ResearchPad - larvae https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Digestibility of black soldier fly larvae (<i>Hermetia illucens</i>) fed to leopard geckos (<i>Eublepharis macularius</i>)]]> https://www.researchpad.co/article/elastic_article_7714 Black soldier fly (BSF) larvae have been marketed as an excellent choice for providing calcium to reptiles without the need of dusting or gut loading. However, previous studies have indicated that they have limited calcium digestibility and are deficient in fat soluble vitamins (A, D3, and E). In this feeding and digestibility trial, 24 adult male leopard geckos were fed one of three diets for 4 months: 1) whole, vitamin A gut loaded larvae; 2) needle pierced, vitamin A gut loaded larvae; or 3) whole, non-gut loaded larvae. Fecal output from the geckos was collected daily and apparent digestibility was calculated for dry matter, protein, fat, and minerals. There were no differences in digestibility coefficients among groups. Most nutrients were well digested by the leopard geckos when compared to previous studies, with the exception of calcium (digestibility co-efficient 43%), as the calcium-rich exoskeleton usually remained intact after passage through the GI tract. Biochemistry profiles revealed possible deficits occurring over time for calcium, sodium, and total protein. In regards to vitamin A digestibility, plasma and liver vitamin A concentrations were significantly higher in the supplemented groups (plasma- gut loaded groups: 33.38 ± 7.11 ng/ml, control group: 25.8 ± 6.72 ng/ml, t = 1.906, p = 0.04; liver- gut loaded groups: 28.67 ± 18.90 μg/g, control group: 14.13 ± 7.41 μg/g, t = 1.951, p = 0.03). While leopard geckos are able to digest most of the nutrients provided by BSF larvae, including those that have been gut loaded, more research needs to be performed to assess whether or not they provide adequate calcium in their non-supplemented form.

]]>
<![CDATA[Impact of confinement in vehicle trunks on decomposition and entomological colonization of carcasses]]> https://www.researchpad.co/article/Nffbdbe54-85a9-48b9-9e05-57433aec6303

In order to investigate the impact of confinement in a car trunk on decomposition and insect colonization of carcasses, three freshly killed pig (Sus scrofa domesticus Erxleben) carcasses were placed individually in the trunks of older model cars and deployed in a forested area in the southwestern region of British Columbia, Canada, together with three freshly killed carcasses which were exposed in insect-accessible protective cages in the same forest. Decomposition rate and insect colonization of all carcasses were examined twice a week for four weeks. The exposed carcasses were colonized immediately by Calliphora latifrons Hough and Calliphora vomitoria (L.) followed by Lucilia illustris (Meigen), Phormia regina (Meigen) and Protophormia terraenovae (R.-D.) (Diptera: Calliphoridae). There was a delay of three to six days before the confined carcasses were colonized, first by P. regina, followed by Pr. terraenovae. These species represented the vast majority of blow fly species on the confined carcasses. Despite the delay in colonization, decomposition progressed much more rapidly in two of the confined carcasses in comparison with the exposed carcasses due to the greatly increased temperatures inside the vehicles, with the complete skeletonization of two of the confined carcasses ocurring between nine and 13 days after death. One confined carcass was an anomaly, attracting much fewer insects, supporting fewer larval calliphorids and decomposing much more slowly than other carcasses, despite similarly increased temperatures. It was later discovered that the vehicle in which this carcass was confined had a solid metal fire wall between the passenger area and the trunk, which served to reduce insect access and release of odors. These data may be extremely valuable when analyzing cadavers found inside vehicle trunks.

]]>
<![CDATA[Induced aneuploidy in neural stem cells triggers a delayed stress response and impairs adult life span in flies]]> https://www.researchpad.co/article/5c79a3e7d5eed0c4841d1c08

Studying aneuploidy during organism development has strong limitations because chronic mitotic perturbations used to generate aneuploidy usually result in lethality. We developed a genetic tool to induce aneuploidy in an acute and time-controlled manner during Drosophila development. This is achieved by reversible depletion of cohesin, a key molecule controlling mitotic fidelity. Larvae challenged with aneuploidy hatch into adults with severe motor defects shortening their life span. Neural stem cells, despite being aneuploid, display a delayed stress response and continue proliferating, resulting in the rapid appearance of chromosomal instability, a complex array of karyotypes, and cellular abnormalities. Notably, when other brain-cell lineages are forced to self-renew, aneuploidy-associated stress response is significantly delayed. Protecting only the developing brain from induced aneuploidy is sufficient to rescue motor defects and adult life span, suggesting that neural tissue is the most ill-equipped to deal with developmental aneuploidy.

]]>
<![CDATA[Urban and semi-urban mosquitoes of Mexico City: A risk for endemic mosquito-borne disease transmission]]> https://www.researchpad.co/article/5c897788d5eed0c4847d2f3b

Since past century, vector-borne diseases have been a major public health concern in several states of Mexico. However, Mexico City continues to be free of endemic mosquito-borne viral diseases. The city is the most important politic and economic state of Mexico and one of the most important city of Latin America. Its subtropical highland climate and high elevation (2240 masl) had historically made the occurrence of Aedes species unlikely. However, the presence of other potential disease vectors (Culex spp, Culiseta spp), and the current intermittent introductions of Aedes aegypti, have revealed that control programs must adopt routine vector surveillance in the city. In this study, we provide an updated species list from a five-years of vector surveillance performed in Mexico City. A total of 18,553 mosquito larvae were collected. Twenty-two species from genus Culex, Aedes, Culiseta, Anopheles, Lutzia and Uranotaenia were observed. Nine new mosquito records for the city were found. Ae. albopictus was recorded for the first time in Mexico City. Interestingly, a new record, Ae. epactius was the most frequent species reported. Cx. pipiens quinquefasciatus exhibited the highest number of individuals collected. We detected six areas which harbor the highest mosquito species records in the city. Cemeteries included 68.9% of our collection sites. Temporarily ponds showed the highest species diversity. We detected an increasing presence of Ae. aegypti, which was detected for three consecutive years (2015–2017), predominantly in the warmer microclimates of the city. We found a possible correlation between increasing temperature and Ae. aegypti and Ae. albopictus expanding range. This study provides a starting point for developing strategies related to environmental management for mosquito control. The promotion of mosquito control practices through community participation, mass media and education programmes in schools should be introduced in the city.

]]>
<![CDATA[Subunits of the mechano-electrical transduction channel, Tmc1/2b, require Tmie to localize in zebrafish sensory hair cells]]> https://www.researchpad.co/article/5c648d15d5eed0c484c81f40

Mutations in transmembrane inner ear (TMIE) cause deafness in humans; previous studies suggest involvement in the mechano-electrical transduction (MET) complex in sensory hair cells, but TMIE’s precise role is unclear. In tmie zebrafish mutants, we observed that GFP-tagged Tmc1 and Tmc2b, which are subunits of the MET channel, fail to target to the hair bundle. In contrast, overexpression of Tmie strongly enhances the targeting of Tmc1-GFP and Tmc2b-GFP to stereocilia. To identify the motifs of Tmie underlying the regulation of the Tmcs, we systematically deleted or replaced peptide segments. We then assessed localization and functional rescue of each mutated/chimeric form of Tmie in tmie mutants. We determined that the first putative helix was dispensable and identified a novel critical region of Tmie, the extracellular region and transmembrane domain, which is required for both mechanosensitivity and Tmc2b-GFP expression in bundles. Collectively, our results suggest that Tmie’s role in sensory hair cells is to target and stabilize Tmc channel subunits to the site of MET.

]]>
<![CDATA[Normalization of large-scale behavioural data collected from zebrafish]]> https://www.researchpad.co/article/5c706738d5eed0c4847c6c63

Many contemporary neuroscience experiments utilize high-throughput approaches to simultaneously collect behavioural data from many animals. The resulting data are often complex in structure and are subjected to systematic biases, which require new approaches for analysis and normalization. This study addressed the normalization need by establishing an approach based on linear-regression modeling. The model was established using a dataset of visual motor response (VMR) obtained from several strains of wild-type (WT) zebrafish collected at multiple stages of development. The VMR is a locomotor response triggered by drastic light change, and is commonly measured repeatedly from multiple larvae arrayed in 96-well plates. This assay is subjected to several systematic variations. For example, the light emitted by the machine varies slightly from well to well. In addition to the light-intensity variation, biological replication also created batch-batch variation. These systematic variations may result in differences in the VMR and must be normalized. Our normalization approach explicitly modeled the effect of these systematic variations on VMR. It also normalized the activity profiles of different conditions to a common baseline. Our approach is versatile, as it can incorporate different normalization needs as separate factors. The versatility was demonstrated by an integrated normalization of three factors: light-intensity variation, batch-batch variation and baseline. After normalization, new biological insights were revealed from the data. For example, we found larvae of TL strain at 6 days post-fertilization (dpf) responded to light onset much stronger than the 9-dpf larvae, whereas previous analysis without normalization shows that their responses were relatively comparable. By removing systematic variations, our model-based normalization can facilitate downstream statistical comparisons and aid detecting true biological differences in high-throughput studies of neurobehaviour.

]]>
<![CDATA[Spatiotemporal expression of the putative MdtABC efflux pump of Phtotorhabdus luminescens occurs in a protease-dependent manner during insect infection]]> https://www.researchpad.co/article/5c6f153dd5eed0c48467af26

Photorhabdus luminescens is an enterobacterium establishing a mutualistic symbiosis with nematodes, that also kills insects after septicaemia and connective tissue colonization. The role of the bacterial mdtABC genes encoding a putative multidrug efflux system from the resistance/nodulation/cell division family was investigated. We showed that a mdtA mutant and the wild type had similar levels of resistance to antibiotics, antimicrobial peptides, metals, detergents and bile salts. The mdtA mutant was also as pathogenic as the wild-type following intrahaemocoel injection in Locusta migratoria, but had a slightly attenuated phenotype in Spodoptera littoralis. A transcriptional fusion of the mdtA promoter (PmdtA) and the green fluorescent protein (gfp) encoding gene was induced by copper in bacteria cultured in vitro. The PmdtA-gfp fusion was strongly induced within bacterial aggregates in the haematopoietic organ during late stages of infection in L. migratoria, whereas it was only weakly expressed in insect plasma throughout infection. A medium supplemented with haematopoietic organ extracts induced the PmdtA-gfp fusion ex vivo, suggesting that site-specific mdtABC expression resulted from insect signals from the haematopoietic organ. Finally, we showed that protease inhibitors abolished ex vivo activity of the PmdtA-gfp fusion in the presence of haematopoietic organ extracts, suggesting that proteolysis by-products play a key role in upregulating the putative MdtABC efflux pump during insect infection with P. luminescens.

]]>
<![CDATA[Protein composition of the occlusion bodies of Epinotia aporema granulovirus]]> https://www.researchpad.co/article/5c6c75e6d5eed0c4843d0423

Within family Baculoviridae, members of the Betabaculovirus genus are employed as biocontrol agents against lepidopteran pests, either alone or in combination with selected members of the Alphabaculovirus genus. Epinotia aporema granulovirus (EpapGV) is a fast killing betabaculovirus that infects the bean shoot borer (E. aporema) and is a promising biopesticide. Because occlusion bodies (OBs) play a key role in baculovirus horizontal transmission, we investigated the composition of EpapGV OBs. Using mass spectrometry-based proteomics we could identify 56 proteins that are included in the OBs during the final stages of larval infection. Our data provides experimental validation of several annotated hypothetical coding sequences. Proteogenomic mapping against genomic sequence detected a previously unannotated ac110-like core gene and a putative translation fusion product of ORFs epap48 and epap49. Comparative studies of the proteomes available for the family Baculoviridae highlight the conservation of core gene products as parts of the occluded virion. Two proteins specific for betabaculoviruses (Epap48 and Epap95) are incorporated into OBs. Moreover, quantification based on emPAI values showed that Epap95 is one of the most abundant components of EpapGV OBs.

]]>
<![CDATA[Conserved regulation of neurodevelopmental processes and behavior by FoxP in Drosophila]]> https://www.researchpad.co/article/5c6c75bdd5eed0c4843d00af

FOXP proteins form a subfamily of evolutionarily conserved transcription factors involved in the development and functioning of several tissues, including the central nervous system. In humans, mutations in FOXP1 and FOXP2 have been implicated in cognitive deficits including intellectual disability and speech disorders. Drosophila exhibits a single ortholog, called FoxP, but due to a lack of characterized mutants, our understanding of the gene remains poor. Here we show that the dimerization property required for mammalian FOXP function is conserved in Drosophila. In flies, FoxP is enriched in the adult brain, showing strong expression in ~1000 neurons of cholinergic, glutamatergic and GABAergic nature. We generate Drosophila loss-of-function mutants and UAS-FoxP transgenic lines for ectopic expression, and use them to characterize FoxP function in the nervous system. At the cellular level, we demonstrate that Drosophila FoxP is required in larvae for synaptic morphogenesis at axonal terminals of the neuromuscular junction and for dendrite development of dorsal multidendritic sensory neurons. In the developing brain, we find that FoxP plays important roles in α-lobe mushroom body formation. Finally, at a behavioral level, we show that Drosophila FoxP is important for locomotion, habituation learning and social space behavior of adult flies. Our work shows that Drosophila FoxP is important for regulating several neurodevelopmental processes and behaviors that are related to human disease or vertebrate disease model phenotypes. This suggests a high degree of functional conservation with vertebrate FOXP orthologues and established flies as a model system for understanding FOXP related pathologies.

]]>
<![CDATA[Moderate plant water stress improves larval development, and impacts immunity and gut microbiota of a specialist herbivore]]> https://www.researchpad.co/article/5c76fe62d5eed0c484e5b9b6

While host plant drought is generally viewed as a negative phenomenon, its impact on insect herbivores can vary largely depending on the species involved and on the intensity of the drought. Extreme drought killing host plants can clearly reduce herbivore fitness, but the impact of moderate host plant water stress on insect herbivores can vary, and may even be beneficial. The populations of the Finnish Glanville fritillary butterfly (Melitaea cinxia) have faced reduced precipitation in recent years, with impacts even on population dynamics. Whether the negative effects of low precipitation are solely due to extreme desiccation killing the host plant or whether moderate drought reduces plant quality for the larvae remains unknown. We assessed the performance of larvae fed on moderately water-stressed Plantago lanceolata in terms of growth, survival, and immune response, and additionally were interested to assess whether the gut microbial composition of the larvae changed due to modification of the host plant. We found that larvae fed on water-stressed plants had increased growth, with no impact on survival, up-regulated the expression of one candidate immune gene (pelle), and had a more heterogeneous bacterial community and a shifted fungal community in the gut. Most of the measured traits showed considerable variation due to family structure. Our data suggest that in temperate regions moderate host plant water stress can positively shape resource acquisition of this specialized insect herbivore, potentially by increasing nutrient accessibility or concentration. Potentially, the better larval performance may be mediated by a shift of the microbiota on water-stressed plants, calling for further research especially on the understudied gut fungal community.

]]>
<![CDATA[Drosophila ZDHHC8 palmitoylates scribble and Ras64B and controls growth and viability]]> https://www.researchpad.co/article/5c6730b5d5eed0c484f37f58

Palmitoylation is an important posttranslational modification regulating diverse cellular functions. Consequently, aberrant palmitoylation can lead to diseases such as neuronal disorders or cancer. In humans there are roughly one hundred times more palmitoylated proteins than enzymes catalyzing palmitoylation (palmitoyltransferases). Therefore, it is an important challenge to establish the links between palmitoyltransferases and their targets. From publicly available data, we find that expression of human ZDHHC8 correlates significantly with cancer survival. To elucidate the organismal function of ZDHHC8, we study the Drosophila ortholog of hZDHHC8, CG34449/dZDHHC8. Knockdown of dZDHHC8 causes tissue overgrowth while dZDHHC8 mutants are larval lethal. We provide a list of 159 palmitoylated proteins in Drosophila and present data suggesting that scribble and Ras64B are targets of dZDHHC8.

]]>
<![CDATA[Control of basal autophagy rate by vacuolar peduncle]]> https://www.researchpad.co/article/5c67309ed5eed0c484f37df3

Basal autophagy is as a compressive catabolic mechanism engaged in the breakdown of damaged macromolecules and organelles leading to the recycling of elementary nutrients. Thought essential to cellular refreshing, little is known about the origin of a constitutional rate of basal autophagy. Here, we found that loss of Drosophila vacuolar peduncle (vap), a presumed GAP enzyme, is associated with enhanced basal autophagy rate and physiological alterations resulting in a wasteful cell energy balance, a hallmark of overactive autophagy. By contrast, starvation-induced autophagy was disrupted in vap mutant conditions, leading to a block of maturation into autolysosomes. This phenotype stem for exacerbated biogenesis of PI(3)P-dependent endomembranes, including autophagosome membranes and ectopic fusions of vesicles. These findings shed new light on the neurodegenerative phenotype found associated to mutant vap adult brains in a former study. A partner of Vap, Sprint (Spri), acting as an endocytic GEF for Rab5, had the converse effect of leading to a reduction in PI(3)P-dependent endomembrane formation in mutants. Spri was conditional to normal basal autophagy and instrumental to the starvation-sensitivity phenotype specific of vap. Rab5 activity itself was essential for PI(3)P and for pre-autophagosome structures formation. We propose that Vap/Spri complexes promote a cell surface-derived flow of endocytic Rab5-containing vesicles, the traffic of which is crucial for the implementation of a basal autophagy rate.

]]>
<![CDATA[Thermotolerant isolates of Beauveria bassiana as potential control agent of insect pest in subtropical climates]]> https://www.researchpad.co/article/5c5df31dd5eed0c484580d3c

The use of Beauveria bassiana in biological control of agricultural pests is mainly hampered by environmental factors, such as elevated temperatures and low humidity. These limitations, further amplified in a global warming scenario, could nullify biological control strategies based on this fungus. The identification of thermotolerant B. bassiana isolates represents a possible strategy to overcome this problem. In this study, in order to maximize the probability in the isolation of thermotolerant B. bassiana, soil samples and infected insects were collected in warm areas of Syria. The obtained fungal isolates were tested for different biological parameters (i.e., growth rate, sporulation and spore germination) at growing temperatures ranging from 20°C to 35°C. Among these isolates (eight from insects and 11 from soil samples), the five with the highest growth rate, spore production and germination at 30°C were tested for their entomopathogenicity through in vivo assays on Ephestia kuehniella larvae. Insect mortality induced by the five isolates ranged from 31% to 100%. Two isolates, one from Phyllognathus excavatus and one from soil, caused 50% of the larval mortality in less than four days, reaching values exceeding 92% in ten days. These two isolates were molecularly identified as B. bassiana sensu stricto by using three markers (i.e., ITS, Bloc and EF1-α). Considering these promising results, further studies are ongoing, testing their efficiency in field conditions as control agents for agricultural insect pests in Mediterranean and Subtropical regions.

]]>
<![CDATA[Regeneration of the zebrafish retinal pigment epithelium after widespread genetic ablation]]> https://www.researchpad.co/article/5c59fefbd5eed0c484135888

The retinal pigment epithelium (RPE) is a specialized monolayer of pigmented cells within the eye that is critical for maintaining visual system function. Diseases affecting the RPE have dire consequences for vision, and the most prevalent of these is atrophic (dry) age-related macular degeneration (AMD), which is thought to result from RPE dysfunction and degeneration. An intriguing possibility for treating RPE degenerative diseases like atrophic AMD is the stimulation of endogenous RPE regeneration; however, very little is known about the mechanisms driving successful RPE regeneration in vivo. Here, we developed a zebrafish transgenic model (rpe65a:nfsB-eGFP) that enabled ablation of large swathes of mature RPE. RPE ablation resulted in rapid RPE degeneration, as well as degeneration of Bruch’s membrane and underlying photoreceptors. Using this model, we demonstrate for the first time that zebrafish are capable of regenerating a functional RPE monolayer after RPE ablation. Regenerated RPE cells first appear at the periphery of the RPE, and regeneration proceeds in a peripheral-to-central fashion. RPE ablation elicits a robust proliferative response in the remaining RPE. Subsequently, proliferative cells move into the injury site and differentiate into RPE. BrdU incorporation assays demonstrate that the regenerated RPE is likely derived from remaining peripheral RPE cells. Pharmacological disruption using IWR-1, a Wnt signaling antagonist, significantly reduces cell proliferation in the RPE and impairs overall RPE recovery. These data demonstrate that the zebrafish RPE possesses a robust capacity for regeneration and highlight a potential mechanism through which endogenous RPE regenerate in vivo.

]]>
<![CDATA[Development of a preliminary in vitro drug screening assay based on a newly established culturing system for pre-adult fifth-stage Onchocerca volvulus worms]]> https://www.researchpad.co/article/5c4a305ed5eed0c4844bfe74

Background

The human filarial parasite Onchocerca volvulus is the causative agent of onchocerciasis (river blindness). It causes blindness in 270,000 individuals with an additional 6.5 million suffering from severe skin pathologies. Current international control programs focus on the reduction of microfilaridermia by annually administering ivermectin for more than 20 years with the ultimate goal of blocking of transmission. The adult worms of O. volvulus can live within nodules for over 15 years and actively release microfilariae for the majority of their lifespan. Therefore, protracted treatment courses of ivermectin are required to block transmission and eventually eliminate the disease. To shorten the time to elimination of this disease, drugs that successfully target macrofilariae (adult parasites) are needed. Unfortunately, there is no small animal model for the infection that could be used for discovery and screening of drugs against adult O. volvulus parasites. Here, we present an in vitro culturing system that supports the growth and development of O. volvulus young adult worms from the third-stage (L3) infective stage.

Methodology/Principal findings

In this study we optimized the culturing system by testing several monolayer cell lines to support worm growth and development. We have shown that the optimized culturing system allows for the growth of the L3 worms to L5 and that the L5 mature into young adult worms. Moreover, these young O. volvulus worms were used in preliminary assays to test putative macrofilaricidal drugs and FDA-approved repurposed drugs.

Conclusion

The culture system we have established for O. volvulus young adult worms offers a promising new platform to advance drug discovery against the human filarial parasite, O. volvulus and thus supports the continuous pursuit for effective macrofilaricidal drugs. However, this in vitro culturing system will have to be further validated for reproducibility before it can be rolled out as a drug screen for decision making in macrofilaricide drug development programs.

]]>
<![CDATA[High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery]]> https://www.researchpad.co/article/5c4a305cd5eed0c4844bfe34

Interest in larval source management (LSM) as an adjunct intervention to control and eliminate malaria transmission has recently increased mainly because long-lasting insecticidal nets (LLINs) and indoor residual spray (IRS) are ineffective against exophagic and exophilic mosquitoes. In Amazonian Peru, the identification of the most productive, positive water bodies would increase the impact of targeted mosquito control on aquatic life stages. The present study explores the use of unmanned aerial vehicles (drones) for identifying Nyssorhynchus darlingi (formerly Anopheles darlingi) breeding sites with high-resolution imagery (~0.02m/pixel) and their multispectral profile in Amazonian Peru. Our results show that high-resolution multispectral imagery can discriminate a profile of water bodies where Ny. darlingi is most likely to breed (overall accuracy 86.73%- 96.98%) with a moderate differentiation of spectral bands. This work provides proof-of-concept of the use of high-resolution images to detect malaria vector breeding sites in Amazonian Peru and such innovative methodology could be crucial for LSM malaria integrated interventions.

]]>
<![CDATA[The 5’-nucleotidase S5nA is dispensable for evasion of phagocytosis and biofilm formation in Streptococcus pyogenes]]> https://www.researchpad.co/article/5c5ca309d5eed0c48441f036

5’-nucleotidases are widespread among all domains of life. The enzymes hydrolyze phosphate residues from nucleotides and nucleotide derivatives. In some pathobiontic bacteria, 5’-nucleotidases contribute to immune evasion by dephosphorylating adenosine mono-, di-, or tri-phosphates, thereby either decreasing the concentration of pro-inflammatory ATP or increasing the concentration of anti-inflammatory adenosine, both acting on purinergic receptors of phagocytic cells. The strict human pathogen Streptococcus pyogenes expresses a surface-associated 5’-nucleotidase (S5nA) under infection conditions that has previously been discussed as a potential virulence factor. Here we show that deletion of the S5nA gene does not significantly affect growth in human blood, evasion of phagocytosis by neutrophils, formation of biofilms and virulence in an infection model with larvae of the greater wax moth Galleria mellonella in S. pyogenes serotypes M6, M18 and M49. Hence, the surface-associated 5’-nucleotidase S5nA seems dispensable for evasion of phagocytosis and biofilm formation in S. pyogenes.

]]>
<![CDATA[Mesoscale circulation determines broad spatio-temporal settlement patterns of lobster]]> https://www.researchpad.co/article/5c5df326d5eed0c484580db3

The influence of physical oceanographic processes on the dispersal of larvae is critical for understanding the ecology of species and for anticipating settlement into fisheries to aid long-term sustainable harvest. This study examines the mechanisms by which ocean currents shape larval dispersal and supply to the continental shelf-break, and the extent to which circulation determines settlement patterns using Sagmariasus verreauxi (Eastern Rock Lobster, ERL) as a model species. Despite the large range of factors that can impact larval dispersal, we show that within a Western Boundary Current system, mesoscale circulation explains broad spatio-temporal patterns of observed settlement including inter-annual and decadal variability along 500 km of coastline. To discern links between ocean circulation and settlement, we correlate a unique 21- year dataset of observed lobster settlement (i.e., early juvenile & pueruli abundance), with simulated larval settlement. Simulations use outputs of an eddy-resolving, data-assimilated, hydrodynamic model, incorporating ERL spawning strategy and larval duration. The latitude where the East Australian Current (EAC) deflects east and separates from the continent determines the limit between regions of low and high ERL settlement. We found that years with a persistent EAC flow have low settlement while years when mesoscale eddies prevail have high settlement; in fact, mesoscale eddies facilitate the transport of larvae to the continental shelf-break from offshore. Proxies for settlement based on circulation features observed with satellites could therefore be useful in predicting broadscale patterns of settlement orders of magnitudes to guide harvest limits.

]]>
<![CDATA[Ask1 and Akt act synergistically to promote ROS-dependent regeneration in Drosophila]]> https://www.researchpad.co/article/5c536ae2d5eed0c484a47ab5

How cells communicate to initiate a regenerative response after damage has captivated scientists during the last few decades. It is known that one of the main signals emanating from injured cells is the Reactive Oxygen Species (ROS), which propagate to the surrounding tissue to trigger the replacement of the missing cells. However, the link between ROS production and the activation of regenerative signaling pathways is not yet fully understood. We describe here the non-autonomous ROS sensing mechanism by which living cells launch their regenerative program. To this aim, we used Drosophila imaginal discs as a model system due to its well-characterized regenerative ability after injury or cell death. We genetically-induced cell death and found that the Apoptosis signal-regulating kinase 1 (Ask1) is essential for regenerative growth. Ask1 senses ROS both in dying and living cells, but its activation is selectively attenuated in living cells by Akt1, the core kinase component of the insulin/insulin-like growth factor pathway. Akt1 phosphorylates Ask1 in a secondary site outside the kinase domain, which attenuates its activity. This modulation of Ask1 activity results in moderate levels of JNK signaling in the living tissue, as well as in activation of p38 signaling, both pathways required to turn on the regenerative response. Our findings demonstrate a non-autonomous activation of a ROS sensing mechanism by Ask1 and Akt1 to replace the missing tissue after damage. Collectively, these results provide the basis for understanding the molecular mechanism of communication between dying and living cells that triggers regeneration.

]]>
<![CDATA[High spatio-temporal variability in Acroporidae settlement to inshore reefs of the Great Barrier Reef]]> https://www.researchpad.co/article/5c5b52e4d5eed0c4842bd212

Recovery of coral reefs after disturbance relies heavily on replenishment through successful larval settlement and their subsequent survival. As part of an integrated study to determine the potential effects of water quality changes on the resilience of inshore coral communities, scleractinian coral settlement was monitored between 2006 and 2012 at 12 reefs within the inshore Great Barrier Reef. Settlement patterns were only analysed for the family Acroporidae, which represented the majority (84%) of settled larvae. Settlement of Acroporidae to terracotta tiles averaged 0.11 cm-2, representing 34 ± 31.01 (mean ± SD) spat per tile, indicating an abundant supply of competent larvae to the study reefs. Settlement was highly variable among reefs and between years. Differences in settlement among locations partly corresponded to the local cover of adult Acroporidae, while substantial reductions in Acroporidae cover caused by tropical cyclones and floods resulted in a clear reduction in settlement. Much of the observed variability remained unexplained, although likely included variability in both connectivity to, and the fecundity of, adult Acroporidae. The responsiveness of settlement patterns to the decline in Acroporidae cover across all four regions indicates the importance of supply and connectivity, and the vulnerability towards region-wide disturbance. High spatial and temporal variability, in addition to the resource-intensive nature of sampling with settlement tiles, highlights the logistical difficulty of determining coral settlement over large spatial and temporal scales.

]]>