ResearchPad - light-microscopy https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Quantitative live imaging of Venus::BMAL1 in a mouse model reveals complex dynamics of the master circadian clock regulator]]> https://www.researchpad.co/article/elastic_article_13838 Cell-autonomous circadian clocks are transcriptional/translational feedback loops that co-ordinate almost all mammalian physiology and behaviour. Although their genetic basis is well understood, we are largely ignorant of the natural behaviour of clock proteins and how they work within these loops. This is particularly true for the essential transcriptional activator BMAL1. To address this, we created and validated a mouse carrying a fully functional knock-in allele that encodes a fluorescent fusion of BMAL1 (Venus::BMAL1). Quantitative live imaging in tissue explants and cells, including the central clock of the suprachiasmatic nucleus (SCN), revealed the circadian expression, nuclear-cytoplasmic mobility, fast kinetics and surprisingly low molecular abundance of endogenous BMAL1, providing significant quantitative insights into the intracellular mechanisms of circadian timing at single-cell resolution.

]]>
<![CDATA[<i>Ehrlichia chaffeensis</i> TRP120-mediated ubiquitination and proteasomal degradation of tumor suppressor FBW7 increases oncoprotein stability and promotes infection]]> https://www.researchpad.co/article/elastic_article_13827 E. chaffeensis is an obligately intracellular bacterium that replicates in mononuclear phagocytes by secreting effectors that manipulate host cell processes and exploit evolutionarily conserved pathways. This investigation reveals the complex and expanding role of the E. chaffeensis TRP120 moonlighting effector as a ubiquitin (Ub) ligase targeting host nuclear proteins. Herein, we demonstrate that E. chaffeensis TRP120 HECT Ub ligase targets the nuclear tumor suppressor Skp1-cullin-1-FBOX E3 ubiquitin (Ub) ligase complex substrate recognition subunit, F-BOX and WD domain repeating-containing 7 (FBW7) for degradation. FBW7 is a central regulator of broadly acting host cell oncoproteins involved in cell proliferation and survival. The reduction in FBW7 through TRP120-mediated ubiquitination increases cellular oncoprotein levels and promotes E. chaffeensis infection. This study illuminates novel bacterial effector-host interactions, the importance and interplay of both host and bacterial Ub ligases and the Ub-proteasome system for infection, and mechanisms whereby evolutionarily conserved signaling pathways are hijacked by obligately intracellular pathogens.

]]>
<![CDATA[Flavonoids and antioxidant activity of rare and endangered fern: <i>Isoetes sinensis</i>]]> https://www.researchpad.co/article/elastic_article_7844 Isoetes sinensis Palmer is a critically endangered, first-class protected plant in China. Until now, researchers have primarily focused on the ultrastructure, phylogeny, and transcriptomes of the plant. However, flavonoid profiles and bioactivity of I. sinensis have not been extensively investigated. To develop the endangered I. sinensis for edible and medicinal purposes, flavonoid content, chemical constitution, and antioxidant activities were investigated in this study. Results revealed the following. 1) The total flavonoid content was determined as 10.74 ± 0.25 mg/g., 2) Antioxidant activities were stronger than most ferns, especially ABTS free radical scavenging activities. 3) Four flavones, containing apigenin, apigenin-7-glucuronide, acacetin-7-O-glcopyranoside, and homoplantageninisoetin; four flavonols, namely, isoetin, kaempferol-3-O-glucoside, quercetin-3-O-[6”-O-(3-hydroxy-3-methylglutaryl)-β-D-glucopyranoside], and limocitrin-Neo; one prodelphinidin (procyanidins;) and one nothofagin (dihydrochalcone) were tentatively identified in the mass spectrometry-DAD (254nm) chromatograms. This study was the first to report on flavonoid content and antioxidant activities of I. sinensis. Stronger antioxidant activity and flavonoid content suggests that the endangered I. sinensis is an important and potentially edible and medicinal plant.

]]>
<![CDATA[Confocal Raman microscopy to identify bacteria in oral subgingival biofilm models]]> https://www.researchpad.co/article/elastic_article_7675 The study of oral disease progression, in relation to the accumulation of subgingival biofilm in gingivitis and periodontitis is limited, due to either the ability to monitor plaque in vitro. When compared, optical spectroscopic techniques offer advantages over traditional destructive or biofilm staining approaches, making it a suitable alternative for the analysis and continued development of three-dimensional structures. In this work, we have developed a confocal Raman spectroscopy analysis approach towards in vitro subgingival plaque models. The main objective of this study was to develop a method for differentiating multiple oral subgingival bacterial species in planktonic and biofilm conditions, using confocal Raman microscopy. Five common subgingival bacteria (Fusobacterium nucleatum, Streptococcus mutans, Veillonella dispar, Actinomyces naeslundii and Prevotella nigrescens) were used and differentiated using a 2-way orthogonal Partial Least Square with Discriminant Analysis (O2PLS-DA) for the collected spectral data. In addition to planktonic growth, mono-species biofilms cultured using the ‘Zürich Model’ were also analyzed. The developed method was successfully used to predict planktonic and mono-species biofilm species in a cross validation setup. The results show differences in the presence and absence of chemical bands within the Raman spectra. The O2PLS-DA model was able to successfully predict 100% of all tested planktonic samples and 90% of all mono-species biofilm samples. Using this approach we have shown that Confocal Raman microscopy can analyse and predict the identity of planktonic and mono-species biofilm species, thus enabling its potential as a technique to map oral multi-species biofilm models.

]]>
<![CDATA[Aspirin-triggered resolvin D1 attenuates PDGF-induced vascular smooth muscle cell migration via the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc0e7

Background and objectives

Resolvin D1 (RvD1) is a specialized pro-resolving lipid mediator that has been previously shown to attenuate vascular smooth muscle cell (VSMC) migration, a key process in the development of intimal hyperplasia. We sought to investigate the role of the cAMP/PKA pathway in mediating the effects of the aspirin-triggered epimer 17R-RvD1 (AT-RvD1) on VSMC migration.

Methods

VSMCs were harvested from human saphenous veins. VSMCs were analyzed for intracellular cAMP levels and PKA activity after exposure to AT-RvD1. Platelet-derived growth factor (PDGF)-induced migration and cytoskeletal changes in VSMCs were observed through scratch, Transwell, and cell shape assays in the presence or absence of a PKA inhibitor (Rp-8-Br-cAMP). Further investigation of the pathways involved in AT-RvD1 signaling was performed by measuring Rac1 activity, vasodilator stimulated phosphoprotein (VASP) phosphorylation and paxillin translocation. Finally, we examined the role of RvD1 receptors (GPR32 and ALX/FPR2) in AT-RvD1 induced effects on VSMC migration and PKA activity.

Results

Treatment with AT-RvD1 induced a significant increase in cAMP levels and PKA activity in VSMCs at 5 minutes and 30 minutes, respectively. AT-RvD1 attenuated PDGF-induced VSMC migration and cytoskeletal rearrangements. These effects were attenuated by the PKA inhibitor Rp-8-Br-cAMP, suggesting cAMP/PKA involvement. Treatment of VSMC with AT-RvD1 inhibited PDGF-stimulated Rac1 activity, increased VASP phosphorylation, and attenuated paxillin localization to focal adhesions; these effects were negated by the addition of Rp-8-Br-cAMP. The effects of AT-RvD1 on VSMC migration and PKA activity were attenuated by blocking ALX/FPR2, suggesting an important role of this G-protein coupled receptor.

Conclusions

Our results suggest that AT-RvD1 attenuates PDGF-induced VSMC migration via ALX/FPR2 and cAMP/PKA. Interference with Rac1, VASP and paxillin function appear to mediate the downstream effects of AT-RvD1 on VSMC migration.

]]>
<![CDATA[NAP (davunetide) preferential interaction with dynamic 3-repeat Tau explains differential protection in selected tauopathies]]> https://www.researchpad.co/article/5c92b379d5eed0c4843a4107

The microtubule (MT) associated protein Tau is instrumental for the regulation of MT assembly and dynamic instability, orchestrating MT-dependent cellular processes. Aberration in Tau post-translational modifications ratio deviation of spliced Tau isoforms 3 or 4 MT binding repeats (3R/4R) have been implicated in neurodegenerative tauopathies. Activity-dependent neuroprotective protein (ADNP) is vital for brain formation and cognitive function. ADNP deficiency in mice causes pathological Tau hyperphosphorylation and aggregation, correlated with impaired cognitive functions. It has been previously shown that the ADNP-derived peptide NAP protects against ADNP deficiency, exhibiting neuroprotection, MT interaction and memory protection. NAP prevents MT degradation by recruitment of Tau and end-binding proteins to MTs and expression of these proteins is required for NAP activity. Clinically, NAP (davunetide, CP201) exhibited efficacy in prodromal Alzheimer’s disease patients (Tau3R/4R tauopathy) but not in progressive supranuclear palsy (increased Tau4R tauopathy). Here, we examined the potential preferential interaction of NAP with 3R vs. 4R Tau, toward personalized treatment of tauopathies. Affinity-chromatography showed that NAP preferentially interacted with Tau3R protein from rat brain extracts and fluorescence recovery after photobleaching assay indicated that NAP induced increased recruitment of human Tau3R to MTs under zinc intoxication, in comparison to Tau4R. Furthermore, we showed that NAP interaction with tubulin (MTs) was inhibited by obstruction of Tau-binding sites on MTs, confirming the requirement of Tau-MT interaction for NAP activity. The preferential interaction of NAP with Tau3R may explain clinical efficacy in mixed vs. Tau4R pathologies, and suggest effectiveness in Tau3R neurodevelopmental disorders.

]]>
<![CDATA[Switchable resolution in soft x-ray tomography of single cells]]> https://www.researchpad.co/article/N83fafb3a-9522-40a6-a68c-b2c601c68e90

The diversity of living cells, in both size and internal complexity, calls for imaging methods with adaptable spatial resolution. Soft x-ray tomography (SXT) is a three-dimensional imaging technique ideally suited to visualizing and quantifying the internal organization of single cells of varying sizes in a near-native state. The achievable resolution of the soft x-ray microscope is largely determined by the objective lens, but switching between objectives is extremely time-consuming and typically undertaken only during microscope maintenance procedures. Since the resolution of the optic is inversely proportional to the depth of focus, an optic capable of imaging the thickest cells is routinely selected. This unnecessarily limits the achievable resolution in smaller cells and eliminates the ability to obtain high-resolution images of regions of interest in larger cells. Here, we describe developments to overcome this shortfall and allow selection of microscope optics best suited to the specimen characteristics and data requirements. We demonstrate that switchable objective capability advances the flexibility of SXT to enable imaging cells ranging in size from bacteria to yeast and mammalian cells without physically modifying the microscope, and we demonstrate the use of this technology to image the same specimen with both optics.

]]>
<![CDATA[A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs]]> https://www.researchpad.co/article/N38f7a2a5-9838-4ae0-b206-f959ee03524f

Land plant shoot structures evolved a diversity of lateral organs as morphological adaptations to the terrestrial environment, with lateral organs arising independently in different lineages. Vascular plants and bryophytes (basally diverging land plants) develop lateral organs from meristems of sporophytes and gametophytes, respectively. Understanding the mechanisms of lateral organ development among divergent plant lineages is crucial for understanding the evolutionary process of morphological diversification of land plants. However, our current knowledge of lateral organ differentiation mechanisms comes almost entirely from studies of seed plants, and thus, it remains unclear how these lateral structures evolved and whether common regulatory mechanisms control the development of analogous lateral organs. Here, we performed a mutant screen in the liverwort Marchantia polymorpha, a bryophyte, which produces gametophyte axes with nonphotosynthetic scalelike lateral organs. We found that an Arabidopsis LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 and Oryza G1 (ALOG) family protein, named M. polymorpha LATERAL ORGAN SUPRESSOR 1 (MpLOS1), regulates meristem maintenance and lateral organ development in Marchantia. A mutation in MpLOS1, preferentially expressed in lateral organs, induces lateral organs with misspecified identity and increased cell number and, furthermore, causes defects in apical meristem maintenance. Remarkably, MpLOS1 expression rescued the elongated spikelet phenotype of a MpLOS1 homolog in rice. This suggests that ALOG genes regulate the development of lateral organs in both gametophyte and sporophyte shoots by repressing cell divisions. We propose that the recruitment of ALOG-mediated growth repression was in part responsible for the convergent evolution of independently evolved lateral organs among highly divergent plant lineages, contributing to the morphological diversification of land plants.

]]>
<![CDATA[Split green fluorescent protein as a tool to study infection with a plant pathogen, Cauliflower mosaic virus]]> https://www.researchpad.co/article/5c897773d5eed0c4847d2d2c

The split GFP technique is based on the auto-assembly of GFP when two polypeptides–GFP1-10 (residues 1–214; the detector) and GFP11 (residues 215–230; the tag)–both non-fluorescing on their own, associate spontaneously to form a fluorescent molecule. We evaluated this technique for its efficacy in contributing to the characterization of Cauliflower mosaic virus (CaMV) infection. A recombinant CaMV with GFP11 fused to the viral protein P6 (a key player in CaMV infection and major constituent of viral factory inclusions that arise during infection) was constructed and used to inoculate transgenic Arabidopsis thaliana expressing GFP1-10. The mutant virus (CaMV11P6) was infectious, aphid-transmissible and the insertion was stable over many passages. Symptoms on infected plants were delayed and milder. Viral protein accumulation, especially of recombinant 11P6, was greatly decreased, impeding its detection early in infection. Nonetheless, spread of infection from the inoculated leaf to other leaves was followed by whole plant imaging. Infected cells displayed in real time confocal laser scanning microscopy fluorescence in wild type-looking virus factories. Thus, it allowed for the first time to track a CaMV protein in vivo in the context of an authentic infection. 11P6 was immunoprecipitated with anti-GFP nanobodies, presenting a new application for the split GFP system in protein-protein interaction assays and proteomics. Taken together, split GFP can be an attractive alternative to using the entire GFP for protein tagging.

]]>
<![CDATA[The seven transmembrane domain protein MoRgs7 functions in surface perception and undergoes coronin MoCrn1-dependent endocytosis in complex with Gα subunit MoMagA to promote cAMP signaling and appressorium formation in Magnaporthe oryzae]]> https://www.researchpad.co/article/5c7d95f6d5eed0c484735053

Regulator of G-protein signaling (RGS) proteins primarily function as GTPase-accelerating proteins (GAPs) to promote GTP hydrolysis of Gα subunits, thereby regulating G-protein mediated signal transduction. RGS proteins could also contain additional domains such as GoLoco to inhibit GDP dissociation. The rice blast fungus Magnaporthe oryzae encodes eight RGS and RGS-like proteins (MoRgs1 to MoRgs8) that have shared and distinct functions in growth, appressorium formation and pathogenicity. Interestingly, MoRgs7 and MoRgs8 contain a C-terminal seven-transmembrane domain (7-TM) motif typical of G-protein coupled receptor (GPCR) proteins, in addition to the conserved RGS domain. We found that MoRgs7, but not MoRgs8, couples with Gα MoMagA to undergo endocytic transport from the plasma membrane to the endosome upon sensing of surface hydrophobicity. We also found that MoRgs7 can interact with hydrophobic surfaces via a hydrophobic interaction, leading to the perception of environmental hydrophobiccues. Moreover, we found that MoRgs7-MoMagA endocytosis is regulated by actin patch-associated protein MoCrn1, linking it to cAMP signaling. Our studies provided evidence suggesting that MoRgs7 could also function in a GPCR-like manner to sense environmental signals and it, together with additional proteins of diverse functions, promotes cAMP signaling required for developmental processes underlying appressorium function and pathogenicity.

]]>
<![CDATA[Efficacy of liposomal amphotericin B and anidulafungin using an antifungal lock technique (ALT) for catheter-related Candida albicans and Candida glabrata infections in an experimental model]]> https://www.researchpad.co/article/5c75ac7dd5eed0c484d088b2

Objective

The aims of this study were as follows. First, we sought to compare the in vitro susceptibility of liposomal amphotericin B (LAmB) and anidulafungin on Candida albicans and Candida glabrata biofilms growing on silicone discs. Second, we sought to compare the activity of LAmB versus anidulafungin for the treatment of experimental catheter-related C. albicans and C. glabrata infections with the antifungal lock technique in a rabbit model.

Methods

Two C. albicans and two C. glabrata clinical strains were used. The minimum biofilm eradication concentration for 90% eradication (MBEC90) values were determined after 48h of treatment with LAmB and anidulafungin. Confocal microscopy was used to visualize the morphology and viability of yeasts growing in biofilms. Central venous catheters were inserted into New Zealand rabbits, which were inoculated of each strain of C. albicans and C. glabrata. Then, catheters were treated for 48h with saline or with antifungal lock technique using either LAmB (5mg/mL) or anidulafungin (3.33mg/mL).

Results

In vitro: anidulafungin showed greater activity than LAmB against C. albicans and C. glabrata strains. For C. albicans: MBEC90 of anidulafungin versus LAmB: CA176, 0.03 vs. 128 mg/L; CA180, 0.5 vs. 64 mg/L. For C. glabrata: MBEC90 of anidulafungin versus LAmB: CG171, 0.5 vs. 64 mg/L; CG334, 2 vs. 32 mg/L. In vivo: for C. albicans species, LAmB and anidulafungin achieved significant reductions relative to growth control of log10 cfu recovered from the catheter tips (CA176: 3.6±0.3 log10 CFU, p≤0.0001; CA180: 3.8±0.1 log10 CFU, p≤0.01). For C. glabrata, anidulafungin lock therapy achieved significant reductions relative to the other treatments (CG171: 4.8 log10 CFU, p≤0.0001; CG334: 5.1 log10 CFU, p≤0.0001)

Conclusions

For the C. albicans strains, both LAmB and anidulafungin may be promising antifungal lock technique for long-term catheter-related infections; however, anidulafungin showed significantly higher activity than LAmB against the C. glabrata strains.

]]>
<![CDATA[Evaluating the pharmacological response in fluorescence microscopy images: The Δm algorithm]]> https://www.researchpad.co/article/5c6dca2ed5eed0c48452a88e

Current drug discovery procedures require fast and effective quantification of the pharmacological response evoked in living cells by agonist compounds. In the case of G-protein coupled receptors (GPCRs), the efficacy of a particular drug to initiate the endocytosis process is related to the formation of endocytic vesicles or endosomes and their subsequent internalisation within intracellular compartments that can be observed with high spatial and temporal resolution by fluorescence microscopy techniques. Recently, an algorithm has been proposed to evaluate the pharmacological response by estimating the number of endosomes per cell on time series of images. However, the algorithm was limited by the dependence on some manually set parameters and in some cases the quality of the image does not allow a reliable detection of the endosomes. Here we propose a simple, fast and automated image analysis method—the Δm algorithm- to quantify a pharmacological response with data obtained from fluorescence microscopy experiments. This algorithm does not require individual object detection and computes the relative increment of the third order moment in fluorescence microscopy images after filtering with the Laplacian of Gaussian function. It was tested on simulations demonstrating its ability to discriminate different experimental situations according to the number and the fluorescence signal intensity of the simulated endosomes. Finally and in order to validate this methodology with real data, the algorithm was applied to several time-course experiments based on the endocytosis of the mu opioid receptor (MOP) initiated by different agonist compounds. Each drug displayed a different Δm sigmoid time-response curve and statistically significant differences were observed among drugs in terms of efficacy and kinetic parameters.

]]>
<![CDATA[Spatiotemporal expression of the putative MdtABC efflux pump of Phtotorhabdus luminescens occurs in a protease-dependent manner during insect infection]]> https://www.researchpad.co/article/5c6f153dd5eed0c48467af26

Photorhabdus luminescens is an enterobacterium establishing a mutualistic symbiosis with nematodes, that also kills insects after septicaemia and connective tissue colonization. The role of the bacterial mdtABC genes encoding a putative multidrug efflux system from the resistance/nodulation/cell division family was investigated. We showed that a mdtA mutant and the wild type had similar levels of resistance to antibiotics, antimicrobial peptides, metals, detergents and bile salts. The mdtA mutant was also as pathogenic as the wild-type following intrahaemocoel injection in Locusta migratoria, but had a slightly attenuated phenotype in Spodoptera littoralis. A transcriptional fusion of the mdtA promoter (PmdtA) and the green fluorescent protein (gfp) encoding gene was induced by copper in bacteria cultured in vitro. The PmdtA-gfp fusion was strongly induced within bacterial aggregates in the haematopoietic organ during late stages of infection in L. migratoria, whereas it was only weakly expressed in insect plasma throughout infection. A medium supplemented with haematopoietic organ extracts induced the PmdtA-gfp fusion ex vivo, suggesting that site-specific mdtABC expression resulted from insect signals from the haematopoietic organ. Finally, we showed that protease inhibitors abolished ex vivo activity of the PmdtA-gfp fusion in the presence of haematopoietic organ extracts, suggesting that proteolysis by-products play a key role in upregulating the putative MdtABC efflux pump during insect infection with P. luminescens.

]]>
<![CDATA[MUC1 is a receptor for the Salmonella SiiE adhesin that enables apical invasion into enterocytes]]> https://www.researchpad.co/article/5c61e93fd5eed0c48496fa96

The cellular invasion machinery of the enteric pathogen Salmonella consists of a type III secretion system (T3SS) with injectable virulence factors that induce uptake by macropinocytosis. Salmonella invasion at the apical surface of intestinal epithelial cells is inefficient, presumably because of a glycosylated barrier formed by transmembrane mucins that prevents T3SS contact with host cells. We observed that Salmonella is capable of apical invasion of intestinal epithelial cells that express the transmembrane mucin MUC1. Knockout of MUC1 in HT29-MTX cells or removal of MUC1 sialic acids by neuraminidase treatment reduced Salmonella apical invasion but did not affect lateral invasion that is not hampered by a defensive barrier. A Salmonella deletion strain lacking the SiiE giant adhesin was unable to invade intestinal epithelial cells through MUC1. SiiE-positive Salmonella closely associated with the MUC1 layer at the apical surface, but invaded Salmonella were negative for the adhesin. Our findings uncover that the transmembrane mucin MUC1 is required for Salmonella SiiE-mediated entry of enterocytes via the apical route.

]]>
<![CDATA[Single-molecule dynamics and genome-wide transcriptomics reveal that NF-kB (p65)-DNA binding times can be decoupled from transcriptional activation]]> https://www.researchpad.co/article/5c4a3091d5eed0c4844c0568

Transcription factors (TFs) regulate gene expression in both prokaryotes and eukaryotes by recognizing and binding to specific DNA promoter sequences. In higher eukaryotes, it remains unclear how the duration of TF binding to DNA relates to downstream transcriptional output. Here, we address this question for the transcriptional activator NF-κB (p65), by live-cell single molecule imaging of TF-DNA binding kinetics and genome-wide quantification of p65-mediated transcription. We used mutants of p65, perturbing either the DNA binding domain (DBD) or the protein-protein transactivation domain (TAD). We found that p65-DNA binding time was predominantly determined by its DBD and directly correlated with its transcriptional output as long as the TAD is intact. Surprisingly, mutation or deletion of the TAD did not modify p65-DNA binding stability, suggesting that the p65 TAD generally contributes neither to the assembly of an “enhanceosome,” nor to the active removal of p65 from putative specific binding sites. However, TAD removal did reduce p65-mediated transcriptional activation, indicating that protein-protein interactions act to translate the long-lived p65-DNA binding into productive transcription.

]]>
<![CDATA[Therapeutic effect of localized vibration on alveolar bone of osteoporotic rats]]> https://www.researchpad.co/article/5c59feb1d5eed0c4841352ff

Objectives

Vibration, in the form of high frequency acceleration (HFA), stimulates alveolar bone formation under physiologic conditions and during healing after dental extractions. It is not known if HFA has an anabolic effect on osteoporotic alveolar bone. Our objective is to determine if HFA has a regenerative effect on osteoporotic alveolar bone.

Methods and materials

Adult female Sprague-Dawley rats were divided into five groups: 1) Ovariectomized Group (OVX), 2) Sham-OVX Group that received surgery without ovariectomy, 3) OVX-HFA Group that was ovariectomized and treated daily with HFA, 4) OVX+Static Force Group that was ovariectomized and received the same force as HFA, but without vibration, and 5) Control Group that did not receive any treatment. All animals were fed a low mineral diet for 3 months. Osteoporosis was confirmed by micro-CT of the fifth lumbar vertebra and femoral head. HFA was applied to the maxillary first molar for 5 minutes/day for 28 and 56 days. Maxillae were collected for micro-CT, histology, fluorescent microscopy, protein and RNA analysis, and three-point bending mechanical testing.

Results

Micro-CT analysis revealed significant alveolar bone osteoporosis in the OVX group. Vibration restored the quality and quantity of alveolar bone to levels similar to the Sham-OVX group. Animals exposed to HFA demonstrated higher osteoblast activity and lower osteoclast activity. Osteogenic transcription factors (RUNX2, Foxo1, Osterix and Wnt signaling factors) were upregulated following vibration, while RANKL/RANK and Sclerostin were downregulated. HFA did not affect serum TRAcP-5b or CTx-1 levels. The osteogenic effect was highest at the point of HFA application and extended along the hemimaxillae this effect did not cross to the contra-lateral side.

Conclusions

Local application of vibration generated gradients of increased anabolic metabolism and decreased catabolic metabolism in alveolar bone of osteoporotic rats. Our findings suggest that HFA could be a predictable treatment for diminished alveolar bone levels in osteoporosis patients.

]]>
<![CDATA[Label-free classification of cells based on supervised machine learning of subcellular structures]]> https://www.researchpad.co/article/5c59fec3d5eed0c48413541b

It is demonstrated that cells can be classified by pattern recognition of the subcellular structure of non-stained live cells, and the pattern recognition was performed by machine learning. Human white blood cells and five types of cancer cell lines were imaged by quantitative phase microscopy, which provides morphological information without staining quantitatively in terms of optical thickness of cells. Subcellular features were then extracted from the obtained images as training data sets for the machine learning. The built classifier successfully classified WBCs from cell lines (area under ROC curve = 0.996). This label-free, non-cytotoxic cell classification based on the subcellular structure of QPM images has the potential to serve as an automated diagnosis of single cells.

]]>
<![CDATA[Cell type-specific differences in redox regulation and proliferation after low UVA doses]]> https://www.researchpad.co/article/5c57e6d0d5eed0c484ef3ec4

Ultraviolet A (UVA) radiation is harmful for living organisms but in low doses may stimulate cell proliferation. Our aim was to examine the relationships between exposure to different low UVA doses, cellular proliferation, and changes in cellular reactive oxygen species levels. In human colon cancer (HCT116) and melanoma (Me45) cells exposed to UVA doses comparable to environmental, the highest doses (30–50 kJ/m2) reduced clonogenic potential but some lower doses (1 and 10 kJ/m2) induced proliferation. This effect was cell type and dose specific. In both cell lines the levels of reactive oxygen species and nitric oxide fluctuated with dynamics which were influenced differently by UVA; in Me45 cells decreased proliferation accompanied the changes in the dynamics of H2O2 while in HCT116 cells those of superoxide. Genes coding for proteins engaged in redox systems were expressed differently in each cell line; transcripts for thioredoxin, peroxiredoxin and glutathione peroxidase showed higher expression in HCT116 cells whereas those for glutathione transferases and copper chaperone were more abundant in Me45 cells. We conclude that these two cell types utilize different pathways for regulating their redox status. Many mechanisms engaged in maintaining cellular redox balance have been described. Here we show that the different cellular responses to a stimulus such as a specific dose of UVA may be consequences of the use of different redox control pathways. Assays of superoxide and hydrogen peroxide level changes after exposure to UVA may clarify mechanisms of cellular redox regulation and help in understanding responses to stressing factors.

]]>
<![CDATA[Metagenomic quorum quenching enzymes affect biofilm formation of Candida albicans and Staphylococcus epidermidis]]> https://www.researchpad.co/article/5c58d622d5eed0c4840316f5

Biofilm formation in the clinical environment is of increasing concern since a significant part of human infections is associated, and caused by biofilm establishment of (opportunistic) pathogens, for instance Candida albicans and Staphylococcus epidermidis. The rapidly increasing number of antibiotic-resistant biofilms urgently requires the development of novel and effective strategies to prevent biofilm formation ideally targeting a wide range of infectious microorganisms. Both, synthesis of extracellular polymeric substances and quorum sensing are crucial for biofilm formation, and thus potential attractive targets to combat undesirable biofilms.We evaluated the ability of numerous recently identified metagenome-derived bacterial quorum quenching (QQ) proteins to inhibit biofilm formation of C. albicans and S. epidermidis. Here, proteins QQ-5 and QQ-7 interfered with the morphogenesis of C. albicans by inhibiting the yeast-to-hyphae transition, ultimately leading to impaired biofilm formation. Moreover, QQ5 and QQ-7 inhibited biofilm formation of S. epidermidis; in case of QQ7 most likely due to induced expression of the icaR gene encoding the repressor for polysaccharide intercellular adhesin (PIA) synthesis, the main determinant for staphylococcal biofilm formation. Our results indicate that QQ-5 and QQ-7 are attractive potential anti-biofilm agents in the prevention and treatment of C. albicans and S. epidermidis mono-species biofilms, and potentially promising anti-biofilm drugs in also combating multi-species infections.

]]>
<![CDATA[A compact holographic projector module for high-resolution 3D multi-site two-photon photostimulation]]> https://www.researchpad.co/article/5c58d62cd5eed0c484031834

Patterned two-photon (2P) photolysis via holographic illumination is a powerful method to investigate neuronal function because of its capability to emulate multiple synaptic inputs in three dimensions (3D) simultaneously. However, like any optical system, holographic projectors have a finite space-bandwidth product that restricts the spatial range of patterned illumination or field-of-view (FOV) for a desired resolution. Such trade-off between holographic FOV and resolution restricts the coverage within a limited domain of the neuron’s dendritic tree to perform highly resolved patterned 2P photolysis on individual spines. Here, we integrate a holographic projector into a commercial 2P galvanometer-based 2D scanning microscope with an uncaging unit and extend the accessible holographic FOV by using the galvanometer scanning mirrors to reposition the holographic FOV arbitrarily across the imaging FOV. The projector system utilizes the microscope’s built-in imaging functions. Stimulation positions can be selected from within an acquired 3D image stack (the volume-of-interest, VOI) and the holographic projector then generates 3D illumination patterns with multiple uncaging foci. The imaging FOV of our system is 800×800 μm2 within which a holographic VOI of 70×70×70 μm3 can be chosen at arbitrary positions and also moved during experiments without moving the sample. We describe the design and alignment protocol as well as the custom software plugin that controls the 3D positioning of stimulation sites. We demonstrate the neurobiological application of the system by simultaneously uncaging glutamate at multiple spines within dendritic domains and consequently observing summation of postsynaptic potentials at the soma, eventually resulting in action potentials. At the same time, it is possible to perform two-photon Ca2+ imaging in 2D in the dendrite and thus to monitor synaptic Ca2+ entry in selected spines and also local regenerative events such as dendritic action potentials.

]]>