ResearchPad - laboratory-glassware https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Confocal Raman microscopy to identify bacteria in oral subgingival biofilm models]]> https://www.researchpad.co/article/elastic_article_7675 The study of oral disease progression, in relation to the accumulation of subgingival biofilm in gingivitis and periodontitis is limited, due to either the ability to monitor plaque in vitro. When compared, optical spectroscopic techniques offer advantages over traditional destructive or biofilm staining approaches, making it a suitable alternative for the analysis and continued development of three-dimensional structures. In this work, we have developed a confocal Raman spectroscopy analysis approach towards in vitro subgingival plaque models. The main objective of this study was to develop a method for differentiating multiple oral subgingival bacterial species in planktonic and biofilm conditions, using confocal Raman microscopy. Five common subgingival bacteria (Fusobacterium nucleatum, Streptococcus mutans, Veillonella dispar, Actinomyces naeslundii and Prevotella nigrescens) were used and differentiated using a 2-way orthogonal Partial Least Square with Discriminant Analysis (O2PLS-DA) for the collected spectral data. In addition to planktonic growth, mono-species biofilms cultured using the ‘Zürich Model’ were also analyzed. The developed method was successfully used to predict planktonic and mono-species biofilm species in a cross validation setup. The results show differences in the presence and absence of chemical bands within the Raman spectra. The O2PLS-DA model was able to successfully predict 100% of all tested planktonic samples and 90% of all mono-species biofilm samples. Using this approach we have shown that Confocal Raman microscopy can analyse and predict the identity of planktonic and mono-species biofilm species, thus enabling its potential as a technique to map oral multi-species biofilm models.

]]>
<![CDATA[Raman spectroscopic evaluation of human serum using metal plate and 785- and 1064-nm excitation lasers]]> https://www.researchpad.co/article/5c70675fd5eed0c4847c6f69

In this study, we utilized a stainless steel (SUS304) plate for measuring the Raman scattering spectra of body fluid samples. Using this stainless steel plate, we recorded the Raman scattering spectra of 99.5% ethanol and human serum samples by performing irradiation with 785- and 1064-nm lasers. Raman scattering spectra with intensities equal to or greater than those reported previously were obtained. In addition, the Raman scattering spectra acquired using the 1064-nm laser were less influenced by autofluorescence than those obtained via use of the shorter-wavelength laser. Moreover, the shapes of the spectra did not show any dependence on integration time, and denaturation of the samples was minimal. Our method, based on 1064-nm laser and the stainless steel plate, provides performance equal to or better than the methods reported thus far for the measurement of Raman scattering spectra from liquid samples. This method can be employed to rapidly evaluate the components of serum in liquid form without using surface-enhanced Raman scattering.

]]>
<![CDATA[Dispersal strategies in the highly polygynous ant Crematogaster (Orthocrema) pygmaea Forel (Formicidae: Myrmicinae)]]> https://www.researchpad.co/article/5989db5dab0ee8fa60be040a

In ants, dispersal strategies and morphology of female sexuals are generally linked to the mode of colony founding. In species using long-range dispersal tactics, queen/worker dimorphism is generally high and young queens are able to initiate new colonies by themselves, using their metabolic reserves. By contrast, in species using short-range dispersal strategies, queen/worker dimorphism is generally low and, due to their limited metabolic reserves, queens have lost the capacity to raise their brood alone and to found their colony independently. Moreover, polygyny is also often associated with short-range dispersal strategies, although the relationship between the number of queens and the dispersal strategy in ants is not clear-cut. Here, dispersal strategies were investigated in C. pygmaea, a highly polygynous and polydomous ant species from northeastern Brazil. Field observations and laboratory experiments show that this ant exhibits a suite of traits that are more commonly associated with long-range dispersal and independent colony foundation: functional wings in both males and females, high queen/worker dimorphism, strong weight loss in mature queens, nuptial flights and, in the lab, ability of young queens to found new colonies in haplometrotic conditions. On the other hand, this species shows a high degree of polygyny with a strong seasonal component, and, at least under laboratory conditions, mature queens seem able to develop propagules if they are accompanied by at least 10 workers. These features strongly suggest that (1) some of the gynes do not engage in a long-range dispersal but become new queens in their mother colony and (2) that budding events are possible in this species. We therefore speculate that C. pygmaea has a dual dispersal strategy probably related to environmental conditions: some gynes engage in long-range dispersal followed by independent colony foundation at the beginning of rainy season, while others mate in the parental colony and are re-adopted leading to high polygyny. During the rainy season, budding events can lead to colony extension and increased polydomy. Polydomy is commonly thought to improve resource discovery and exploitation through decentralized foraging behavior, a significant advantage during the rainy season when food ressources (mainly floral/extrafloral nectaries and hemipteran honeydew) are more abundant and when colony needs for food supplies are highest.

]]>
<![CDATA[Temnothorax rugatulus ant colonies consistently vary in nest structure across time and context]]> https://www.researchpad.co/article/5989db5fab0ee8fa60be1182

A host of animals build architectural constructions. Such constructions frequently vary with environmental and individual/colony conditions, and their architecture directly influences behavior and fitness. The nests of ant colonies drive and enable many of their collective behaviors, and as such are part of their ‘extended phenotype’. Since ant colonies have been recently shown to differ in behavior and life history strategy, we ask whether colonies differ in another trait: the architecture of the constructions they create. We allowed Temnothorax rugatulus rock ants, who create nests by building walls within narrow rock gaps, to repeatedly build nest walls in a fixed crevice but under two environmental conditions. We find that colonies consistently differ in their architecture across environments and over nest building events. Colony identity explained 12–40% of the variation in nest architecture, while colony properties and environmental conditions explained 5–20%, as indicated by the condition and marginal R2 values. When their nest boxes were covered, which produced higher humidity and lower airflow, colonies built thicker, longer, and heavier walls. Colonies also built more robust walls when they had more brood, suggesting a protective function of wall thickness. This is, to our knowledge, the first study to explicitly investigate the repeatability of nestbuilding behavior in a controlled environment. Our results suggest that colonies may face tradeoffs, perhaps between factors such as active vs. passive nest defense, and that selection may act on individual construction rules as a mechanisms to mediate colony-level behavior.

]]>
<![CDATA[Improving Osteoblast Response In Vitro by a Nanostructured Thin Film with Titanium Carbide and Titanium Oxides Clustered around Graphitic Carbon]]> https://www.researchpad.co/article/5989da3bab0ee8fa60b87ee5

Introduction

Recently, we introduced a new deposition method, based on Ion Plating Plasma Assisted technology, to coat titanium implants with a thin but hard nanostructured layer composed of titanium carbide and titanium oxides, clustered around graphitic carbon. The nanostructured layer has a double effect: protects the bulk titanium against the harsh conditions of biological tissues and in the same time has a stimulating action on osteoblasts.

Results

The aim of this work is to describe the biological effects of this layer on osteoblasts cultured in vitro. We demonstrate that the nanostructured layer causes an overexpression of many early genes correlated to proteins involved in bone turnover and an increase in the number of surface receptors for α3β1 integrin, talin, paxillin. Analyses at single-cell level, by scanning electron microscopy, atomic force microscopy, and single cell force spectroscopy, show how the proliferation, adhesion and spreading of cells cultured on coated titanium samples are higher than on uncoated titanium ones. Finally, the chemistry of the layer induces a better formation of blood clots and a higher number of adhered platelets, compared to the uncoated cases, and these are useful features to improve the speed of implant osseointegration.

Conclusion

In summary, the nanostructured TiC film, due to its physical and chemical properties, can be used to protect the implants and to improve their acceptance by the bone.

]]>
<![CDATA[Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method]]> https://www.researchpad.co/article/5989db2aab0ee8fa60bd1180

Background

Tumor proliferation speed, most commonly assessed by counting of mitotic figures in histological slide preparations, is an important biomarker for breast cancer. Although mitosis counting is routinely performed by pathologists, it is a tedious and subjective task with poor reproducibility, particularly among non-experts. Inter- and intraobserver reproducibility of mitosis counting can be improved when a strict protocol is defined and followed. Previous studies have examined only the agreement in terms of the mitotic count or the mitotic activity score. Studies of the observer agreement at the level of individual objects, which can provide more insight into the procedure, have not been performed thus far.

Methods

The development of automatic mitosis detection methods has received large interest in recent years. Automatic image analysis is viewed as a solution for the problem of subjectivity of mitosis counting by pathologists. In this paper we describe the results from an interobserver agreement study between three human observers and an automatic method, and make two unique contributions. For the first time, we present an analysis of the object-level interobserver agreement on mitosis counting. Furthermore, we train an automatic mitosis detection method that is robust with respect to staining appearance variability and compare it with the performance of expert observers on an “external” dataset, i.e. on histopathology images that originate from pathology labs other than the pathology lab that provided the training data for the automatic method.

Results

The object-level interobserver study revealed that pathologists often do not agree on individual objects, even if this is not reflected in the mitotic count. The disagreement is larger for objects from smaller size, which suggests that adding a size constraint in the mitosis counting protocol can improve reproducibility. The automatic mitosis detection method can perform mitosis counting in an unbiased way, with substantial agreement with human experts.

]]>
<![CDATA[Effect of Aminated Mesoporous Bioactive Glass Nanoparticles on the Differentiation of Dental Pulp Stem Cells]]> https://www.researchpad.co/article/5989daa6ab0ee8fa60ba7ae6

Mesoporous bioactive nanoparticles (MBNs) have been developed as promising additives to various types of bone or dentin regenerative material. However, biofunctionality of MBNs as dentin regenerative additive to dental materials have rarely been studied. We investigated the uptake efficiency of MBNs-NH2 with their endocytosis pathway and the role of MBNs-NH2 in odontogenic differentiation to clarify inherent biofunctionality. MBNs were fabricated by sol-gel synthesis, and 3% APTES was used to aminate these nanoparticles (MBNs-NH2) to reverse their charge from negative to positive. To characterize the MBNs-NH2, TEM, XRD, FTIR, zeta(ξ)-potential measurements, and Brunauer–Emmett–Teller analysis were performed. After primary cultured rat dental pulp stem cells (rDPSCs) were incubated with various concentrations of MBNs-NH2, stem cell viability (24 hours) with or without differentiated media, internalization of MBNs-NH2 in rDPSCs (~4 hours) via specific endocytosis pathway, intra or extracellular ion concentration and odontoblastic differentiation (~28 days) were investigated. Incubation with up to 50 μg/mL of MBNs-NH2 had no effect on rDPSCs viability with differentiated media (p>0.05). The internalization of MBNs-NH2 in rDPSCs was determined about 92% after 4 hours of incubation. Uptake was significantly decreased with ATP depletion and after 1 hour of pre-treatment with the inhibitor of macropinocytosis (p<0.05). There was significant increase of intracellular Ca and Si ion concentration in MBNs-NH2 treated cells compared to no-treated counterpart (p<0.05). The expression of odontogenic-related genes (BSP, COL1A, DMP-1, DSPP, and OCN) and the capacity for biomineralization (based on alkaline phosphatase activity and alizarin red staining) were significantly upregulated with MBNs-NH2. These results indicate that MBNs-NH2 induce odontogenic differentiation of rDPSCs and may serve as a potential dentin regenerative additive to dental material for promoting odontoblast differentiation.

]]>
<![CDATA[Vinculin association with actin cytoskeleton is necessary for stiffness-dependent regulation of vinculin behavior]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcabb

The extracellular matrix (ECM) is a major regulator of cell behavior. Recent studies have indicated the importance of the physical properties of the ECM, including its stiffness, for cell migration and differentiation. Using actomyosin-generated forces, cells pull the ECM and sense stiffness via cell-ECM adhesion structures called focal adhesions (FAs). Vinculin, an actin-binding FA protein, has emerged as a major player in FA-mediated mechanotransduction. Although vinculin is important for sensing ECM stiffness, the role of vinculin binding to actin in the ECM stiffness-mediated regulation of vinculin behavior remains unknown. Here, we show that an actin binding-deficient mutation disrupts the ECM stiffness-dependent regulation of CSB (cytoskeleton stabilization buffer) resistance and the stable localization of vinculin. These results suggest that the vinculin-actin interaction participates in FA-mediated mechanotransduction.

]]>
<![CDATA[Attraction, Oviposition and Larval Survival of the Fungus Gnat, Lycoriella ingenua, on Fungal Species Isolated from Adults, Larvae, and Mushroom Compost]]> https://www.researchpad.co/article/5989da82ab0ee8fa60b9b145

We previously showed that the females of the mushroom sciarid, Lycoriella ingenua (Dufour, 1839) (Diptera: Sciaridae), one of the most severe pests of the cultivated white button mushroom, Agaricus bisporus (J.E. Lange) Emil J. Imbach (Agaricales: Agaricaceae), are attracted to the mushroom compost that mushrooms are grown on and not to the mushrooms themselves. We also showed that females are attracted to the parasitic green mold, Trichoderma aggressivum. In an attempt to identify what is in the mushroom compost that attracts female L. ingenua, we isolated several species of fungi from adult males and females, third instar larvae, and mushroom compost itself. We then analyzed the attraction of females to these substrates using a static-flow two choice olfactometer, as well as their oviposition tendencies in another type of assay under choice and no-choice conditions. We also assessed the survival of larvae to adulthood when first instar larvae were placed on each of the isolated fungal species. We found that female flies were attracted most to the mycoparasitic green mold, T. aggressivum, to Penicilium citrinum isolated from adult female bodies, and to Scatylidium thermophilium isolated from the mushroom compost. Gravid female flies laid the most eggs on T. aggressivum, Aspergillus flavus isolated from third instar larval frass, Aspergillus fumigatus isolated from adult male bodies, and on P. citrinum. This egg-laying trend remained consistent under no-choice conditions as females aged. First instar larvae developed to adulthood only on S. thermophilium and Chaetomium sp. isolated from mushroom compost, and on P. citrinum. Our results indicate that the volatiles from a suite of different fungal species act in tandem in the natural setting of mushroom compost, with some first attracting gravid female flies and then others causing them to oviposit. The ecological context of these findings is important for creating an optimal strategy for using possible semiochemicals isolated from these fungal species to better monitor and control this pestiferous mushroom fly species.

]]>
<![CDATA[Direct measurement of interaction forces between bovine serum albumin and poly(ethylene oxide) in water and electrolyte solutions]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc859

The net interaction between a probe tip coated with bovine serum albumin (BSA) protein and a flat substrate coated with poly(ethylene oxide) (PEO) polymer was measured directly on approach in water and electrolyte solutions using AFM. The approach force curve between the two surfaces was monotonically repulsive in water and in electrolyte solutions. At pH ~5, slightly above the isoelectric point (pI) of BSA, and at large distances, the force was dominated by electrostatic repulsion between the oxygen atoms of the incoming protein with those belonging to the ether groups of PEO. Such repulsive force and range decreased in NaCl. Under physiological conditions, pH 6, BSA is definitely charged and the electrostatic repulsion with ether groups in PEO appears at larger separation distances. Interestingly, at pH 4, below the pI of BSA, the repulsion decreased because of an attractive, although weak, electrostatic force that appeared between the ether groups in PEO and the positively charged amino groups of BSA. However, for all solution conditions, once compression of PEO begun, the net repulsion was always dominated by short-range polymeric steric repulsion and repulsive enthalpy penalties for breaking PEO-water bonds. Results suggest that PEO in mushroom conformation may also be effective in reducing biofouling.

]]>
<![CDATA[Colony fingerprint for discrimination of microbial species based on lensless imaging of microcolonies]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc287

Detection and identification of microbial species are crucial in a wide range of industries, including production of beverages, foods, cosmetics, and pharmaceuticals. Traditionally, colony formation and its morphological analysis (e.g., size, shape, and color) with a naked eye have been employed for this purpose. However, such a conventional method is time consuming, labor intensive, and not very reproducible. To overcome these problems, we propose a novel method that detects microcolonies (diameter 10–500 μm) using a lensless imaging system. When comparing colony images of five microorganisms from different genera (Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans), the images showed obvious different features. Being closely related species, St. aureus and St. epidermidis resembled each other, but the imaging analysis could extract substantial information (colony fingerprints) including the morphological and physiological features, and linear discriminant analysis of the colony fingerprints distinguished these two species with 100% of accuracy. Because this system may offer many advantages such as high-throughput testing, lower costs, more compact equipment, and ease of automation, it holds promise for microbial detection and identification in various academic and industrial areas.

]]>
<![CDATA[Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers]]> https://www.researchpad.co/article/5989db4bab0ee8fa60bda5a1

As thermoelectric devices begin to make their way into commercial applications, the emphasis is put on decreasing the thermal conductivity. In this purely theoretical study, finite element analysis is used to determine the effect of a supporting material on the thermal conductivity of a thermoelectric module. The simulations illustrate the heat transfer along a sample, consisting from Cu, Cu2O and PbTe thermoelectric layers on a 1 mm thick Pyrex glass substrate. The influence of two different types of heating, at a constant temperature and at a constant heat flux, is also investigated. It is revealed that the presence of a supporting material plays an important role on lowering the effective thermal conductivity of the layer-substrate ensemble. By using thinner thermoelectric layers the effective thermal conductivity is further reduced, almost down to the value of the glass substrate. As a result, the temperature gradient becomes steeper for a fixed heating temperature, which allows the production of devices with improved performance under certain conditions. Based on the simulation results, we also propose a model for a robust thin film thermoelectric device. With this suggestion, we invite the thermoelectric community to prove the applicability of the presented concept for practical purposes.

]]>
<![CDATA[Extracellular DNA facilitates bacterial adhesion during Burkholderia pseudomallei biofilm formation]]> https://www.researchpad.co/article/5c900d6cd5eed0c48407e8d1

The biofilm-forming ability of Burkholderia pseudomallei is crucial for its survival in unsuitable environments and is correlated with antibiotic resistance and relapsing cases of melioidosis. Extracellular DNA (eDNA) is an essential component for biofilm development and maturation in many bacteria. The aim of this study was to investigate the eDNA released by B. pseudomallei during biofilm formation using DNase treatment. The extent of biofilm formation and quantity of eDNA were assessed by crystal-violet staining and fluorescent dye-based quantification, respectively, and visualized by confocal laser scanning microscopy (CLSM). Variation in B. pseudomallei biofilm formation and eDNA quantity was demonstrated among isolates. CLSM images of biofilms stained with FITC-ConA (biofilm) and TOTO-3 (eDNA) revealed the localization of eDNA in the biofilm matrix. A positive correlation of biofilm biomass with quantity of eDNA during the 2-day biofilm-formation observation period was found. The increasing eDNA quantity over time, despite constant living/dead ratios of bacterial cells during the experiment suggests that eDNA is delivered from living bacterial cells. CLSM images demonstrated that depletion of eDNA by DNase I significantly lessened bacterial attachment (if DNase added at 0 h) and biofilm developing stages (if added at 24 h) but had no effect on mature biofilm (if added at 45 h). Collectively, our results reveal that eDNA is released from living B. pseudomallei and is correlated with biofilm formation. It was also apparent that eDNA is essential during bacterial cell attachment and biofilm-forming steps. The depletion of eDNA by DNase may provide an option for the prevention or dispersal of B. pseudomallei biofilm.

]]>
<![CDATA[Membrane Insertion for the Detection of Lipopolysaccharides: Exploring the Dynamics of Amphiphile-in-Lipid Assays]]> https://www.researchpad.co/article/5989db1dab0ee8fa60bce908

Shiga toxin-producing Escherichia coli is an important cause of foodborne illness, with cases attributable to beef, fresh produce and other sources. Many serotypes of the pathogen cause disease, and differentiating one serotype from another requires specific identification of the O antigen located on the lipopolysaccharide (LPS) molecule. The amphiphilic structure of LPS poses a challenge when using classical detection methods, which do not take into account its lipoglycan biochemistry. Typically, detection of LPS requires heat or chemical treatment of samples and relies on bioactivity assays for the conserved lipid A portion of the molecule. Our goal was to develop assays to facilitate the direct and discriminative detection of the entire LPS molecule and its O antigen in complex matrices using minimal sample processing. To perform serogroup identification of LPS, we used a method called membrane insertion on a waveguide biosensor, and tested three serogroups of LPS. The membrane insertion technique allows for the hydrophobic association of LPS with a lipid bilayer, where the exposed O antigen can be targeted for specific detection. Samples of beef lysate were spiked with LPS to perform O antigen specific detection of LPS from E. coli O157. To validate assay performance, we evaluated the biophysical interactions of LPS with lipid bilayers both in- and outside of a flow cell using fluorescence microscopy and fluorescently doped lipids. Our results indicate that membrane insertion allows for the qualitative and reliable identification of amphiphilic LPS in complex samples like beef homogenates. We also demonstrated that LPS-induced hole formation does not occur under the conditions of the membrane insertion assays. Together, these findings describe for the first time the serogroup-specific detection of amphiphilic LPS in complex samples using a membrane insertion assay, and highlight the importance of LPS molecular conformations in detection architectures.

]]>
<![CDATA[Control of Hydroid Colony Form by Surface Heterogeneity]]> https://www.researchpad.co/article/5989da50ab0ee8fa60b8db8c

The colonial hydroid Podocoryna carnea grows adherent to surfaces progressing along them by a motile stolon tip. We here ask whether the stolon tip grows preferentially within grooves etched in silicon wafers. In a series of pilot experiments, we varied the dimensions of grooves and found that stolons did not utilize grooves with a width:depth of 5:5 μm or 10:10 μm, occasionally followed grooves 25:25 μm in size, and preferentially grew within grooves of a width:depth of 50:50 μm and 100:50 μm. We then grew colonies in grids, with fixed 50:50 μm width:depth channels intersecting at 90° every 950, 700, 450, or 150 μm. We find that stolons grew within grooves early in colony ontogeny, but remained restricted to them only in the grid pattern with channel intersections every 150 μm. Finally, we created a grid in the shape of the Yale Y logo, with channels of 50:50 μm width:depth and intersections every 100 μm. The resulting colonies conformed to that of the logo. Our findings demonstrate that stolons respond to surface heterogeneity and that surface etching can be used to fabricate microfluidic circuits comprised of hydroid perisarc.

]]>
<![CDATA[Massively Parallelized Pollen Tube Guidance and Mechanical Measurements on a Lab-on-a-Chip Platform]]> https://www.researchpad.co/article/5989da36ab0ee8fa60b8644d

Pollen tubes are used as a model in the study of plant morphogenesis, cellular differentiation, cell wall biochemistry, biomechanics, and intra- and intercellular signaling. For a “systems-understanding” of the bio-chemo-mechanics of tip-polarized growth in pollen tubes, the need for a versatile, experimental assay platform for quantitative data collection and analysis is critical. We introduce a Lab-on-a-Chip (LoC) concept for high-throughput pollen germination and pollen tube guidance for parallelized optical and mechanical measurements. The LoC localizes a large number of growing pollen tubes on a single plane of focus with unidirectional tip-growth, enabling high-resolution quantitative microscopy. This species-independent LoC platform can be integrated with micro-/nano-indentation systems, such as the cellular force microscope (CFM) or the atomic force microscope (AFM), allowing for rapid measurements of cell wall stiffness of growing tubes. As a demonstrative example, we show the growth and directional guidance of hundreds of lily (Lilium longiflorum) and Arabidopsis (Arabidopsis thaliana) pollen tubes on a single LoC microscopy slide. Combining the LoC with the CFM, we characterized the cell wall stiffness of lily pollen tubes. Using the stiffness statistics and finite-element-method (FEM)-based approaches, we computed an effective range of the linear elastic moduli of the cell wall spanning the variability space of physiological parameters including internal turgor, cell wall thickness, and tube diameter. We propose the LoC device as a versatile and high-throughput phenomics platform for plant reproductive and development biology using the pollen tube as a model.

]]>
<![CDATA[Human PIEZO1 Ion Channel Functions as a Split Protein]]> https://www.researchpad.co/article/5989da5aab0ee8fa60b8fb9e

PIEZO1 is a mechanosensitive eukaryotic cation-selective channel that rapidly inactivates in a voltage-dependent manner. We previously showed that a fluorescent protein could be encoded within the hPIEZO1 sequence without loss of function. In this work, we split the channel into two at this site and asked if coexpression would produce a functional channel or whether gating and permeation might be contained in either segment. The split protein was expressed in two segments by a bicistronic plasmid where the first segment spanned residues 1 to 1591, and the second segment spanned 1592 to 2521. When the “split protein” is coexpressed, the parts associate to form a normal channel. We measured the whole-cell, cell-attached and outside-out patch currents in transfected HEK293 cells. Indentation produced whole-cell currents monotonic with the stimulus. Single channel recordings showed voltage-dependent inactivation. The Boltzmann activation curve for outside-out patches had a slope of 8.6/mmHg vs 8.1 for wild type, and a small leftward shift in the midpoint (32 mmHg vs 41 mmHg). The association of the two channel domains was confirmed by FRET measurements of mCherry on the N-terminus and EGFP on the C-terminus. Neither of the individual protein segments produced current when expressed alone.

]]>
<![CDATA[Lipid Bilayers Are Long-Lived on Solvent Cleaned Plasma-Oxidized poly(dimethyl)siloxane (ox-PDMS)]]> https://www.researchpad.co/article/5989dabbab0ee8fa60baebcf

Although it is well known that phospholipids self-assemble on hydrophilic plasma-oxidized PMDS surfaces (ox-PDMS) to form cell membrane mimetic bilayers, the temporal stability of phospholipid membranes on these surfaces is unknown. Here we report that phospholipid bilayers remain stable on solvent-cleaned ox-PDMS for at least 132 hours after preparation. Absent solvent cleaning, the bilayers were stable for only 36 hours. We characterized the phospholipid bilayers, i) through quantitative comparative analysis of the fluorescence intensity of phospholipid bilayers on ox-PDMS and phospholipid monolayers on native PDMS and, ii) through measurements of the diffusive mobility of the lipids through fluorescence recovery after photobleaching (FRAP). The fluorescence intensity of the phospholipid layer remained consistent with that of a bilayer for 132 hours. The evolution of the diffusive mobility of the phospholipids in the bilayer on ox-PDMS over time was similar to lipids in control bilayers prepared on glass surfaces. Solvent cleaning was essential for the long-term stability of the bilayers on ox-PDMS. Without cleaning in acetone and isopropanol, phospholipid bilayers prepared on ox-PDMS surfaces peeled off in large patches within 36 hours. Importantly, we find that phospholipid bilayers supported on solvent-cleaned ox-PDMS were indistinguishable from phospholipid bilayers supported on glass for at least 36 hours after preparation. Our results provide a link between the two common surfaces used to prepare in vitro biomimetic phospholipid membranes—i) glass surfaces used predominantly in fundamental biophysical experiments, for which there is abundant physicochemical information, with ii) ox-PDMS, the dominant material used in practical, applications-oriented systems to build micro-devices, topographically-patterned surfaces, and biosensors where there is a dearth of information.

]]>
<![CDATA[Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice]]> https://www.researchpad.co/article/5989da46ab0ee8fa60b8bbed

Obesity was reported to cause kidney injury by excessive accumulation of sphingolipids such as sphingomyelin and ceramide. Sphingomyelin synthase 2 (SMS2) is an important enzyme for hepatic sphingolipid homeostasis and its dysfunction is considered to result in fatty liver disease. The expression of SMS2 is also high in the kidneys. However, the contribution of SMS2 on renal sphingolipid metabolism remains unclear. Imaging mass spectrometry is a powerful tool to visualize the distribution and provide quantitative data on lipids in tissue sections. Thus, in this study, we analyzed the effects of SMS2 deficiency on the distribution and concentration of sphingomyelins in the liver and kidneys of mice fed with a normal-diet or a high-fat-diet using imaging mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry. Our study revealed that high-fat-diet increased C18–C22 sphingomyelins, but decreased C24-sphingomyelins, in the liver and kidneys of wild-type mice. By contrast, SMS2 deficiency decreased C18–C24 sphingomyelins in the liver. Although a similar trend was observed in the whole-kidneys, the effects were minor. Interestingly, imaging mass spectrometry revealed that sphingomyelin localization was specific to each acyl-chain length in the kidneys. Further, SMS2 deficiency mainly decreased C22-sphingomyelin in the renal medulla and C24-sphingomyelins in the renal cortex. Thus, imaging mass spectrometry can provide visual assessment of the contribution of SMS2 on acyl-chain- and region-specific sphingomyelin metabolism in the kidneys.

]]>
<![CDATA[10-Methyldodecanal, a Novel Attractant Pheromone Produced by Males of the South American Cerambycid Beetle Eburodacrys vittata]]> https://www.researchpad.co/article/5989daf6ab0ee8fa60bc3183

We report the identification, synthesis, and field bioassay of a novel attractant pheromone produced by males of Eburodacrys vittata (Blanchard), a South American cerambycid beetle in the subfamily Cerambycinae. Headspace volatiles from males contained a sex-specific compound, identified as 10-methyldodecanal. In a field bioassay conducted in Brazil, significant numbers of males and females were caught in traps baited with synthesized racemic 10-methyldodecanal, consistent with the aggregation-sex pheromones produced by males of many cerambycine species. This compound represents a new structural class of cerambycid pheromones, and it is the first pheromone identified for a species in the tribe Eburiini.

]]>