ResearchPad - lettuce https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Host interactors of effector proteins of the lettuce downy mildew <i>Bremia lactucae</i> obtained by yeast two-hybrid screening]]> https://www.researchpad.co/article/elastic_article_13834 Plant pathogenic bacteria, fungi and oomycetes secrete effector proteins to manipulate host cell processes to establish a successful infection. Over the last decade the genomes and transcriptomes of many agriculturally important plant pathogens have been sequenced and vast candidate effector repertoires were identified using bioinformatic analyses. Elucidating the contribution of individual effectors to pathogenicity is the next major hurdle. To advance our understanding of the molecular mechanisms underlying lettuce susceptibility to the downy mildew Bremia lactucae, we mapped physical interactions between B. lactucae effectors and lettuce candidate target proteins. Using a lettuce cDNA library-based yeast-two-hybrid system, 61 protein-protein interactions were identified, involving 21 B. lactucae effectors and 46 unique lettuce proteins. The top ten interactors based on the number of independent colonies identified in the Y2H and two interactors that belong to gene families involved in plant immunity, were further characterized. We determined the subcellular localization of the fluorescently tagged lettuce proteins and their interacting effectors. Importantly, relocalization of effectors or their interactors to the nucleus was observed for four protein-pairs upon their co-expression, supporting their interaction in planta.

]]>
<![CDATA[Assessing the performance of different irrigation systems on lettuce (Lactuca sativa L.) in the greenhouse]]> https://www.researchpad.co/article/5c61e91cd5eed0c48496f815

Lettuce (Lactuca sativa L.) is a very important leafy vegetable in China and is commonly grown using furrow irrigation. In order to improve production efficiency, greenhouse experiments were conducted at Experimental Station, China Agricultural University, Beijing, China using furrow irrigation (FI), micro-sprinkler irrigation (MS), plastic film mulching irrigation (PF) and a combined plastic film mulching–micro-sprinkler irrigation system (PF+MS) to study their effects on soil physical characteristics, water distribution, root morpho-physiological traits, nutrition absorption, lettuce yield and water use efficiency for a spring crop and autumn crop in 2015 (Fig 1). Root length, root surface area, and root density were significantly higher under PF and PF+MS than under FI. Moreover, these traits were higher under MS than under FI but these differences were not significant. The soluble protein, soluble sugar, and Vitamin C content of lettuce decreased in the order PF+MS > PF > MS > FI in both crops. In the spring crop, the biological yield of MS, PF, and PF+MS was 7.22%、36.77%、43.20% higher than FI, respectively. In the spring crop, biological water use efficiency (BWUE) of FI, MS, PF and PF+MS was 20.93, 25.24, 36.81 and 38.54 kg m−3, respectively. The BWUE of MS, PF, and PF+MS was 20.59%, 75.87% and 84.14% higher than FI. Economic water use efficiency (EWUE) of FI, MS, PF and PF+MS was 17.06, 21.31, 31.11 and 32.31 kg m−3, respectively. The EWUE of MS, PF, and PF+MS was 24.91%, 82.36% and 89.39% higher than FI, respectively. The autumn crop achieved a higher WUE than the spring crop. The results suggested that the combined plastic film mulching-micro-sprinkler irrigation was the most suitable irrigation approach for increasing lettuce yield.

]]>
<![CDATA[Toxicity of phthalate esters to lettuce (Lactuca sativa) and the soil microbial community under different soil conditions]]> https://www.researchpad.co/article/5c254552d5eed0c48442c4fb

Phthalate esters (PAEs) are globally used plasticizers and typical endocrine disruptors that can readily accumulate in agricultural products and represent a substantial risk to human health via the food chain. The range of soil properties has an important influence on the expression of PAE toxicity, and the mechanisms by which soil physical and chemical properties affect the expression of toxicity of target PAEs to plants and microorganisms requires further investigation. Important soil factors affecting the eco-toxicological effects of two typical PAEs, di-n-butyl phthalate (DnBP) and bis (2-ethylhexyl) phthalate (DEHP), on lettuce (Lactuca sativa) in a spiked soil were investigated in the present study. Soil at various pH values was spiked with three PAE concentrations (1, 5 and 20 mg DnBP or DEHP kg-1 soil), organic matter contents and water holding contents to simulate the greenhouse soil environment for 30 days. Their influence on the biomass, photosynthetic pigment contents, various physiological changes and soil microbial communities was determined as endpoints. The toxicity to lettuce of DnBP was higher than that of DEHP in the soil and soil pH was the most important factor affecting their single toxicity, followed by soil organic matter content and soil moisture content in agreement with the Biolog test results. Under different soil conditions total protein, total soluble sugar and free amino acid contents were positively correlated with concentrations of the target PAEs, but leaf area, biomass, •O2- activity, vitamin C content and soil microbial diversity indices showed the opposite trend. Chlorophyll a and carotenoid contents were more inhibited by DnBP together with impacts on indices of soil microbial diversity. The results suggest that soil conditions in greenhouses directly explain the patterns of pollutant toxicity displayed and impact the quantity, quality and food safety of vegetables produced using highly intensive production systems.

]]>
<![CDATA[Dietary cadmium exposure assessment in rural areas of Southwest China]]> https://www.researchpad.co/article/5b6da1a9463d7e4dccc5fae7

Dietary exposure of cadmium (Cd) has not been studied in Southwest China. The objective of the study was to determine the pollution characteristics and contamination levels in various agriculture products in Southwest China and to conduct a comparison of dietary exposure assessment of Cd in polluted and non-polluted areas. Results showed that the mean Cd contents in rice were 0.53 and 0.52 mg/kg in the high-polluted and low-polluted areas, respectively, with the average value was 0.03 mg/kg in the control area. The mean dietary Cd exposure from rice and vegetables of the selected non-occupational residents in Southwest China was 113.10 μg/kg bodyweight (bw)/month, 88.80 μg/kg bw/month, and 16.50 μg/kg bw/month in the high-polluted, low-polluted, and control areas, respectively, which correspond to 4.5 times, 3.6 times, and 0.66 times of the provisional tolerable monthly intake (25 μg/kg bw/month) established by the Joint FAO/WHO Expert Committee on Food Additives. The findings indicated that the risk for Cd exposure of residents was high due to home-grown food (most especially rice) being near polluted areas and is of great concern.

]]>
<![CDATA[Comparison of theoretical and experimental values for plant uptake of pesticide from soil]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcad7

Pesticides that persist in soils may be taken up by the roots of plants. One way to assess plant uptake is to theoretically predict the extent of plant uptake using a mathematical model. In this study, a model was developed to predict plant uptake of pesticide residues in soils using various parameters, such as pesticide mobility within soil, plant transpiration stream, root–soil transfer rate, plant growth, and pesticide dissipation in either soils or plants. The accuracy of the model was evaluated by comparing the modeled concentrations with measured uptake concentrations of chlorpyrifos (CP) in lettuce, grown on treated soils with concentrations of approximately 10 and 20 mg kg-1 CP. Measured concentrations of CP in lettuce at 21, 30, and 40 d after planting were between the 5th and 95th percentiles of model variation. A high correlation coefficient of > 0.97 between modeled and measured concentrations was found. Coefficients of variation of mean factors to residual errors were between 25.3 and 48.2%. Overall, modeling results matched the experimental results well. Therefore, this plant uptake model could be used as an assessment tool to predict the extent of plant uptake of pesticide residues in soils.

]]>
<![CDATA[Adaptive Response of Listeria monocytogenes to Heat, Salinity and Low pH, after Habituation on Cherry Tomatoes and Lettuce Leaves]]> https://www.researchpad.co/article/5989dabfab0ee8fa60bb0479

Pathogens found on fresh produce may encounter low temperatures, high acidity and limited nutrient availability. The aim of this study was to evaluate the effect of habituation of Listeria monocytogenes on cherry tomatoes or lettuce leaves on its subsequent response to inhibitory levels of acid, osmotic and heat stress. Habituation was performed by inoculating lettuce coupons, whole cherry tomatoes or tryptic soy broth (TSB) with a three-strains composite of L. monocytogenes, which were further incubated at 5°C for 24 hours or 5 days. Additionally, cells grown overnight in TSB supplemented with 0.6% yeast extract (TSBYE) at 30°C were used as control cells. Following habituation, L. monocytogenes cells were harvested and exposed to: (i) pH 3.5 adjusted with lactic acid, acetic acid or hydrochloric acid (HCl), and pH 1.5 (HCl) for 6 h; (ii) 20% NaCl and (iii) 60°C for 150 s. Results showed that tomato-habituated L. monocytogenes cells were more tolerant (P < 0.05) to acid or osmotic stress than those habituated on lettuce, and habituation on both foods resulted in more stress resistant cells than prior growth in TSB. On the contrary, the highest resistance to heat stress (P < 0.05) was exhibited by the lettuce-habituated L. monocytogenes cells followed by TSB-grown cells at 5°C for 24 h, whereas tomato-habituated cells were highly sensitized. Prolonged starvation on fresh produce (5 days vs. 24 h) increased resistance to osmotic and acid stress, but reduced thermotolerance, regardless of the pre-exposure environment (i.e., tomatoes, lettuce or TSB). These results indicate that L. monocytogenes cells habituated on fresh produce at low temperatures might acquire resistance to subsequent antimicrobial treatments raising important food safety implications.

]]>
<![CDATA[Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux]]> https://www.researchpad.co/article/5989da38ab0ee8fa60b86f2e

Despite decades of research, the effects of spectral quality on plant growth, and development are not well understood. Much of our current understanding comes from studies with daily integrated light levels that are less than 10% of summer sunlight thus making it difficult to characterize interactions between light quality and quantity. Several studies have reported that growth is increased under fluorescent lamps compared to mixtures of wavelengths from LEDs. Conclusions regarding the effect of green light fraction range from detrimental to beneficial. Here we report the effects of eight blue and green light fractions at two photosynthetic photon fluxes (PPF; 200 and 500 μmol m-2 s-1; with a daily light integral of 11.5 and 29 mol m-2 d-1) on growth (dry mass), leaf expansion, stem and petiole elongation, and whole-plant net assimilation of seven diverse plant species. The treatments included cool, neutral, and warm white LEDs, and combinations of blue, green and/or red LEDs. At the higher PPF (500), increasing blue light in increments from 11 to 28% reduced growth in tomato, cucumber, and pepper by 22, 26, and 14% respectively, but there was no statistically significant effect on radish, soybean, lettuce or wheat. At the lower PPF (200), increasing blue light reduced growth only in tomato (41%). The effects of blue light on growth were mediated by changes in leaf area and radiation capture, with minimal effects on whole-plant net-assimilation. In contrast to the significant effects of blue light, increasing green light in increments from 0 to 30% had a relatively small effect on growth, leaf area and net assimilation at either low or high PPF. Surprisingly, growth of three of the seven species was not reduced by a treatment with 93% green light compared to the broad spectrum treatments. Collectively, these results are consistent with a shade avoidance response associated with either low blue or high green light fractions.

]]>
<![CDATA[Immune response of rats vaccinated orally with various plant-expressed recombinant cysteine proteinase constructs when challenged with Fasciola hepatica metacercariae]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcd41

Background

Cysteine proteinases of Fasciola hepatica are important candidates for vaccine antigens because of their role in fluke biology and host-parasite relationships. In our previous experiments, we found that a recombinant cysteine proteinase cloned from adult F. hepatica (CPFhW) can protect rats against liver fluke infections when it is administered intramuscularly or intranasally in the form of cDNA. We also observed considerable protection upon challenge following mucosal vaccination with inclusion bodies containing recombinant CPFhW produced in Escherichia coli.

In this study, we explore oral vaccination, which may be the desired method of delivery and is potentially capable of preventing infections at the site of helminth entry. To provide antigen encapsulation and to protect the vaccine antigen from degradation in the intestinal tract, transgenic plant-based systems are used.

Methodology

In the present study, we aimed to evaluate the protective ability of mucosal vaccinations of 12-week-old rats with CPFhW produced in a transgenic-plant-based system. To avoid inducing tolerance and to maximise the immune response induced by oral immunisation, we used the hepatitis B virus (HBV) core protein (HBcAg) as a carrier. Animals were immunised with two doses of the antigen and challenged with 25 or 30 metacercariae of F. hepatica.

Conclusions

We obtained substantial protection after oral administration of the plant-produced hybrids of CPFhW and HBcAg. The highest level of protection (65.4%) was observed in animals immunised with transgenic plants expressing the mature CPFhW enzyme flanked by Gly-rich linkers and inserted into c/e1 epitope of truncated HBcAg. The immunised rats showed clear IgG1 and IgM responses to CPFhW for 4 consecutive weeks after the challenge.

]]>
<![CDATA[A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy]]> https://www.researchpad.co/article/5989daafab0ee8fa60baa9fa

Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management.

]]>
<![CDATA[Karrikins Identified in Biochars Indicate Post-Fire Chemical Cues Can Influence Community Diversity and Plant Development]]> https://www.researchpad.co/article/5989db06ab0ee8fa60bc83f0

Background

Karrikins are smoke-derived compounds that provide strong chemical cues to stimulate seed germination and seedling growth. The recent discovery in Arabidopsis that the karrikin perception system may be present throughout angiosperms implies a fundamental plant function. Here, we identify the most potent karrikin, karrikinolide (KAR1), in biochars and determine its role in species unique plant responses.

Methods

Biochars were prepared by three distinct commercial-scale pyrolysis technologies using systematically selected source material and their chemical properties, including karrikinolide, were quantified. Dose-response assays determined the effects of biochar on seed germination for two model species that require karrikinolide to break dormancy (Solanum orbiculatum, Brassica tourneforttii) and on seedling growth using two species that display plasticity to karrikins, biochar and phytotoxins (Lactuca sativa, Lycopersicon esculentum). Multivariate analysis examined relationships between biochar properties and the plant phenotype.

Findings and Conclusions

Results showed that karrikin abundant biochars stimulated dormant seed germination and seedling growth via mechanisms analogous to post-fire chemical cues. The individual species response was associated with its sensitivity to karrikinolide and inhibitory compounds within the biochars. These findings are critical for understanding why biochar influences community composition and plant physiology uniquely for different species and reaffirms that future pyrolysis technologies promise by-products that concomitantly sequester carbon and enhance plant growth for ecological and broader plant related applications.

]]>
<![CDATA[Transcriptome Profiling of Caco-2 Cancer Cell Line following Treatment with Extracts from Iodine-Biofortified Lettuce (Lactuca sativa L.)]]> https://www.researchpad.co/article/5989dac2ab0ee8fa60bb1355

Although iodization of salt is the most common method used to obtain iodine-enriched food, iodine deficiency disorders are still a global health problem and profoundly affect the quality of human life. Iodine is required for the synthesis of thyroid hormones, which are crucial regulators of human metabolism, cell growth, proliferation, apoptosis and have been reported to be involved in carcinogenesis. In this study, for the first time, we evaluated the effect of iodine-biofortified lettuce on transcriptomic profile of Caco-2 cancer cell line by applying the Whole Human Genome Microarray assay. We showed 1326 differentially expressed Caco-2 transcripts after treatment with iodine-biofortified (BFL) and non-fortified (NFL) lettuce extracts. We analysed pathways, molecular functions, biological processes and protein classes based on comparison between BFL and NFL specific genes. Iodine, which was expected to act as a free ion (KI-NFL) or at least in part to be incorporated into lettuce macromolecules (BFL), differently regulated pathways of numerous transcription factors leading to different cellular effects. In this study we showed the inhibition of Caco-2 cells proliferation after treatment with BFL, but not potassium iodide (KI), and BFL-mediated induction of mitochondrial apoptosis and/or cell differentiation. Our results showed that iodine-biofortified plants can be effectively used by cells as an alternative source of this trace element. Moreover, the observed differences in action of both iodine sources may suggest a potential of BFL in cancer treatment.

]]>
<![CDATA[Allelopatic Potential of Dittrichia viscosa (L.) W. Greuter Mediated by VOCs: A Physiological and Metabolomic Approach]]> https://www.researchpad.co/article/5989dafcab0ee8fa60bc4e96

Dittrichia viscosa (L.) W. Greuter is a pioneer species belonging to the Compositae family. It is widespread in the Mediterranean basin, where it is considered invasive. It is a source of secondary metabolites, playing an important ecological role. D. viscosa plant extracts showed a phytotoxic activity on several physiological processes of different species. In the current study, the allelopathic potential of D. viscosa VOCs, released by its foliage, was evaluated on seed germination and root growth of lettuce. The VOCs effect was also studied on lettuce adult plants in microcosm systems, which better mimicked the open field conditions. D. viscosa VOCs inhibited both seed germination and root growth of lettuce. The VOCs composition revealed a large presence of terpenoids, responsible of the effects observed. Moreover, D. viscosa VOCs caused an alteration on plant water status accompanied by oxidative damages and photoinhibition on lettuce adult plants.

]]>
<![CDATA[The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.)]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf654

The necrotrophic pathogen Rhizoctonia solani is one of the most economically important soil-borne pathogens of crop plants. Isolates of R. solani AG1-IB are the major pathogens responsible for bottom-rot of lettuce (Lactuca sativa L.) and are also responsible for diseases in other plant species. Currently, there is lack of information regarding the molecular responses in R. solani during the pathogenic interaction between the necrotrophic soil-borne pathogen and its host plant. The genome of R. solani AG1-IB (isolate 7/3/14) was recently established to obtain insights into its putative pathogenicity determinants. In this study, the transcriptional activity of R. solani AG1-IB was followed during the course of its pathogenic interaction with the host plant lettuce under controlled conditions. Based on visual observations, three distinct pathogen-host interaction zones on lettuce leaves were defined which covered different phases of disease progression on tissue inoculated with the AG1-IB (isolate 7/3/14). The zones were defined as: Zone 1—symptomless, Zone 2—light brown discoloration, and Zone 3—dark brown, necrotic lesions. Differences in R. solani hyphae structure in these three zones were investigated by microscopic observation. Transcriptional activity within these three interaction zones was used to represent the course of R. solani disease progression applying high-throughput RNA sequencing (RNA-Seq) analysis of samples collected from each Zone. The resulting three transcriptome data sets were analyzed for their highest expressed genes and for differentially transcribed genes between the respective interaction zones. Among the highest expressed genes was a group of not previously described genes which were transcribed exclusively during early stages of interaction, in Zones 1 and 2. Previously described importance of up-regulation in R. solani agglutinin genes during disease progression could be further confirmed; here, the corresponding genes exhibited extremely high transcription levels. Most differentially higher expressed transcripts were found within Zone 2. In Zone 3, the zone with the strongest degree of interaction, gene transcripts indicative of apoptotic activity were highly abundant. The transcriptome data presented in this work support previous models of the disease and interaction cycle of R. solani and lettuce and may influence effective techniques for control of this pathogen.

]]>
<![CDATA[Roles of MPBQ-MT in Promoting α/γ-Tocopherol Production and Photosynthesis under High Light in Lettuce]]> https://www.researchpad.co/article/5989daabab0ee8fa60ba9834

2-methyl-6-phytyl-1, 4-benzoquinol methyltransferase (MPBQ-MT) is a vital enzyme catalyzing a key methylation step in both α/γ-tocopherol and plastoquinone biosynthetic pathway. In this study, the gene encoding MPBQ-MT was isolated from lettuce (Lactuca sativa) by rapid amplification of cDNA ends (RACE), named LsMT. Overexpression of LsMT in lettuce brought about a significant increase of α- and γ-tocopherol contents with a reduction of phylloquinone (vitamin K1) content, suggesting a competition for a common substrate phytyl diphosphate (PDP) between the two biosynthetic pathways. Besides, overexpression of LsMT significantly increased plastoquinone (PQ) level. The increase of tocopherol and plastoquinone levels by LsMT overexpression conduced to the improvement of plants’ tolerance and photosynthesis under high light stress, by directing excessive light energy toward photosynthetic production rather than toward generation of more photooxidative damage. These findings suggest that the role and function of MPBQ-MT can be further explored for enhancing vitamin E value, strengthening photosynthesis and phototolerance under high light in plants.

]]>
<![CDATA[Effects of nitrogen application rate, nitrogen synergist and biochar on nitrous oxide emissions from vegetable field in south China]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdc9c9

Globally, vegetable fields are the primary source of greenhouse gas emissions. A closed-chamber method together with gas chromatography was used to measure the fluxes of nitrous oxide (N2O) emissions in typical vegetable fields planted with four vegetables sequentially over time in the same field: endive, lettuce, cabbage and sweet corn. Results showed that N2O fluxes occurred in pulses with the N2O emission peak varying greatly among the crops. In addition, N2O emissions were linearly associated with the nitrogen (N) application rate (r = 0.8878, n = 16). Excessive fertilizer N application resulted in N loss through nitrous oxide gas emitted from the vegetable fields. Compared with a conventional fertilization (N2) treatment, the cumulative N2O emissions decreased significantly in the growing seasons of four plant species from an nitrogen synergist (a nitrification inhibitor, dicyandiamide and biochar treatments by 34.6% and 40.8%, respectively. However, the effects of biochar on reducing N2O emissions became more obvious than that of dicyandiamide over time. The yield-scaled N2O emissions in consecutive growing seasons for four species increased with an increase in the N fertilizer application rate, and with continuous application of N fertilizer. This was especially true for the high N fertilizer treatment that resulted in a risk of yield-scaled N2O emissions. Generally, the additions of dicyandiamide and biochar significantly decreased yield-scaled N2O-N emissions by an average of 45.9% and 45.7%, respectively, compared with N2 treatment from the consecutive four vegetable seasons. The results demonstrated that the addition of dicyandiamide or biochar in combination with application of a rational amount of N could provide the best strategy for the reduction of greenhouse gas emissions in vegetable field in south China.

]]>