestingly, deletion of ABCA1 in leukocytes led to 1.6-fold higher neutrophil content in the spleen in absence of differences in circulating neutrophils. Levels of KC, an important chemoattractant for neutrophils, in serum, however, were increased 2.9-fold (p = 0.07) in ABCA1 KO→LDLr KO mice. SP-x induced blood neutrophilia as compared to WT→LDLr KO mice (1.9-fold; p<0.05), but did not evoke differences in serum cholesterol and anti-oxLDL antibody levels. Atherosclerotic lesion development, however, was 1.3-fold induced both in the presence and absence of leukocyte ABCA1 (WT: 614±106×103 µm2, ABCA1 KO: 786±44×103 µm2). Two-way ANOVA revealed independent effects on atherosclerosis for both leukocyte ABCA1 deficiency and SP-x (p<0.05).

Conclusions

The observed splenic alterations induced by leukocyte ABCA1 deficiency do not play a significant role in the anti-atherogenic effects of leukocyte ABCA1 on lesion development.

]]>
<![CDATA[I-SceI-Mediated Double-Strand Break Does Not Increase the Frequency of Homologous Recombination at the Dct Locus in Mouse Embryonic Stem Cells]]> https://www.researchpad.co/article/5989db4bab0ee8fa60bda650

Targeted induction of double-strand breaks (DSBs) at natural endogenous loci was shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The gene encoding dopachrome tautomerase (Dct) is specifically expressed in melanocytes and their precursors. To construct a genetic tool allowing the replacement of Dct gene by any gene of interest, we generated an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in the Dct genomic segment. The embryonic stem cell line was electroporated with an I-SceI expression plasmid, and a template for the DSB-repair process that carried sequence homologies to the Dct target. The I-SceI meganuclease was indeed able to introduce a DSB at the Dct locus in live embryonic stem cells. However, the level of gene targeting was not improved by the DSB induction, indicating a limited capacity of I-SceI to mediate homologous recombination at the Dct locus. These data suggest that homologous recombination by meganuclease-induced DSB may be locus dependent in mammalian cells.

]]>
<![CDATA[The ter Mutation in the Rat Dnd1 Gene Initiates Gonadal Teratomas and Infertility in Both Genders]]> https://www.researchpad.co/article/5989da30ab0ee8fa60b84165

A spontaneous mutation leading to the formation of congenital ovarian and testicular tumors was detected in the WKY/Ztm rat strain. The histological evaluation revealed derivatives from all three germ layers, thereby identifying these tumors as teratomas. Teratocarcinogenesis was accompanied by infertility and the underlying mutation was termed ter. Linkage analysis of 58 (WKY-ter×SPRD-Cu3) F2 rats associated the ter mutation with RNO18 (LOD = 3.25). Sequencing of candidate genes detected a point mutation in exon 4 of the dead-end homolog 1 gene (Dnd1), which introduces a premature stop codon assumed to cause a truncation of the Dnd1 protein. Genotyping of the recessive ter mutation revealed a complete penetrance of teratocarcinogenesis and infertility in homozygous ter rats of both genders. Morphologically non-tumorous testes of homozygous ter males were reduced in both size and weight. This testicular malformation was linked to a lack of spermatogenesis using immunohistochemical and histological staining. Our WKY-Dnd1ter/Ztm rat is a novel animal model to investigate gonadal teratocarcinogenesis and the molecular mechanisms involved in germ cell development of both genders.

]]>
<![CDATA[Differences in Neural-Immune Gene Expression Response in Rat Spinal Dorsal Horn Correlates with Variations in Electroacupuncture Analgesia]]> https://www.researchpad.co/article/5989d9ddab0ee8fa60b6821b

Background

Electroacupuncture (EA) has been widely used to alleviate diverse pains. Accumulated clinical experiences and experimental observations indicated that significant differences exist in sensitivity to EA analgesia for individuals of patients and model animals. However, the molecular mechanism accounting for this difference remains obscure.

Methodology/Principal Findings

We classified model male rats into high-responder (HR; TFL changes >150) and non-responder (NR; TFL changes ≤0) groups based on changes of their pain threshold detected by tail-flick latency (TFL) before and after 2 Hz or 100 Hz EA treatment. Gene expression analysis of spinal dorsal horn (DH) revealed divergent expression in HR and NR after 2 Hz/100 Hz EA. The expression of the neurotransmitter system related genes was significantly highly regulated in the HR animals while the proinflammation cytokines related genes were up-regulated more significantly in NR than that in HR after 2 Hz and 100 Hz EA stimulation, especially in the case of 2 Hz stimulation.

Conclusions/Significance

Our results suggested that differential regulation and coordination of neural-immune related genes might play an important role for individual variations in analgesic effects responding to EA in DH. It also provided new candidate genes related to EA responsiveness for future investigation.

]]>
<![CDATA[A Behavioral Taxonomy of Loneliness in Humans and Rhesus Monkeys (Macaca mulatta)]]> https://www.researchpad.co/article/5989db06ab0ee8fa60bc87f6

Social relationships endow health and fitness benefits, but considerable variation exists in the extent to which individuals form and maintain salutary social relationships. The mental and physical health effects of social bonds are more strongly related to perceived isolation (loneliness) than to objective social network characteristics. We sought to develop an animal model to facilitate the experimental analysis of the development of, and the behavioral and biological consequences of, loneliness. In Study 1, using a population-based sample of older adults, we examined how loneliness was influenced both by social network size and by the extent to which individuals believed that their daily social interactions reflected their own choice. Results revealed three distinct clusters of individuals: (i) individuals with large networks who believed they had high choice were lowest in loneliness, (ii) individuals with small social networks who believed they had low choice were highest in loneliness, and (iii) the remaining two groups were intermediate and equivalent in loneliness. In Study 2, a similar three-group structure was identified in two separate samples of adult male rhesus monkeys (Macaca mulatta) living in large social groups: (i) those high in sociability who had complex social interaction with a broad range of social partners (putatively low in loneliness), (ii) those low in sociability who showed tentative interactions with certain classes of social partners (putatively high in loneliness), and (iii) those low in sociability who interacted overall at low levels with a broad range of social partners (putatively low or intermediate in loneliness). This taxonomy in monkeys was validated in subsequent experimental social probe studies. These results suggest that, in highly social nonhuman primate species, some animals may show a mismatch between social interest and social attainment that could serve as a useful animal model for experimental and mechanistic studies of loneliness.

]]>
<![CDATA[Comparative Effect of Treadmill Exercise on Mature BDNF Production in Control versus Stroke Rats]]> https://www.researchpad.co/article/5989da7eab0ee8fa60b9971b

Physical exercise constitutes an innovative strategy to treat deficits associated with stroke through the promotion of BDNF-dependent neuroplasticity. However, there is no consensus on the optimal intensity/duration of exercise. In addition, whether previous stroke changes the effect of exercise on the brain is not known. Therefore, the present study compared the effects of a clinically-relevant form of exercise on cerebral BDNF levels and localization in control versus stroke rats. For this purpose, treadmill exercise (0.3 m/s, 30 min/day, for 7 consecutive days) was started in rats with a cortical ischemic stroke after complete maturation of the lesion or in control rats. Sedentary rats were run in parallel. Mature and proBDNF levels were measured on the day following the last boot of exercise using Western blotting analysis. Total BDNF levels were simultaneously measured using ELISA tests. As compared to the striatum and the hippocampus, the cortex was the most responsive region to exercise. In this region, exercise resulted in a comparable increase in the production of mature BDNF in intact and stroke rats but increased proBDNF levels only in intact rats. Importantly, levels of mature BDNF and synaptophysin were strongly correlated. These changes in BDNF metabolism coincided with the appearance of intense BDNF labeling in the endothelium of cortical vessels. Notably, ELISA tests failed to detect changes in BDNF forms. Our results suggest that control beings can be used to find conditions of exercise that will result in increased mBDNF levels in stroke beings. They also suggest cerebral endothelium as a potential source of BDNF after exercise and highlight the importance to specifically measure the mature form of BDNF to assess BDNF-dependent plasticity in relation with exercise.

]]>