ResearchPad - light https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Quantitative live imaging of Venus::BMAL1 in a mouse model reveals complex dynamics of the master circadian clock regulator]]> https://www.researchpad.co/article/elastic_article_13838 Cell-autonomous circadian clocks are transcriptional/translational feedback loops that co-ordinate almost all mammalian physiology and behaviour. Although their genetic basis is well understood, we are largely ignorant of the natural behaviour of clock proteins and how they work within these loops. This is particularly true for the essential transcriptional activator BMAL1. To address this, we created and validated a mouse carrying a fully functional knock-in allele that encodes a fluorescent fusion of BMAL1 (Venus::BMAL1). Quantitative live imaging in tissue explants and cells, including the central clock of the suprachiasmatic nucleus (SCN), revealed the circadian expression, nuclear-cytoplasmic mobility, fast kinetics and surprisingly low molecular abundance of endogenous BMAL1, providing significant quantitative insights into the intracellular mechanisms of circadian timing at single-cell resolution.

]]>
<![CDATA[<i>Ehrlichia chaffeensis</i> TRP120-mediated ubiquitination and proteasomal degradation of tumor suppressor FBW7 increases oncoprotein stability and promotes infection]]> https://www.researchpad.co/article/elastic_article_13827 E. chaffeensis is an obligately intracellular bacterium that replicates in mononuclear phagocytes by secreting effectors that manipulate host cell processes and exploit evolutionarily conserved pathways. This investigation reveals the complex and expanding role of the E. chaffeensis TRP120 moonlighting effector as a ubiquitin (Ub) ligase targeting host nuclear proteins. Herein, we demonstrate that E. chaffeensis TRP120 HECT Ub ligase targets the nuclear tumor suppressor Skp1-cullin-1-FBOX E3 ubiquitin (Ub) ligase complex substrate recognition subunit, F-BOX and WD domain repeating-containing 7 (FBW7) for degradation. FBW7 is a central regulator of broadly acting host cell oncoproteins involved in cell proliferation and survival. The reduction in FBW7 through TRP120-mediated ubiquitination increases cellular oncoprotein levels and promotes E. chaffeensis infection. This study illuminates novel bacterial effector-host interactions, the importance and interplay of both host and bacterial Ub ligases and the Ub-proteasome system for infection, and mechanisms whereby evolutionarily conserved signaling pathways are hijacked by obligately intracellular pathogens.

]]>
<![CDATA[Thalamic, cortical, and amygdala involvement in the processing of a natural sound cue of danger]]> https://www.researchpad.co/article/elastic_article_7872 When others stop and silence ensues, animals respond as if threatened. This study highlights the brain areas involved in listening to the dangerous silence.

]]>
<![CDATA[Flavonoids and antioxidant activity of rare and endangered fern: <i>Isoetes sinensis</i>]]> https://www.researchpad.co/article/elastic_article_7844 Isoetes sinensis Palmer is a critically endangered, first-class protected plant in China. Until now, researchers have primarily focused on the ultrastructure, phylogeny, and transcriptomes of the plant. However, flavonoid profiles and bioactivity of I. sinensis have not been extensively investigated. To develop the endangered I. sinensis for edible and medicinal purposes, flavonoid content, chemical constitution, and antioxidant activities were investigated in this study. Results revealed the following. 1) The total flavonoid content was determined as 10.74 ± 0.25 mg/g., 2) Antioxidant activities were stronger than most ferns, especially ABTS free radical scavenging activities. 3) Four flavones, containing apigenin, apigenin-7-glucuronide, acacetin-7-O-glcopyranoside, and homoplantageninisoetin; four flavonols, namely, isoetin, kaempferol-3-O-glucoside, quercetin-3-O-[6”-O-(3-hydroxy-3-methylglutaryl)-β-D-glucopyranoside], and limocitrin-Neo; one prodelphinidin (procyanidins;) and one nothofagin (dihydrochalcone) were tentatively identified in the mass spectrometry-DAD (254nm) chromatograms. This study was the first to report on flavonoid content and antioxidant activities of I. sinensis. Stronger antioxidant activity and flavonoid content suggests that the endangered I. sinensis is an important and potentially edible and medicinal plant.

]]>
<![CDATA[Image-quality metric system for color filter array evaluation]]> https://www.researchpad.co/article/elastic_article_7704 A modern color filter array (CFA) output is rendered into the final output image using a demosaicing algorithm. During this process, the rendered image is affected by optical and carrier cross talk of the CFA pattern and demosaicing algorithm. Although many CFA patterns have been proposed thus far, an image-quality (IQ) evaluation system capable of comprehensively evaluating the IQ of each CFA pattern has yet to be developed, although IQ evaluation items using local characteristics or specific domain have been created. Hence, we present an IQ metric system to evaluate the IQ performance of CFA patterns. The proposed CFA evaluation system includes proposed metrics such as the moiré robustness using the experimentally determined moiré starting point (MSP) and achromatic reproduction (AR) error, as well as existing metrics such as color accuracy using CIELAB, a color reproduction error using spatial CIELAB, structural information using the structure similarity, the image contrast based on MTF50, structural and color distortion using the mean deviation similarity index (MDSI), and perceptual similarity using Haar wavelet-based perceptual similarity index (HaarPSI). Through our experiment, we confirmed that the proposed CFA evaluation system can assess the IQ for an existing CFA. Moreover, the proposed system can be used to design or evaluate new CFAs by automatically checking the individual performance for the metrics used.

]]>
<![CDATA[Confocal Raman microscopy to identify bacteria in oral subgingival biofilm models]]> https://www.researchpad.co/article/elastic_article_7675 The study of oral disease progression, in relation to the accumulation of subgingival biofilm in gingivitis and periodontitis is limited, due to either the ability to monitor plaque in vitro. When compared, optical spectroscopic techniques offer advantages over traditional destructive or biofilm staining approaches, making it a suitable alternative for the analysis and continued development of three-dimensional structures. In this work, we have developed a confocal Raman spectroscopy analysis approach towards in vitro subgingival plaque models. The main objective of this study was to develop a method for differentiating multiple oral subgingival bacterial species in planktonic and biofilm conditions, using confocal Raman microscopy. Five common subgingival bacteria (Fusobacterium nucleatum, Streptococcus mutans, Veillonella dispar, Actinomyces naeslundii and Prevotella nigrescens) were used and differentiated using a 2-way orthogonal Partial Least Square with Discriminant Analysis (O2PLS-DA) for the collected spectral data. In addition to planktonic growth, mono-species biofilms cultured using the ‘Zürich Model’ were also analyzed. The developed method was successfully used to predict planktonic and mono-species biofilm species in a cross validation setup. The results show differences in the presence and absence of chemical bands within the Raman spectra. The O2PLS-DA model was able to successfully predict 100% of all tested planktonic samples and 90% of all mono-species biofilm samples. Using this approach we have shown that Confocal Raman microscopy can analyse and predict the identity of planktonic and mono-species biofilm species, thus enabling its potential as a technique to map oral multi-species biofilm models.

]]>
<![CDATA[Aspirin-triggered resolvin D1 attenuates PDGF-induced vascular smooth muscle cell migration via the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc0e7

Background and objectives

Resolvin D1 (RvD1) is a specialized pro-resolving lipid mediator that has been previously shown to attenuate vascular smooth muscle cell (VSMC) migration, a key process in the development of intimal hyperplasia. We sought to investigate the role of the cAMP/PKA pathway in mediating the effects of the aspirin-triggered epimer 17R-RvD1 (AT-RvD1) on VSMC migration.

Methods

VSMCs were harvested from human saphenous veins. VSMCs were analyzed for intracellular cAMP levels and PKA activity after exposure to AT-RvD1. Platelet-derived growth factor (PDGF)-induced migration and cytoskeletal changes in VSMCs were observed through scratch, Transwell, and cell shape assays in the presence or absence of a PKA inhibitor (Rp-8-Br-cAMP). Further investigation of the pathways involved in AT-RvD1 signaling was performed by measuring Rac1 activity, vasodilator stimulated phosphoprotein (VASP) phosphorylation and paxillin translocation. Finally, we examined the role of RvD1 receptors (GPR32 and ALX/FPR2) in AT-RvD1 induced effects on VSMC migration and PKA activity.

Results

Treatment with AT-RvD1 induced a significant increase in cAMP levels and PKA activity in VSMCs at 5 minutes and 30 minutes, respectively. AT-RvD1 attenuated PDGF-induced VSMC migration and cytoskeletal rearrangements. These effects were attenuated by the PKA inhibitor Rp-8-Br-cAMP, suggesting cAMP/PKA involvement. Treatment of VSMC with AT-RvD1 inhibited PDGF-stimulated Rac1 activity, increased VASP phosphorylation, and attenuated paxillin localization to focal adhesions; these effects were negated by the addition of Rp-8-Br-cAMP. The effects of AT-RvD1 on VSMC migration and PKA activity were attenuated by blocking ALX/FPR2, suggesting an important role of this G-protein coupled receptor.

Conclusions

Our results suggest that AT-RvD1 attenuates PDGF-induced VSMC migration via ALX/FPR2 and cAMP/PKA. Interference with Rac1, VASP and paxillin function appear to mediate the downstream effects of AT-RvD1 on VSMC migration.

]]>
<![CDATA[NAP (davunetide) preferential interaction with dynamic 3-repeat Tau explains differential protection in selected tauopathies]]> https://www.researchpad.co/article/5c92b379d5eed0c4843a4107

The microtubule (MT) associated protein Tau is instrumental for the regulation of MT assembly and dynamic instability, orchestrating MT-dependent cellular processes. Aberration in Tau post-translational modifications ratio deviation of spliced Tau isoforms 3 or 4 MT binding repeats (3R/4R) have been implicated in neurodegenerative tauopathies. Activity-dependent neuroprotective protein (ADNP) is vital for brain formation and cognitive function. ADNP deficiency in mice causes pathological Tau hyperphosphorylation and aggregation, correlated with impaired cognitive functions. It has been previously shown that the ADNP-derived peptide NAP protects against ADNP deficiency, exhibiting neuroprotection, MT interaction and memory protection. NAP prevents MT degradation by recruitment of Tau and end-binding proteins to MTs and expression of these proteins is required for NAP activity. Clinically, NAP (davunetide, CP201) exhibited efficacy in prodromal Alzheimer’s disease patients (Tau3R/4R tauopathy) but not in progressive supranuclear palsy (increased Tau4R tauopathy). Here, we examined the potential preferential interaction of NAP with 3R vs. 4R Tau, toward personalized treatment of tauopathies. Affinity-chromatography showed that NAP preferentially interacted with Tau3R protein from rat brain extracts and fluorescence recovery after photobleaching assay indicated that NAP induced increased recruitment of human Tau3R to MTs under zinc intoxication, in comparison to Tau4R. Furthermore, we showed that NAP interaction with tubulin (MTs) was inhibited by obstruction of Tau-binding sites on MTs, confirming the requirement of Tau-MT interaction for NAP activity. The preferential interaction of NAP with Tau3R may explain clinical efficacy in mixed vs. Tau4R pathologies, and suggest effectiveness in Tau3R neurodevelopmental disorders.

]]>
<![CDATA[Polymer-fiber-coupled field-effect sensors for label-free deep brain recordings]]> https://www.researchpad.co/article/N12f161cb-ce31-436b-989e-fa44b0a6dffa

Electrical recording permits direct readout of neural activity but offers limited ability to correlate it to the network topography. On the other hand, optical imaging reveals the architecture of neural circuits, but relies on bulky optics and fluorescent reporters whose signals are attenuated by the brain tissue. Here we introduce implantable devices to record brain activities based on the field effect, which can be further extended with capability of label-free electrophysiological mapping. Such devices reply on light-addressable potentiometric sensors (LAPS) coupled to polymer fibers with integrated electrodes and optical waveguide bundles. The LAPS utilizes the field effect to convert electrophysiological activity into regional carrier redistribution, and the neural activity is read out in a spatially resolved manner as a photocurrent induced by a modulated light beam. Spatially resolved photocurrent recordings were achieved by illuminating different pixels within the fiber bundles. These devices were applied to record local field potentials in the mouse hippocampus. In conjunction with the raster-scanning via the single modulated beam, this technology may enable fast label-free imaging of neural activity in deep brain regions.

]]>
<![CDATA[Switchable resolution in soft x-ray tomography of single cells]]> https://www.researchpad.co/article/N83fafb3a-9522-40a6-a68c-b2c601c68e90

The diversity of living cells, in both size and internal complexity, calls for imaging methods with adaptable spatial resolution. Soft x-ray tomography (SXT) is a three-dimensional imaging technique ideally suited to visualizing and quantifying the internal organization of single cells of varying sizes in a near-native state. The achievable resolution of the soft x-ray microscope is largely determined by the objective lens, but switching between objectives is extremely time-consuming and typically undertaken only during microscope maintenance procedures. Since the resolution of the optic is inversely proportional to the depth of focus, an optic capable of imaging the thickest cells is routinely selected. This unnecessarily limits the achievable resolution in smaller cells and eliminates the ability to obtain high-resolution images of regions of interest in larger cells. Here, we describe developments to overcome this shortfall and allow selection of microscope optics best suited to the specimen characteristics and data requirements. We demonstrate that switchable objective capability advances the flexibility of SXT to enable imaging cells ranging in size from bacteria to yeast and mammalian cells without physically modifying the microscope, and we demonstrate the use of this technology to image the same specimen with both optics.

]]>
<![CDATA[A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs]]> https://www.researchpad.co/article/N38f7a2a5-9838-4ae0-b206-f959ee03524f

Land plant shoot structures evolved a diversity of lateral organs as morphological adaptations to the terrestrial environment, with lateral organs arising independently in different lineages. Vascular plants and bryophytes (basally diverging land plants) develop lateral organs from meristems of sporophytes and gametophytes, respectively. Understanding the mechanisms of lateral organ development among divergent plant lineages is crucial for understanding the evolutionary process of morphological diversification of land plants. However, our current knowledge of lateral organ differentiation mechanisms comes almost entirely from studies of seed plants, and thus, it remains unclear how these lateral structures evolved and whether common regulatory mechanisms control the development of analogous lateral organs. Here, we performed a mutant screen in the liverwort Marchantia polymorpha, a bryophyte, which produces gametophyte axes with nonphotosynthetic scalelike lateral organs. We found that an Arabidopsis LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 and Oryza G1 (ALOG) family protein, named M. polymorpha LATERAL ORGAN SUPRESSOR 1 (MpLOS1), regulates meristem maintenance and lateral organ development in Marchantia. A mutation in MpLOS1, preferentially expressed in lateral organs, induces lateral organs with misspecified identity and increased cell number and, furthermore, causes defects in apical meristem maintenance. Remarkably, MpLOS1 expression rescued the elongated spikelet phenotype of a MpLOS1 homolog in rice. This suggests that ALOG genes regulate the development of lateral organs in both gametophyte and sporophyte shoots by repressing cell divisions. We propose that the recruitment of ALOG-mediated growth repression was in part responsible for the convergent evolution of independently evolved lateral organs among highly divergent plant lineages, contributing to the morphological diversification of land plants.

]]>
<![CDATA[A paper-based, cell-free biosensor system for the detection of heavy metals and date rape drugs]]> https://www.researchpad.co/article/5c897715d5eed0c4847d23fa

Biosensors have emerged as a valuable tool with high specificity and sensitivity for fast and reliable detection of hazardous substances in drinking water. Numerous substances have been addressed using synthetic biology approaches. However, many proposed biosensors are based on living, genetically modified organisms and are therefore limited in shelf life, usability and biosafety. We addressed these issues by the construction of an extensible, cell-free biosensor. Storage is possible through freeze drying on paper. Following the addition of an aqueous sample, a highly efficient cell-free protein synthesis (CFPS) reaction is initiated. Specific allosteric transcription factors modulate the expression of ‘superfolder’ green fluorescent protein (sfGFP) depending on the presence of the substance of interest. The resulting fluorescence intensities are analyzed with a conventional smartphone accompanied by simple and cheap light filters. An ordinary differential equitation (ODE) model of the biosensors was developed, which enabled prediction and optimization of performance. With an optimized cell-free biosensor based on the Shigella flexneri MerR transcriptional activator, detection of 6 μg/L Hg(II) ions in water was achieved. Furthermore, a completely new biosensor for the detection of gamma-hydroxybutyrate (GHB), a substance used as date-rape drug, was established by employing the naturally occurring transcriptional repressor BlcR from Agrobacterium tumefaciens.

]]>
<![CDATA[Split green fluorescent protein as a tool to study infection with a plant pathogen, Cauliflower mosaic virus]]> https://www.researchpad.co/article/5c897773d5eed0c4847d2d2c

The split GFP technique is based on the auto-assembly of GFP when two polypeptides–GFP1-10 (residues 1–214; the detector) and GFP11 (residues 215–230; the tag)–both non-fluorescing on their own, associate spontaneously to form a fluorescent molecule. We evaluated this technique for its efficacy in contributing to the characterization of Cauliflower mosaic virus (CaMV) infection. A recombinant CaMV with GFP11 fused to the viral protein P6 (a key player in CaMV infection and major constituent of viral factory inclusions that arise during infection) was constructed and used to inoculate transgenic Arabidopsis thaliana expressing GFP1-10. The mutant virus (CaMV11P6) was infectious, aphid-transmissible and the insertion was stable over many passages. Symptoms on infected plants were delayed and milder. Viral protein accumulation, especially of recombinant 11P6, was greatly decreased, impeding its detection early in infection. Nonetheless, spread of infection from the inoculated leaf to other leaves was followed by whole plant imaging. Infected cells displayed in real time confocal laser scanning microscopy fluorescence in wild type-looking virus factories. Thus, it allowed for the first time to track a CaMV protein in vivo in the context of an authentic infection. 11P6 was immunoprecipitated with anti-GFP nanobodies, presenting a new application for the split GFP system in protein-protein interaction assays and proteomics. Taken together, split GFP can be an attractive alternative to using the entire GFP for protein tagging.

]]>
<![CDATA[The seven transmembrane domain protein MoRgs7 functions in surface perception and undergoes coronin MoCrn1-dependent endocytosis in complex with Gα subunit MoMagA to promote cAMP signaling and appressorium formation in Magnaporthe oryzae]]> https://www.researchpad.co/article/5c7d95f6d5eed0c484735053

Regulator of G-protein signaling (RGS) proteins primarily function as GTPase-accelerating proteins (GAPs) to promote GTP hydrolysis of Gα subunits, thereby regulating G-protein mediated signal transduction. RGS proteins could also contain additional domains such as GoLoco to inhibit GDP dissociation. The rice blast fungus Magnaporthe oryzae encodes eight RGS and RGS-like proteins (MoRgs1 to MoRgs8) that have shared and distinct functions in growth, appressorium formation and pathogenicity. Interestingly, MoRgs7 and MoRgs8 contain a C-terminal seven-transmembrane domain (7-TM) motif typical of G-protein coupled receptor (GPCR) proteins, in addition to the conserved RGS domain. We found that MoRgs7, but not MoRgs8, couples with Gα MoMagA to undergo endocytic transport from the plasma membrane to the endosome upon sensing of surface hydrophobicity. We also found that MoRgs7 can interact with hydrophobic surfaces via a hydrophobic interaction, leading to the perception of environmental hydrophobiccues. Moreover, we found that MoRgs7-MoMagA endocytosis is regulated by actin patch-associated protein MoCrn1, linking it to cAMP signaling. Our studies provided evidence suggesting that MoRgs7 could also function in a GPCR-like manner to sense environmental signals and it, together with additional proteins of diverse functions, promotes cAMP signaling required for developmental processes underlying appressorium function and pathogenicity.

]]>
<![CDATA[Efficacy of liposomal amphotericin B and anidulafungin using an antifungal lock technique (ALT) for catheter-related Candida albicans and Candida glabrata infections in an experimental model]]> https://www.researchpad.co/article/5c75ac7dd5eed0c484d088b2

Objective

The aims of this study were as follows. First, we sought to compare the in vitro susceptibility of liposomal amphotericin B (LAmB) and anidulafungin on Candida albicans and Candida glabrata biofilms growing on silicone discs. Second, we sought to compare the activity of LAmB versus anidulafungin for the treatment of experimental catheter-related C. albicans and C. glabrata infections with the antifungal lock technique in a rabbit model.

Methods

Two C. albicans and two C. glabrata clinical strains were used. The minimum biofilm eradication concentration for 90% eradication (MBEC90) values were determined after 48h of treatment with LAmB and anidulafungin. Confocal microscopy was used to visualize the morphology and viability of yeasts growing in biofilms. Central venous catheters were inserted into New Zealand rabbits, which were inoculated of each strain of C. albicans and C. glabrata. Then, catheters were treated for 48h with saline or with antifungal lock technique using either LAmB (5mg/mL) or anidulafungin (3.33mg/mL).

Results

In vitro: anidulafungin showed greater activity than LAmB against C. albicans and C. glabrata strains. For C. albicans: MBEC90 of anidulafungin versus LAmB: CA176, 0.03 vs. 128 mg/L; CA180, 0.5 vs. 64 mg/L. For C. glabrata: MBEC90 of anidulafungin versus LAmB: CG171, 0.5 vs. 64 mg/L; CG334, 2 vs. 32 mg/L. In vivo: for C. albicans species, LAmB and anidulafungin achieved significant reductions relative to growth control of log10 cfu recovered from the catheter tips (CA176: 3.6±0.3 log10 CFU, p≤0.0001; CA180: 3.8±0.1 log10 CFU, p≤0.01). For C. glabrata, anidulafungin lock therapy achieved significant reductions relative to the other treatments (CG171: 4.8 log10 CFU, p≤0.0001; CG334: 5.1 log10 CFU, p≤0.0001)

Conclusions

For the C. albicans strains, both LAmB and anidulafungin may be promising antifungal lock technique for long-term catheter-related infections; however, anidulafungin showed significantly higher activity than LAmB against the C. glabrata strains.

]]>
<![CDATA[Dynamical differential expression (DyDE) reveals the period control mechanisms of the Arabidopsis circadian oscillator]]> https://www.researchpad.co/article/5c5ca30ed5eed0c48441f086

The circadian oscillator, an internal time-keeping device found in most organisms, enables timely regulation of daily biological activities by maintaining synchrony with the external environment. The mechanistic basis underlying the adjustment of circadian rhythms to changing external conditions, however, has yet to be clearly elucidated. We explored the mechanism of action of nicotinamide in Arabidopsis thaliana, a metabolite that lengthens the period of circadian rhythms, to understand the regulation of circadian period. To identify the key mechanisms involved in the circadian response to nicotinamide, we developed a systematic and practical modeling framework based on the identification and comparison of gene regulatory dynamics. Our mathematical predictions, confirmed by experimentation, identified key transcriptional regulatory mechanisms of circadian period and uncovered the role of blue light in the response of the circadian oscillator to nicotinamide. We suggest that our methodology could be adapted to predict mechanisms of drug action in complex biological systems.

]]>
<![CDATA[Apparent speed of motion concomitant with action alters with delay]]> https://www.researchpad.co/article/5c706764d5eed0c4847c6fb1

Multiple studies have shown action to affect perception of motion. The speed intended in the generation of a motion by action affects the apparent speed of the motion. However, it was unclear whether action with no intention of speed affects the apparent speed of a motion. In Experiment 1, we investigated the apparent speed of a motion following a key press action. We manipulated the delay from the action to the consequent motion for shifting the timing of efference copy and found the apparent speed decreasing with increases in the delay. This could be because it is known that speed irrelevant action caused expansion of perceived duration of the consequent stimulus and it might have influenced the result in Experiment 1, we investigated the apparent duration of the action consequent static (Ex. 2-1) and motion (Ex. 2-2) stimulus. We found that the apparent duration was not changed with delay. Moreover, the apparent speed and duration had different characteristics on delay. These results were discussed in terms of the sense of agency.

]]>
<![CDATA[Evaluating the pharmacological response in fluorescence microscopy images: The Δm algorithm]]> https://www.researchpad.co/article/5c6dca2ed5eed0c48452a88e

Current drug discovery procedures require fast and effective quantification of the pharmacological response evoked in living cells by agonist compounds. In the case of G-protein coupled receptors (GPCRs), the efficacy of a particular drug to initiate the endocytosis process is related to the formation of endocytic vesicles or endosomes and their subsequent internalisation within intracellular compartments that can be observed with high spatial and temporal resolution by fluorescence microscopy techniques. Recently, an algorithm has been proposed to evaluate the pharmacological response by estimating the number of endosomes per cell on time series of images. However, the algorithm was limited by the dependence on some manually set parameters and in some cases the quality of the image does not allow a reliable detection of the endosomes. Here we propose a simple, fast and automated image analysis method—the Δm algorithm- to quantify a pharmacological response with data obtained from fluorescence microscopy experiments. This algorithm does not require individual object detection and computes the relative increment of the third order moment in fluorescence microscopy images after filtering with the Laplacian of Gaussian function. It was tested on simulations demonstrating its ability to discriminate different experimental situations according to the number and the fluorescence signal intensity of the simulated endosomes. Finally and in order to validate this methodology with real data, the algorithm was applied to several time-course experiments based on the endocytosis of the mu opioid receptor (MOP) initiated by different agonist compounds. Each drug displayed a different Δm sigmoid time-response curve and statistically significant differences were observed among drugs in terms of efficacy and kinetic parameters.

]]>
<![CDATA[Normalization of large-scale behavioural data collected from zebrafish]]> https://www.researchpad.co/article/5c706738d5eed0c4847c6c63

Many contemporary neuroscience experiments utilize high-throughput approaches to simultaneously collect behavioural data from many animals. The resulting data are often complex in structure and are subjected to systematic biases, which require new approaches for analysis and normalization. This study addressed the normalization need by establishing an approach based on linear-regression modeling. The model was established using a dataset of visual motor response (VMR) obtained from several strains of wild-type (WT) zebrafish collected at multiple stages of development. The VMR is a locomotor response triggered by drastic light change, and is commonly measured repeatedly from multiple larvae arrayed in 96-well plates. This assay is subjected to several systematic variations. For example, the light emitted by the machine varies slightly from well to well. In addition to the light-intensity variation, biological replication also created batch-batch variation. These systematic variations may result in differences in the VMR and must be normalized. Our normalization approach explicitly modeled the effect of these systematic variations on VMR. It also normalized the activity profiles of different conditions to a common baseline. Our approach is versatile, as it can incorporate different normalization needs as separate factors. The versatility was demonstrated by an integrated normalization of three factors: light-intensity variation, batch-batch variation and baseline. After normalization, new biological insights were revealed from the data. For example, we found larvae of TL strain at 6 days post-fertilization (dpf) responded to light onset much stronger than the 9-dpf larvae, whereas previous analysis without normalization shows that their responses were relatively comparable. By removing systematic variations, our model-based normalization can facilitate downstream statistical comparisons and aid detecting true biological differences in high-throughput studies of neurobehaviour.

]]>
<![CDATA[Temporal evolution and pathway models of poly(ethylene-terephthalate) degradation under multi-factor accelerated weathering exposures]]> https://www.researchpad.co/article/5c70673ad5eed0c4847c6c71

Photolytic and hydrolytic degradation of poly(ethylene-terephthalate) (PET) polymers with different stabilizers were performed under multiple accelerated weathering exposures and changes in the polymers were monitored by various evaluation techniques. Yellowing was caused by photolytic degradation and haze formation was induced by combined effects of photolytic and hydrolytic degradation. The formation of light absorbing chromophores and bleaching of the UV stabilizer additive were recorded through optical spectroscopy. Chain scission and crystallization were found to be common mechanisms under both photolytic and hydrolytic conditions, based on the infrared absorption of the carbonyl (C = O) band and the trans ethylene glycol unit, respectively. The degradation mechanisms determined from these evaluations were then used to construct a set of degradation pathway network models using the network structural equation modeling (netSEM) approach. This method captured the temporal evolution of degradation by assessing statistically significant relationships between applied stressors, mechanistic variables, and performance level responses. Quantitative pathway equations provided the contributions from mechanistic variables to the response changes.

]]>