ResearchPad - long-non-coding-rnas https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[<i>In silico</i> analyses identify lncRNAs: WDFY3-AS2, BDNF-AS and AFAP1-AS1 as potential prognostic factors for patients with triple-negative breast tumors]]> https://www.researchpad.co/article/elastic_article_13870 Long non-coding RNAs (lncRNAs) are characterized as having 200 nucleotides or more and not coding any protein, and several been identified as differentially expressed in several human malignancies, including breast cancer.MethodsHere, we evaluated lncRNAs differentially expressed in triple-negative breast cancer (TNBC) from a cDNA microarray data set obtained in a previous study from our group. Using in silico analyses in combination with a review of the current literature, we identify three lncRNAs as potential prognostic factors for TNBC patients.ResultsWe found that the expression of WDFY3-AS2, BDNF-AS, and AFAP1-AS1 was associated with poor survival in patients with TNBCs. WDFY3-AS2 and BDNF-AS are lncRNAs known to play an important role in tumor suppression of different types of cancer, while AFAP1-AS1 exerts oncogenic activity.ConclusionOur findings provided evidence that WDFY3-AS2, BDNF-AS, and AFAP1-AS1 may be potential prognostic factors in TNBC development. ]]> <![CDATA[Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB2 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNA-OIP5-AS1/miR-218-5p network]]> https://www.researchpad.co/article/5c5b524dd5eed0c4842bc621

Kaposi’s sarcoma (KS), a highly disseminated tumor of hyperproliferative spindle endothelial cells, is the most common AIDS-associated malignancy caused by infection of Kaposi’s sarcoma-associated herpesvirus (KSHV). KSHV-encoded viral interferon regulatory factor 1 (vIRF1) is a viral oncogene but its role in KSHV-induced tumor invasiveness and motility remains unknown. Here, we report that vIRF1 promotes endothelial cell migration, invasion and proliferation by down-regulating miR-218-5p to relieve its suppression of downstream targets high mobility group box 2 (HMGB2) and cytidine/uridine monophosphate kinase 1 (CMPK1). Mechanistically, vIRF1 inhibits p53 function to increase the expression of DNA methyltransferase 1 (DNMT1) and DNA methylation of the promoter of pre-miR-218-1, a precursor of miR-218-5p, and increases the expression of a long non-coding RNA OIP5 antisense RNA 1 (lnc-OIP5-AS1), which acts as a competing endogenous RNA (ceRNA) of miR-218-5p to inhibit its function and reduce its stability. Moreover, lnc-OIP5-AS1 increases DNA methylation of the pre-miR-218-1 promoter. Finally, deletion of vIRF1 from the KSHV genome reduces the level of lnc-OIP5-AS1, increases the level of miR-218-5p, and inhibits KSHV-induced invasion. Together, these results define a novel complex lnc-OIP5-AS1/miR-218-5p network hijacked by vIRF1 to promote invasiveness and motility of KSHV-induced tumors.

]]>
<![CDATA[Tomato yellow leaf curl virus intergenic siRNAs target a host long noncoding RNA to modulate disease symptoms]]> https://www.researchpad.co/article/5c50c483d5eed0c4845e8853

Tomato yellow leaf curl virus (TYLCV) and its related begomoviruses cause fast-spreading diseases in tomato worldwide. How this virus induces diseases remains largely unclear. Here we report a noncoding RNA-mediated model to elucidate the molecular mechanisms of TYLCV-tomato interaction and disease development. The circular ssDNA genome of TYLCV contains a noncoding intergenic region (IR), which is known to mediate viral DNA replication and transcription in host cells, but has not been reported to contribute directly to viral disease development. We demonstrate that the IR is transcribed in dual orientations during plant infection and confers abnormal phenotypes in tomato independently of protein-coding regions of the viral genome. We show that the IR sequence has a 25-nt segment that is almost perfectly complementary to a long noncoding RNA (lncRNA, designated as SlLNR1) in TYLCV-susceptible tomato cultivars but not in resistant cultivars which contains a 14-nt deletion in the 25-nt region. Consequently, we show that viral small-interfering RNAs (vsRNAs) derived from the 25-nt IR sequence induces silencing of SlLNR1 in susceptible tomato plants but not resistant plants, and this SlLNR1 downregulation is associated with stunted and curled leaf phenotypes reminiscent of TYLCV symptoms. These results suggest that the lncRNA interacts with the IR-derived vsRNAs to control disease development during TYLCV infection. Consistent with its possible function in virus disease development, over-expression of SlLNR1 in tomato reduces the accumulation of TYLCV. Furthermore, gene silencing of the SlLNR1 in the tomato plants induced TYLCV-like leaf phenotypes without viral infection. Our results uncover a previously unknown interaction between vsRNAs and host lncRNA, and provide a plausible model for TYLCV-induced diseases and host antiviral immunity, which would help to develop effective strategies for the control of this important viral pathogen.

]]>
<![CDATA[Testing of library preparation methods for transcriptome sequencing of real life glioblastoma and brain tissue specimens: A comparative study with special focus on long non-coding RNAs]]> https://www.researchpad.co/article/5c6b26afd5eed0c484289e7d

Current progress in the field of next-generation transcriptome sequencing have contributed significantly to the study of various malignancies including glioblastoma multiforme (GBM). Differential sequencing of transcriptomes of patients and non-tumor controls has a potential to reveal novel transcripts with significant role in GBM. One such candidate group of molecules are long non-coding RNAs (lncRNAs) which have been proved to be involved in processes such as carcinogenesis, epigenetic modifications and resistance to various therapeutic approaches. To maximize the value of transcriptome sequencing, a proper protocol for library preparation from tissue-derived RNA needs to be found which would produce high quality transcriptome sequencing data and increase the number of detected lncRNAs. It is important to mention that success of library preparation is determined by the quality of input RNA, which is in case of real-life tissue specimens very often altered in comparison to high quality RNA commonly used by manufacturers for development of library preparation chemistry. In the present study, we used GBM and non-tumor brain tissue specimens and compared three different commercial library preparation kits, namely NEXTflex Rapid Directional qRNA-Seq Kit (Bioo Scientific), SENSE Total RNA-Seq Library Prep Kit (Lexogen) and NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB). Libraries generated using SENSE kit were characterized by the most normal distribution of normalized average GC content, the least amount of over-represented sequences and the percentage of ribosomal RNA reads (0.3–1.5%) and highest numbers of uniquely mapped reads and reads aligning to coding regions. However, NEBNext kit performed better having relatively low duplication rates, even transcript coverage and the highest number of hits in Ensembl database for every biotype of our interest including lncRNAs. Our results indicate that out of three approaches the NEBNext library preparation kit was most suitable for the study of lncRNAs via transcriptome sequencing. This was further confirmed by highly consistent data reached in an independent validation on an expanded cohort.

]]>
<![CDATA[LncRNA expression profile and ceRNA analysis in tomato during flowering]]> https://www.researchpad.co/article/5c6059f3d5eed0c4847cc4eb

Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that play essential regulatory roles in various developmental processes and stress responses. However, the functions of lncRNAs during the flowering period of tomato are largely unknown. To explore the lncRNA profiles and functions during flowering in tomato, we performed strand-specific paired-end RNA sequencing of tomato leaves, flowers and roots, with three biological replicates. We identified 10919 lncRNAs including 248 novel lncRNAs, of which 65 novel lncRNAs were significantly differentially expressed (DE) in the flowers, leaves, and roots. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out to identify the cis target gene of DE lncRNAs. The results showed that the lncRNAs might play an important role in the growth, development, and apoptosis of flowering tomato plant by regulating the formation of intima in flower tissues, binding to various molecules, influencing metabolic pathways, and inducing apoptosis. Moreover, we identified the interaction between 32, 78, and 397 kinds of miRNAs, lncRNAs, and mRNAs. The results suggest that the lncRNAs can regulate the expression of mRNA during flowering period in tomato by forming competitive endogenous RNA, and further regulate various biological metabolism pathways in tomato.

]]>
<![CDATA[SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions]]> https://www.researchpad.co/article/5c196699d5eed0c484b52590

LncRNA-protein interactions play important roles in post-transcriptional gene regulation, poly-adenylation, splicing and translation. Identification of lncRNA-protein interactions helps to understand lncRNA-related activities. Existing computational methods utilize multiple lncRNA features or multiple protein features to predict lncRNA-protein interactions, but features are not available for all lncRNAs or proteins; most of existing methods are not capable of predicting interacting proteins (or lncRNAs) for new lncRNAs (or proteins), which don’t have known interactions. In this paper, we propose the sequence-based feature projection ensemble learning method, “SFPEL-LPI”, to predict lncRNA-protein interactions. First, SFPEL-LPI extracts lncRNA sequence-based features and protein sequence-based features. Second, SFPEL-LPI calculates multiple lncRNA-lncRNA similarities and protein-protein similarities by using lncRNA sequences, protein sequences and known lncRNA-protein interactions. Then, SFPEL-LPI combines multiple similarities and multiple features with a feature projection ensemble learning frame. In computational experiments, SFPEL-LPI accurately predicts lncRNA-protein associations and outperforms other state-of-the-art methods. More importantly, SFPEL-LPI can be applied to new lncRNAs (or proteins). The case studies demonstrate that our method can find out novel lncRNA-protein interactions, which are confirmed by literature. Finally, we construct a user-friendly web server, available at http://www.bioinfotech.cn/SFPEL-LPI/.

]]>
<![CDATA[RNA-on-X 1 and 2 in Drosophila melanogaster fulfill separate functions in dosage compensation]]> https://www.researchpad.co/article/5c18139fd5eed0c484775618

In Drosophila melanogaster, the male-specific lethal (MSL) complex plays a key role in dosage compensation by stimulating expression of male X-chromosome genes. It consists of MSL proteins and two long noncoding RNAs, roX1 and roX2, that are required for spreading of the complex on the chromosome and are redundant in the sense that loss of either does not affect male viability. However, despite rapid evolution, both roX species are present in diverse Drosophilidae species, raising doubts about their full functional redundancy. Thus, we have investigated consequences of deleting roX1 and/or roX2 to probe their specific roles and redundancies in D. melanogaster. We have created a new mutant allele of roX2 and show that roX1 and roX2 have partly separable functions in dosage compensation. In larvae, roX1 is the most abundant variant and the only variant present in the MSL complex when the complex is transmitted (physically associated with the X-chromosome) in mitosis. Loss of roX1 results in reduced expression of the genes on the X-chromosome, while loss of roX2 leads to MSL-independent upregulation of genes with male-biased testis-specific transcription. In roX1 roX2 mutant, gene expression is strongly reduced in a manner that is not related to proximity to high-affinity sites. Our results suggest that high tolerance of mis-expression of the X-chromosome has evolved. We propose that this may be a common property of sex-chromosomes, that dosage compensation is a stochastic process and its precision for each individual gene is regulated by the density of high-affinity sites in the locus.

]]>
<![CDATA[A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability]]> https://www.researchpad.co/article/5c09940ad5eed0c4842ae15f

The human genome encodes thousands of long noncoding RNA (lncRNA) genes; the function of majority of them is poorly understood. Aberrant expression of a significant number of lncRNAs is observed in various diseases, including cancer. To gain insights into the role of lncRNAs in breast cancer progression, we performed genome-wide transcriptome analyses in an isogenic, triple negative breast cancer (TNBC/basal-like) progression cell lines using a 3D cell culture model. We identified significantly altered expression of 1853 lncRNAs, including ~500 natural antisense transcript (NATs) lncRNAs. A significant number of breast cancer-deregulated NATs displayed co-regulated expression with oncogenic and tumor suppressor protein-coding genes in cis. Further studies on one such NAT, PDCD4-AS1 lncRNA reveal that it positively regulates the expression and activity of the tumor suppressor PDCD4 in mammary epithelial cells. Both PDCD4-AS1 and PDCD4 show reduced expression in TNBC cell lines and in patients, and depletion of PDCD4-AS1 compromised the cellular levels and activity of PDCD4. Further, tumorigenic properties of PDCD4-AS1-depleted TNBC cells were rescued by exogenous expression of PDCD4, implying that PDCD4-AS1 acts upstream of PDCD4. Mechanistically, PDCD4-AS1 stabilizes PDCD4 RNA by forming RNA duplex and controls the interaction between PDCD4 RNA and RNA decay promoting factors such as HuR. Our studies demonstrate crucial roles played by NAT lncRNAs in regulating post-transcriptional gene expression of key oncogenic or tumor suppressor genes, thereby contributing to TNBC progression.

]]>
<![CDATA[Identification of long intergenic non-coding RNAs (lincRNAs) deregulated in gastrointestinal stromal tumors (GISTs)]]> https://www.researchpad.co/article/5c2151b6d5eed0c4843fb86f

Long intergenic non-coding RNAs (lincRNAs) are >200 nucleotides long non-coding RNAs, which have been shown to be implicated in carcinogenic processes by interacting with cancer associated genes or other non-coding RNAs. However, their role in development of rare gastrointestinal stromal tumors (GISTs) is barely investigated. Therefore, the aim of this study was to define lincRNAs deregulated in GIST and find new GIST-lincRNA associations. Next-generation sequencing data of paired GIST and adjacent tissue samples from 15 patients were subjected to a web-based lincRNA analysis. Three deregulated lincRNAs (MALAT1, H19 and FENDRR; adjusted p-value < 0.05) were selected for expression validation in a larger group of patients (n = 22) by RT-qPCR method. However, only H19 and FENDRR showed significant upregulation in the validation cohort (adjusted p < 0.05). Further, we performed correlation analyses between expression levels of deregulated lincRNAs and GIST-associated oncogenes or GIST deregulated microRNAs. We found high positive correlations between expression of H19 and known GIST related oncogene ETV1, and between H19 and miR-455-3p. These findings expand the knowledge on lincRNAs deregulated in GIST and may be an important resource for the future studies investigating lincRNAs functionally relevant to GIST carcinogenesis.

]]>
<![CDATA[Network assessment of demethylation treatment in melanoma: Differential transcriptome-methylome and antigen profile signatures]]> https://www.researchpad.co/article/5c0841bdd5eed0c484fca9dc

Background

In melanoma, like in other cancers, both genetic alterations and epigenetic underlie the metastatic process. These effects are usually measured by changes in both methylome and transcriptome profiles, whose cross-correlation remains uncertain. We aimed to assess at systems scale the significance of epigenetic treatment in melanoma cells with different metastatic potential.

Methods and findings

Treatment by DAC demethylation with 5-Aza-2’-deoxycytidine of two melanoma cell lines endowed with different metastatic potential, SKMEL-2 and HS294T, was performed and high-throughput coupled RNA-Seq and RRBS-Seq experiments delivered differential profiles (DiP) of both transcriptomes and methylomes. Methylation levels measured at both TSS and gene body were studied to inspect correlated patterns with wide-spectrum transcript abundance levels quantified in both protein coding and non-coding RNA (ncRNA) regions. The DiP were then mapped onto standard bio-annotation sources (pathways, biological processes) and network configurations were obtained. The prioritized associations for target identification purposes were expected to elucidate the reprogramming dynamics induced by the epigenetic therapy. The interactomic connectivity maps of each cell line were formed to support the analysis of epigenetically re-activated genes. i.e. those supposedly silenced by melanoma. In particular, modular protein interaction networks (PIN) were used, evidencing a limited number of shared annotations, with an example being MAPK13 (cascade of cellular responses evoked by extracellular stimuli). This gene is also a target associated to the PANDAR ncRNA, therapeutically relevant because of its aberrant expression observed in various cancers. Overall, the non-metastatic SKMEL-2 map reveals post-treatment re-activation of a richer pathway landscape, involving cadherins and integrins as signatures of cell adhesion and proliferation. Relatively more lncRNAs were also annotated, indicating more complex regulation patterns in view of target identification. Finally, the antigen maps matched to DiP display other differential signatures with respect to the metastatic potential of the cell lines. In particular, as demethylated melanomas show connected targets that grow with the increased metastatic potential, also the potential target actionability seems to depend to some degree on the metastatic state. However, caution is required when assessing the direct influence of re-activated genes over the identified targets. In light of the stronger treatment effects observed in non-metastatic conditions, some limitations likely refer to in silico data integration tools and resources available for the analysis of tumor antigens.

Conclusion

Demethylation treatment strongly affects early melanoma progression by re-activating many genes. This evidence suggests that the efficacy of this type of therapeutic intervention is potentially high at the pre-metastatic stages. The biomarkers that can be assessed through antigens seem informative depending on the metastatic conditions, and networks help to elucidate the assessment of possible targets actionability.

]]>
<![CDATA[Regulation of protein-coding gene and long noncoding RNA pairs in liver of conventional and germ-free mice following oral PBDE exposure]]> https://www.researchpad.co/article/5b6d94b7463d7e2f79286cbf

Gut microbiome communicates with the host liver to modify hepatic xenobiotic biotransformation and nutrient homeostasis. Polybrominated diphenyl ethers (PBDEs) are persistent environmental contaminants that are detected in fatty food, household dust, and human breast milk at worrisome levels. Recently, long noncoding RNAs (lncRNAs) have been recognized as novel biomarkers for toxicological responses and may regulate the transcriptional/translational output of protein-coding genes (PCGs). However, very little is known regarding to what extent the interactions between PBDEs and gut microbiome modulate hepatic lncRNAs and PCGs, and what critical signaling pathways are impacted at the transcriptomic scale. In this study, we performed RNA-Seq in livers of nine-week-old male conventional (CV) and germ-free (GF) mice orally exposed to the most prevalent PBDE congeners BDE-47 and BDE-99 (100 μmol/kg once daily for 4-days; vehicle: corn oil, 10 ml/kg), and unveiled key molecular pathways and PCG-lncRNA pairs targeted by PBDE-gut microbiome interactions. Lack of gut microbiome profoundly altered the PBDE-mediated transcriptomic response in liver, with the most prominent effect observed in BDE-99-exposed GF mice. The top pathways up-regulated by PBDEs were related to xenobiotic metabolism, whereas the top pathways down-regulated by PBDEs were in lipid metabolism and protein synthesis in both enterotypes. Genomic annotation of the differentially regulated lncRNAs revealed that majority of these lncRNAs overlapped with introns and 3’-UTRs of PCGs. Lack of gut microbiome profoundly increased the percentage of PBDE-regulated lncRNAs mapped to the 3’-UTRs of PCGs, suggesting the potential involvement of lncRNAs in increasing the translational efficiency of PCGs by preventing miRNA-3’-UTR binding, as a compensatory mechanism following toxic exposure to PBDEs. Pathway analysis of PCGs paired with lncRNAs revealed that in CV mice, BDE-47 regulated nucleic acid and retinol metabolism, as well as circadian rhythm; whereas BDE-99 regulated fatty acid metabolism. In GF mice, BDE-47 differentially regulated 19 lncRNA-PCG pairs that were associated with glutathione conjugation and transcriptional regulation. In contrast, BDE-99 up-regulated the xenobiotic-metabolizing Cyp3a genes, but down-regulated the fatty acid-metabolizing Cyp4 genes. Taken together, the present study reveals common and unique lncRNAs and PCG targets of PBDEs in mouse liver, and is among the first to show that lack of gut microbiome sensitizes the liver to toxic exposure of BDE-99 but not BDE-47. Therefore, lncRNAs may serve as specific biomarkers that differentiate various PBDE congeners as well as environmental chemical-mediated dysbiosis. Coordinate regulation of PCG-lncRNA pairs may serve as a more efficient molecular mechanism to combat against xenobiotic insult, and especially during dysbiosis-induced increase in the internal dose of toxicants.

]]>
<![CDATA[Microdeletion on chromosome 8p23.1 in a familial form of severe Buruli ulcer]]> https://www.researchpad.co/article/5af106a8463d7e336df9e531

Buruli ulcer (BU), the third most frequent mycobacteriosis worldwide, is a neglected tropical disease caused by Mycobacterium ulcerans. We report the clinical description and extensive genetic analysis of a consanguineous family from Benin comprising two cases of unusually severe non-ulcerative BU. The index case was the most severe of over 2,000 BU cases treated at the Centre de Dépistage et de Traitement de la Lèpre et de l’Ulcère de Buruli, Pobe, Benin, since its opening in 2003. The infection spread to all limbs with PCR-confirmed skin, bone and joint infections. Genome-wide linkage analysis of seven family members was performed and whole-exome sequencing of both patients was obtained. A 37 kilobases homozygous deletion confirmed by targeted resequencing and located within a linkage region on chromosome 8 was identified in both patients but was absent from unaffected siblings. We further assessed the presence of this deletion on genotyping data from 803 independent local individuals (402 BU cases and 401 BU-free controls). Two BU cases were predicted to be homozygous carriers while none was identified in the control group. The deleted region is located close to a cluster of beta-defensin coding genes and contains a long non-coding (linc) RNA gene previously shown to display highest expression values in the skin. This first report of a microdeletion co-segregating with severe BU in a large family supports the view of a key role of human genetics in the natural history of the disease.

]]>
<![CDATA[Long Non-Coding RNA-ROR Mediates the Reprogramming in Cardiac Hypertrophy]]> https://www.researchpad.co/article/5989da92ab0ee8fa60ba0963

Background

Cardiac hypertrophy associated with various cardiovascular diseases results in heart failure and sudden death. A clear understanding of the mechanisms of hypertrophy will benefit the development of novel therapies. Long non-coding RNAs (lncRNAs) have been shown to play essential roles in many biological process, however, whether lncRNA-ROR plays functional roles in the reprogramming of cardiomyocyte remains unclear.

Methodology/Principal Findings

Here we show that lncRNA-ROR plays important roles in the pathogenesis of cardiac hypertrophy. In hypertrophic heart and cardiomyocytes, the expression of lncRNA-ROR is dramatically increased, downregulation of which attenuates the hypertrophic responses. Furthermore, the expression of lncRNA-ROR negatively correlates with miR-133, whose expression is increased when lncRNA-ROR is knocked down. In line with this, overexpression of miR-133 prevents the elevation of lncRNA-ROR and re-expression of ANP and BNP in cardiomyocytes subject to phenylephrine treatment.

Conclusions/Significance

Taken together, our study demonstrates that lncRNA-ROR promotes cardiac hypertrophy via interacting with miR-133, indicating that lncRNA-ROR could be targeted for developing novel antihypertrophic therapeutics.

]]>
<![CDATA[Allele Frequencies of Variants in Ultra Conserved Elements Identify Selective Pressure on Transcription Factor Binding]]> https://www.researchpad.co/article/5989dafaab0ee8fa60bc459e

Ultra-conserved genes or elements (UCGs/UCEs) in the human genome are extreme examples of conservation. We characterized natural variations in 2884 UCEs and UCGs in two distinct populations; Singaporean Chinese (n = 280) and Italian (n = 501) by using a pooled sample, targeted capture, sequencing approach. We identify, with high confidence, in these regions the abundance of rare SNVs (MAF<0.5%) of which 75% is not present in dbSNP137. UCEs association studies for complex human traits can use this information to model expected background variation and thus necessary power for association studies. By combining our data with 1000 Genome Project data, we show in three independent datasets that prevalent UCE variants (MAF>5%) are more often found in relatively less-conserved nucleotides within UCEs, compared to rare variants. Moreover, prevalent variants are less likely to overlap transcription factor binding site. Using SNPfold we found no significant influence of RNA secondary structure on UCE conservation. All together, these results suggest UCEs are not under selective pressure as a stretch of DNA but are under differential evolutionary pressure on the single nucleotide level.

]]>
<![CDATA[Long Non-Coding RNA Malat-1 Is Dispensable during Pressure Overload-Induced Cardiac Remodeling and Failure in Mice]]> https://www.researchpad.co/article/5989d9ecab0ee8fa60b6ce1a

Background

Long non-coding RNAs (lncRNAs) are a class of RNA molecules with diverse regulatory functions during embryonic development, normal life, and disease in higher organisms. However, research on the role of lncRNAs in cardiovascular diseases and in particular heart failure is still in its infancy. The exceptionally well conserved nuclear lncRNA Metastasis associated in lung adenocarcinoma transcript 1 (Malat-1) is a regulator of mRNA splicing and highly expressed in the heart. Malat-1 modulates hypoxia-induced vessel growth, activates ERK/MAPK signaling, and scavenges the anti-hypertrophic microRNA-133. We therefore hypothesized that Malat-1 may act as regulator of cardiac hypertrophy and failure during cardiac pressure overload induced by thoracic aortic constriction (TAC) in mice.

Results

Absence of Malat-1 did not affect cardiac hypertrophy upon pressure overload: Heart weight to tibia length ratio significantly increased in WT mice (sham: 5.78±0.55, TAC 9.79±1.82 g/mm; p<0.001) but to a similar extend also in Malat-1 knockout (KO) mice (sham: 6.21±1.12, TAC 8.91±1.74 g/mm; p<0.01) with no significant difference between genotypes. As expected, TAC significantly reduced left ventricular fractional shortening in WT (sham: 38.81±6.53%, TAC: 23.14±11.99%; p<0.01) but to a comparable degree also in KO mice (sham: 37.01±4.19%, TAC: 25.98±9.75%; p<0.05). Histological hallmarks of myocardial remodeling, such as cardiomyocyte hypertrophy, increased interstitial fibrosis, reduced capillary density, and immune cell infiltration, did not differ significantly between WT and KO mice after TAC. In line, the absence of Malat-1 did not significantly affect angiotensin II-induced cardiac hypertrophy, dysfunction, and overall remodeling. Above that, pressure overload by TAC significantly induced mRNA levels of the hypertrophy marker genes Nppa, Nppb and Acta1, to a similar extend in both genotypes. Alternative splicing of Ndrg2 after TAC was apparent in WT (isoform ratio; sham: 2.97±0.26, TAC 1.57±0.40; p<0.0001) and KO mice (sham: 3.64±0.37; TAC: 2.24±0.76; p<0.0001) and interestingly differed between genotypes both at baseline and after pressure overload (p<0.05 each).

Conclusion

These findings confirm a role for the lncRNA Malat-1 in mRNA splicing. However, no critical role for Malat-1 was found in pressure overload-induced heart failure in mice, despite its reported role in vascularization, ERK/MAPK signaling, and regulation of miR-133.

]]>
<![CDATA[Knockdown of Long Non-Coding RNA UCA1 Increases the Tamoxifen Sensitivity of Breast Cancer Cells through Inhibition of Wnt/β-Catenin Pathway]]> https://www.researchpad.co/article/5989da9aab0ee8fa60ba3838

Acquired resistance to tamoxifen remains a major obstacle in breast cancer (BC) treatment, since the underlying mechanism has not been fully elucidated. The long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) has been recently shown to be dysregulated and plays important roles in progression of breast cancer. In the present study, we aimed to investigate the biological role and clinical significance of UCA1 in BC drug resistance. Hence, we used quantitative PCR assay to evaluate the UCA1 expression in tissues from patients with BC as well as established tamoxifen-resistant BC cell lines in vitro. We tested the viability, invasive ability and apoptosis rate in MCF-7 and T47D cells using MTT assay, transwell assay and flow cytometry assay, respectively. The influence of UCA1 on tumorigenesis was monitored by in vivo mice xenograft model. The activation of Wnt/β-catenin signaling pathway was evaluated by immunofluorescence assay, western blot assay and luciferase reporter assay, respectively. We found that the expression of UCA1 positively correlated with the pathological grade and mortality of breast cancer patients, moreover, expressions of UCA1 was increased significantly in the tamoxifen-resistant cell lines compared with the wild type parental cells. Ectopic expression of UCA1 promoted cell survival and resistance to tamoxifen treatment, whereas inhibition of UCA1 enhanced tamoxifen sensitivity of BC cells and induced more apoptotic cells. In addition, tamoxifen-resistant cells exhibited increased Wnt signaling activation as measured by the TOP/FOP Wnt luciferase reporter assay and β-catenin protein level compared with parental MCF-7 and T47D cells, respectively. In line with these data, UCA1 depletion attenuated the activity of Wnt/β-catenin pathway activation and the tumorigenicity of the tamoxifen-resistant BC cells. Taken together, our data highlights the pivotal role of UCA1-Wnt/β-catenin signaling pathway in the tamoxifen resistance in breast cancer, which could be targeted to improve the effectiveness and efficacy of tamoxifen treatment in breast cancer.

]]>
<![CDATA[Comment on "Hotair Is Dispensable for Mouse Development"]]> https://www.researchpad.co/article/5989da0dab0ee8fa60b783c6 ]]> <![CDATA[A genome wide association study identifies a lncRna as risk factor for pathological inflammatory responses in leprosy]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcde2

Leprosy Type-1 Reactions (T1Rs) are pathological inflammatory responses that afflict a sub-group of leprosy patients and result in peripheral nerve damage. Here, we employed a family-based GWAS in 221 families with 229 T1R-affect offspring with stepwise replication to identify risk factors for T1R. We discovered, replicated and validated T1R-specific associations with SNPs located in chromosome region 10p21.2. Combined analysis across the three independent samples resulted in strong evidence of association of rs1875147 with T1R (p = 4.5x10-8; OR = 1.54, 95% CI = 1.32–1.80). The T1R-risk locus was restricted to a lncRNA-encoding genomic interval with rs1875147 being an eQTL for the lncRNA. Since a genetic overlap between leprosy and inflammatory bowel disease (IBD) has been detected, we evaluated if the shared genetic control could be traced to the T1R endophenotype. Employing the results of a recent IBD GWAS meta-analysis we found that 10.6% of IBD SNPs available in our dataset shared a common risk-allele with T1R (p = 2.4x10-4). This finding points to a substantial overlap in the genetic control of clinically diverse inflammatory disorders.

]]>
<![CDATA[Identification of Aedes aegypti Long Intergenic Non-coding RNAs and Their Association with Wolbachia and Dengue Virus Infection]]> https://www.researchpad.co/article/5989da42ab0ee8fa60b8a903

Long intergenic non-coding RNAs (lincRNAs) are appearing as an important class of regulatory RNAs with a variety of biological functions. The aim of this study was to identify the lincRNA profile in the dengue vector Aedes aegypti and evaluate their potential role in host-pathogen interaction. The majority of previous RNA-Seq transcriptome studies in Ae. aegypti have focused on the expression pattern of annotated protein coding genes under different biological conditions. Here, we used 35 publically available RNA-Seq datasets with relatively high depth to screen the Ae. aegypti genome for lincRNA discovery. This led to the identification of 3,482 putative lincRNAs. These lincRNA genes displayed a slightly lower GC content and shorter transcript lengths compared to protein-encoding genes. Ae. aegypti lincRNAs also demonstrate low evolutionary sequence conservation even among closely related species such as Culex quinquefasciatus and Anopheles gambiae. We examined their expression in dengue virus serotype 2 (DENV-2) and Wolbachia infected and non-infected adult mosquitoes and Aa20 cells. The results revealed that DENV-2 infection increased the abundance of a number of host lincRNAs, from which some suppress viral replication in mosquito cells. RNAi-mediated silencing of lincRNA_1317 led to enhancement in viral replication, which possibly indicates its potential involvement in the host anti-viral defense. A number of lincRNAs were also differentially expressed in Wolbachia-infected mosquitoes. The results will facilitate future studies to unravel the function of lncRNAs in insects and may prove to be beneficial in developing new ways to control vectors or inhibit replication of viruses in them.

]]>
<![CDATA[LncRNApred: Classification of Long Non-Coding RNAs and Protein-Coding Transcripts by the Ensemble Algorithm with a New Hybrid Feature]]> https://www.researchpad.co/article/5989daa9ab0ee8fa60ba8a7c

As a novel class of noncoding RNAs, long noncoding RNAs (lncRNAs) have been verified to be associated with various diseases. As large scale transcripts are generated every year, it is significant to accurately and quickly identify lncRNAs from thousands of assembled transcripts. To accurately discover new lncRNAs, we develop a classification tool of random forest (RF) named LncRNApred based on a new hybrid feature. This hybrid feature set includes three new proposed features, which are MaxORF, RMaxORF and SNR. LncRNApred is effective for classifying lncRNAs and protein coding transcripts accurately and quickly. Moreover,our RF model only requests the training using data on human coding and non-coding transcripts. Other species can also be predicted by using LncRNApred. The result shows that our method is more effective compared with the Coding Potential Calculate (CPC). The web server of LncRNApred is available for free at http://mm20132014.wicp.net:57203/LncRNApred/home.jsp.

]]>