ResearchPad - macroglial-cells https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Diffusion MRI reveals in vivo and non-invasively changes in astrocyte function induced by an aquaporin-4 inhibitor]]> https://www.researchpad.co/article/elastic_article_14694 The Glymphatic System (GS) has been proposed as a mechanism to clear brain tissue from waste. Its dysfunction might lead to several brain pathologies, including the Alzheimer’s disease. A key component of the GS and brain tissue water circulation is the astrocyte which is regulated by acquaporin-4 (AQP4), a membrane-bound water channel on the astrocytic end-feet. Here we investigated the potential of diffusion MRI to monitor astrocyte activity in a mouse brain model through the inhibition of AQP4 channels with TGN-020. Upon TGN-020 injection, we observed a significant decrease in the Sindex, a diffusion marker of tissue microstructure, and a significant increase of the water diffusion coefficient (sADC) in cerebral cortex and hippocampus compared to saline injection. These results indicate the suitability of diffusion MRI to monitor astrocytic activity in vivo and non-invasively.

]]>
<![CDATA[Methods of olfactory ensheathing cell harvesting from the olfactory mucosa in dogs]]> https://www.researchpad.co/article/5c89778fd5eed0c4847d2ff8

Olfactory ensheathing cells are thought to support regeneration and remyelination of damaged axons when transplanted into spinal cord injuries. Following transplantation, improved locomotion has been detected in many laboratory models and in dogs with naturally-occurring spinal cord injury; safety trials in humans have also been completed. For widespread clinical implementation, it will be necessary to derive large numbers of these cells from an accessible and, preferably, autologous, source making olfactory mucosa a good candidate. Here, we compared the yield of olfactory ensheathing cells from the olfactory mucosa using 3 different techniques: rhinotomy, frontal sinus keyhole approach and rhinoscopy. From canine clinical cases with spinal cord injury, 27 biopsies were obtained by rhinotomy, 7 by a keyhole approach and 1 with rhinoscopy. Biopsy via rhinoscopy was also tested in 13 cadavers and 7 living normal dogs. After 21 days of cell culture, the proportions and populations of p75-positive (presumed to be olfactory ensheathing) cells obtained by the keyhole approach and rhinoscopy were similar (~4.5 x 106 p75-positive cells; ~70% of the total cell population), but fewer were obtained by frontal sinus rhinotomy. Cerebrospinal fluid rhinorrhea was observed in one dog and emphysema in 3 dogs following rhinotomy. Blepharitis occurred in one dog after the keyhole approach. All three biopsy methods appear to be safe for harvesting a suitable number of olfactory ensheathing cells from the olfactory mucosa for transplantation within the spinal cord but each technique has specific advantages and drawbacks.

]]>
<![CDATA[Trans ε viniferin decreases amyloid deposits and inflammation in a mouse transgenic Alzheimer model]]> https://www.researchpad.co/article/5c76fe09d5eed0c484e5b330

As Alzheimer’s disease (AD) induces several cellular and molecular damages, it could be interesting to use multi-target molecules for therapeutics. We previously published that trans ε-viniferin induced the disaggregation of Aβ42 peptide and inhibited the inflammatory response in primary cellular model of AD. Here, effects of this stilbenoid were evaluated in transgenic APPswePS1dE9 mice. We report that trans ε-viniferin could go through the blood brain barrier, reduces size and density of amyloid deposits and decreases reactivity of astrocytes and microglia, after a weekly intraperitoneal injection at 10 mg/kg from 3 to 6 months of age.

]]>
<![CDATA[Toll-like receptor 3 regulates Zika virus infection and associated host inflammatory response in primary human astrocytes]]> https://www.researchpad.co/article/5c6730aad5eed0c484f37e84

The connection between Zika virus (ZIKV) and neurodevelopmental defects is widely recognized, although the mechanisms underlying the infectivity and pathology in primary human glial cells are poorly understood. Here we show that three isolated strains of ZIKV, an African strain MR766 (Uganda) and two closely related Asian strains R103451 (Honduras) and PRVABC59 (Puerto Rico) productively infect primary human astrocytes, although Asian strains showed a higher infectivity rate and increased cell death when compared to the African strain. Inhibition of AXL receptor significantly attenuated viral entry of MR766 and PRVABC59 and to a lesser extend R103451, suggesting an important role of TAM receptors in ZIKV cell entry, irrespective of lineage. Infection by PRVABC59 elicited the highest release of inflammatory molecules, with a 8-fold increase in the release of RANTES, 10-fold increase in secretion of IP-10 secretion and a 12-fold increase in IFN-β secretion when compared to un-infected human astrocytes. Minor changes in the release of several growth factors, endoplasmic reticulum (ER)-stress response factors and the transcription factor, NF-κB were detected with the Asian strains, while significant increases in FOXO6, MAPK10 and JNK were detected with the African strain. Activation of the autophagy pathway was evident with increased expression of the autophagy related proteins Beclin1, LC3B and p62/SQSTM1 with all three strains of ZIKV. Pharmacological inhibition of the autophagy pathway and genetic inhibition of the Beclin1 showed minimal effects on ZIKV replication. The expression of toll-like receptor 3 (TLR3) was significantly increased with all three strains of ZIKV; pharmacological and genetic inhibition of TLR3 caused a decrease in viral titers and in viral-induced inflammatory response in infected astrocytes. We conclude that TLR3 plays a vital role in both ZIKV replication and viral-induced inflammatory responses, irrespective of the strains, while the autophagy protein Beclin1 influences host inflammatory responses.

]]>
<![CDATA[Growth factors expression and ultrastructural morphology after application of low-level laser and natural latex protein on a sciatic nerve crush-type injury]]> https://www.researchpad.co/article/5c3fa5aad5eed0c484ca713c

The effects of low-level laser therapy (LLLT) and natural latex protein (F1, Hevea brasiliensis) were evaluated on crush-type injuries (15kg) to the sciatic nerve in the expressions of nerve growth factor (NGF) and vascular endothelium growth factor (VEGF) and ultrastructural morphology to associate with previous morphometric data using the same protocol of injury and treatment. Thirty-six male rats were allocated into six experimental groups (n = 6): 1-Control; 2-Exposed nerve; 3-Injured nerve; 4-LLLT (15J/cm2, 780nm, 30mW, Continuous Wave) treated injured nerve; 5-F1 (0,1mg) treated injured nerve; and 6-LLLT&F1 treated injured nerve. Four or eight weeks after, sciatic nerve samples were processed for analysis. NGF expression were higher (p<0.05) four weeks after in all injured groups in comparison to Control (Med:0.8; Q1:0; Q3:55.5%area). Among them, the Injured (Med:70.7; Q1:64.4; Q3:77.5%area) showed the highest expression, and F1 (Med:17.3; Q1:14.1; Q3:21.7%area) had the lowest. At week 8, NGF expressions decreased in the injured groups. VEGF was expressed in all groups; its higher expression was observed in the injured groups 4 weeks after (Injured. Med:29.5; F1. Med:17.7 and LLLT&F1. Med:19.4%area). At week 8, a general reduction of VEGF expression was noted, remaining higher in F1 (Med:35.1; Q1.30.6; Q3.39.6%area) and LLLT&F1 (Med:18.5; Q1:16; Q3:25%area). Ultrastructural morphology revealed improvements in the treated groups; 4 weeks after, the F1 group presented greater quantity and diameter of the nerve fibers uniformly distributed. Eight weeks after, the F1 and LLLT&F1 showed similar characteristics to the non-injured groups. In summary, these results and our previous studies indicated that F1 and LLLT may favorably influence the healing of nerve crush injury. Four weeks after nerve injury F1 group showed the best results suggesting recovery acceleration; at 8th week F1 and LLLT&F1 groups presented better features and higher vascularization that could be associated with VEGF maintenance.

]]>
<![CDATA[Dietary salt promotes ischemic brain injury and is associated with parenchymal migrasome formation]]> https://www.researchpad.co/article/5c2e7fded5eed0c48451bdb9

Sodium chloride promotes vascular fibrosis, arterial hypertension, pro-inflammatory immune cell polarization and endothelial dysfunction, all of which might influence outcomes following stroke. But despite enormous translational relevance, the functional importance of sodium chloride in the pathophysiology of acute ischemic stroke is still unclear. In the current study, we show that high-salt diet leads to significantly worse functional outcomes, increased infarct volumes, and a loss of astrocytes and cortical neurons in acute ischemic stroke. While analyzing the underlying pathologic processes, we identified the migrasome as a novel, sodium chloride-driven pathomechanism in acute ischemic stroke. The migrasome was previously described in vitro as a migrating organelle, which incorporates and dispatches cytosol of surrounding cells and plays a role in intercellular signaling, whereas a pathophysiological meaning has not been elaborated. We here confirm previously reported characteristics of the migrasome in vivo. Immunohistochemistry, electron microscopy and proteomic analyses further demonstrate that the migrasome incorporates and dispatches cytosol of surrounding neurons following stroke. The clinical relevance of these findings is emphasized by neuropathological examinations, which detected migrasome formation in infarcted brain parenchyma of human stroke patients. In summary, we demonstrate that high-salt diet aggravates stroke outcomes, and we characterize the migrasome as a novel mechanism in acute stroke pathophysiology.

]]>
<![CDATA[An enriched environment prevents diabetes-induced cognitive impairment in rats by enhancing exosomal miR-146a secretion from endogenous bone marrow-derived mesenchymal stem cells]]> https://www.researchpad.co/article/5bae98f740307c0c23a1c153

Increasing evidence suggests that an enriched environment (EE) ameliorates cognitive impairment by promoting repair of brain damage. However, the mechanisms by which this occurs have not been determined. To address this issue, we investigated whether an EE enhanced the capability of endogenous bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) to prevent hippocampal damage due to diabetes by focusing on miRNA carried in BM-MSC-derived exosomes. In diabetic streptozotocin (STZ) rats housed in an EE (STZ/EE), cognitive impairment was significantly reduced, and both neuronal and astroglial damage in the hippocampus was alleviated compared with STZ rats housed in conventional cages (STZ/CC). BM-MSCs isolated from STZ/CC rats had functional and morphological abnormalities that were not detected in STZ/EE BM-MSCs. The miR-146a levels in exosomes in conditioned medium of cultured BM-MSCs and serum from STZ/CC rats were decreased compared with non-diabetic rats, and the level was restored in STZ/EE rats. Thus, the data suggest that increased levels of miR-146a in sera were derived from endogenous BM-MSCs in STZ/EE rats. To examine the possibility that increased miR-146a in serum may exert anti-inflammatory effects on astrocytes in diabetic rats, astrocytes transfected with miR-146a were stimulated with advanced glycation end products (AGEs) to mimic diabetic conditions. The expression of IRAK1, NF-κB, and tumor necrosis factor-α was significantly higher in AGE-stimulated astrocytes, and these factors were decreased in miR-146a-transfected astrocytes. These results suggested that EEs stimulate up-regulation of exosomal miR-146a secretion by endogenous BM-MSCs, which exerts anti-inflammatory effects on damaged astrocytes and prevents diabetes-induced cognitive impairment.

]]>
<![CDATA[A Role for Neuropilins in the Interaction between Schwann Cells and Meningeal Cells]]> https://www.researchpad.co/article/5989d9e9ab0ee8fa60b6c37f

In their natural habitat, the peripheral nerve, Schwann cells (SCs) form nicely aligned pathways (also known as the bands of Büngner) that guide regenerating axons to their targets. Schwann cells that are implanted in the lesioned spinal cord fail to align in pathways that could support axon growth but form cellular clusters that exhibit only limited intermingling with the astrocytes and meningeal cells (MCs) that are present in the neural scar. The formation of cell clusters can be studied in co-cultures of SCs and MCs. In these co-cultures SCs form cluster-like non-overlapping cell aggregates with well-defined boundaries. There are several indications that neuropilins (NRPs) play an important role in MC-induced SC aggregation. Both SCs and MCs express NRP1 and NRP2 and SCs express the NRP ligands Sema3B, C and E while MCs express Sema3A, C, E and F. We now demonstrate that in SC-MC co-cultures, siRNA mediated knockdown of NRP2 in SCs decreased the formation of SC clusters while these SCs maintained their capacity to align in bands of Büngner-like columnar arrays. Unexpectedly, knockdown of NRP1 expression resulted in a significant increase in SC aggregation. These results suggest that a reduction in NRP2 expression may enhance the capacity of implanted SCs to interact with MCs that invade a neural scar formed after a lesion of the spinal cord.

]]>
<![CDATA[Asarone from Acori Tatarinowii Rhizome prevents oxidative stress-induced cell injury in cultured astrocytes: A signaling triggered by Akt activation]]> https://www.researchpad.co/article/5989db5dab0ee8fa60be04fa

Acori Tatarinowii Rhizome (ATR; the dried rhizome of Acori tatarinowii Schott) is a well-known herb being used for mental disorder in China and Asia. Volatile oil is considered as the active ingredient of ATR, and asarones account for more than 90% of total volatile oil. Here, the protective effects of ATR oil and asarones, both α-asarone and β-asarone, were probed in cultured rat astrocytes. The cyto-protective effect of ATR oil and asarones against tBHP-induced astrocyte injury was revealed, and additionally ATR oil and asarones reduced the tBHP-induced intracellular reactive oxygen species (ROS) accumulation. In parallel, the activity of anti-oxidant response element (ARE) promoter construct (pARE-Luc), being transfected in cultured astrocytes, was markedly induced by application of ATR oil and asarones. The mRNAs encoding anti-oxidant enzymes, e.g. glutathione S-transferase (GST), glutamate-cysteine ligase modulatory subunit (GCLM), glutamate-cysteine ligase catalytic subunit (GCLC) and NAD(P)H quinone oxidoreductase (NQO1) were induced by ATR oil and asarones in a dose-dependent manner. The ATR oil/asarone-induced gene expression could be mediated by Akt phosphorylation; because the applied LY294002, a phosphoinositide 3-kinase inhibitor, fully abolished the induction. These results demonstrated that α-asarone and β-asarone could account, at least partly, the function of ATR being a Chinese medicinal herb.

]]>
<![CDATA[Astrocytic β2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice]]> https://www.researchpad.co/article/5989db3bab0ee8fa60bd4e2e

In vitro and in vivo studies suggest that the astrocytic adrenergic signalling enhances glycogenolysis which provides energy to be transported to nearby cells and in the form of lactate. This energy source is important for motor and cognitive functioning. While it is suspected that the β2-adrenergic receptor on astrocytes might contribute to this energy balance, it has not yet been shown conclusively in vivo. Inducible astrocyte specific β2-adrenergic receptor knock-out mice were generated by crossing homozygous β2-adrenergic receptor floxed mice (Adrb2flox) and mice with heterozygous tamoxifen-inducible Cre recombinase-expression driven by the astrocyte specific L-glutamate/L-aspartate transporter promoter (GLAST-CreERT2). Assessments using the modified SHIRPA (SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment) test battery, swimming ability test, and accelerating rotarod test, performed at 1, 2 and 4 weeks, 6 and 12 months after tamoxifen (or vehicle) administration did not reveal any differences in physical health or motor functions between the knock-out mice and controls. However deficits were found in the cognitive ability of aged, but not young adult mice, reflected in impaired learning in the Morris Water Maze. Similarly, long-term potentiation (LTP) was impaired in hippocampal brain slices of aged knock-out mice maintained in low glucose media. Using microdialysis in cerebellar white matter we found no significant differences in extracellular lactate or glucose between the young adult knock-out mice and controls, although trends were detected. Our results suggest that β2-adrenergic receptor expression on astrocytes in mice may be important for maintaining cognitive health at advanced age, but is dispensable for motor function.

]]>
<![CDATA[Evaluating Tissue-Specific Recombination in a Pdgfrα-CreERT2 Transgenic Mouse Line]]> https://www.researchpad.co/article/5989d9daab0ee8fa60b6727a

In the central nervous system (CNS) platelet derived growth factor receptor alpha (PDGFRα) is expressed exclusively by oligodendrocyte progenitor cells (OPCs), making the Pdgfrα promoter an ideal tool for directing transgene expression in this cell type. Two Pdgfrα-CreERT2 mouse lines have been generated for this purpose which, when crossed with cre-sensitive reporter mice, allow the temporally restricted labelling of OPCs for lineage-tracing studies. These mice have also been used to achieve the deletion of CNS-specific genes from OPCs. However the ability of Pdgfrα-CreERT2 mice to induce cre-mediated recombination in PDGFRα+ cell populations located outside of the CNS has not been examined. Herein we quantify the proportion of PDGFRα+ cells that become YFP-labelled following Tamoxifen administration to adult Pdgfrα-CreERT2::Rosa26-YFP transgenic mice. We report that the vast majority (>90%) of PDGFRα+ OPCs in the CNS, and a significant proportion of PDGFRα+ stromal cells within the bone marrow (~38%) undergo recombination and become YFP-labelled. However, only a small proportion of the PDGFRα+ cell populations found in the sciatic nerve, adrenal gland, pituitary gland, heart, gastrocnemius muscle, kidney, lung, liver or intestine become YFP-labelled. These data suggest that Pdgfrα-CreERT2 transgenic mice can be used to achieve robust recombination in OPCs, while having a minimal effect on most PDGFRα+ cell populations outside of the CNS.

]]>
<![CDATA[N-terminal Huntingtin Knock-In Mice: Implications of Removing the N-terminal Region of Huntingtin for Therapy]]> https://www.researchpad.co/article/5989da41ab0ee8fa60b8a2db

The Huntington’s disease (HD) protein, huntingtin (HTT), is a large protein consisting of 3144 amino acids and has conserved N-terminal sequences that are followed by a polyglutamine (polyQ) repeat. Loss of Htt is known to cause embryonic lethality in mice, whereas polyQ expansion leads to adult neuronal degeneration. Whether N-terminal HTT is essential for neuronal development or contributes only to late-onset neurodegeneration remains unknown. We established HTT knock-in mice (N160Q-KI) expressing the first 208 amino acids of HTT with 160Q, and they show age-dependent HTT aggregates in the brain and neurological phenotypes. Importantly, the N-terminal mutant HTT also preferentially accumulates in the striatum, the brain region most affected in HD, indicating the importance of N-terminal HTT in selective neuropathology. That said, homozygous N160Q-KI mice are also embryonic lethal, suggesting that N-terminal HTT alone is unable to support embryonic development. Using Htt knockout neurons, we found that loss of Htt selectively affects the survival of developing neuronal cells, but not astrocytes, in culture. This neuronal degeneration could be rescued by a truncated HTT lacking the first 237 amino acids, but not by N-terminal HTT (1–208 amino acids). Also, the rescue effect depends on the region in HTT known to be involved in intracellular trafficking. Thus, the N-terminal HTT region may not be essential for the survival of developing neurons, but when carrying a large polyQ repeat, can cause selective neuropathology. These findings imply a possible therapeutic benefit of removing the N-terminal region of HTT containing the polyQ repeat to treat the neurodegeneration in HD.

]]>
<![CDATA[Long-lasting masculinizing effects of postnatal androgens on myelin governed by the brain androgen receptor]]> https://www.researchpad.co/article/5ab18494463d7e5ca175d923

The oligodendrocyte density is greater and myelin sheaths are thicker in the adult male mouse brain when compared with females. Here, we show that these sex differences emerge during the first 10 postnatal days, precisely at a stage when a late wave of oligodendrocyte progenitor cells arises and starts differentiating. Androgen levels, analyzed by gas chromatography/tandem-mass spectrometry, were higher in males than in females during this period. Treating male pups with flutamide, an androgen receptor (AR) antagonist, or female pups with 5α-dihydrotestosterone (5α-DHT), revealed the importance of postnatal androgens in masculinizing myelin and their persistent effect into adulthood. A key role of the brain AR in establishing the sexual phenotype of myelin was demonstrated by its conditional deletion. Our results uncover a new persistent effect of postnatal AR signaling, with implications for neurodevelopmental disorders and sex differences in multiple sclerosis.

]]>
<![CDATA[Structural and Ultrastructural Alterations in Human Olfactory Pathways and Possible Associations with Herpesvirus 6 Infection]]> https://www.researchpad.co/article/5989dac3ab0ee8fa60bb16ff

Structural and ultrastructural alterations in human olfactory pathways and putative associations with human herpesvirus 6 (HHV-6) infection were studied. The olfactory bulb/tract samples from 20 subjects with an unspecified encephalopathy determined by pathomorphological examination of the brain autopsy, 17 healthy age-matched and 16 younger controls were used. HHV-6 DNA was detected in 60, 29, and 19% of cases in these groups, respectively. In the whole encephalopathy group, significantly more HHV-6 positive neurons and oligodendrocytes were found in the gray matter, whereas, significantly more HHV-6 positive astrocytes, oligodendrocytes, microglia/macrophages and endothelial cells were found in the white matter. Additionally, significantly more HHV-6 positive astrocytes and, in particular, oligodendrocytes were found in the white matter when compared to the gray matter. Furthermore, when only HHV-6 PCR+ encephalopathy cases were studied, we observed similar but stronger associations between HHV-6 positive oligodendrocytes and CD68 positive cells in the white matter. Cellular alterations were additionally evidenced by anti-S100 immunostaining, demonstrating a significantly higher number of S100 positive cells in the gray matter of the whole encephalopathy group when compared to the young controls, and in the white matter when compared to both control groups. In spite the decreased S100 expression in the PCR+ encephalopathy group when compared to PCR- cases and controls, groups demonstrated significantly higher number of S100 positive cells in the white compared to the gray matter. Ultrastructural changes confirming the damage of myelin included irregularity of membranes and ballooning of paranodal loops. This study shows that among the cellular targets of the nervous system, HHV-6 most severely affects oligodendrocytes and the myelin made by them.

]]>
<![CDATA[Expression patterns of Slit and Robo family members in adult mouse spinal cord and peripheral nervous system]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbdd9

The secreted glycoproteins, Slit1-3, are classic axon guidance molecules that act as repulsive cues through their well characterised receptors Robo1-2 to allow precise axon pathfinding and neuronal migration. The expression patterns of Slit1-3 and Robo1-2 have been most characterized in the rodent developing nervous system and the adult brain, but little is known about their expression patterns in the adult rodent peripheral nervous system. Here, we report a detailed expression analysis of Slit1-3 and Robo1-2 in the adult mouse sciatic nerve as well as their expression in the nerve cell bodies within the ventral spinal cord (motor neurons) and dorsal root ganglion (sensory neurons). Our results show that, in the adult mouse peripheral nervous system, Slit1-3 and Robo1-2 are expressed in the cell bodies and axons of both motor and sensory neurons. While Slit1 and Robo2 are only expressed in peripheral axons and their cell bodies, Slit2, Slit3 and Robo1 are also expressed in satellite cells of the dorsal root ganglion, Schwann cells and fibroblasts of peripheral nerves. In addition to these expression patterns, we also demonstrate the expression of Robo1 in blood vessels of the peripheral nerves. Our work gives important new data on the expression patterns of Slit and Robo family members within the peripheral nervous system that may relate both to nerve homeostasis and the reaction of the peripheral nerves to injury.

]]>
<![CDATA[The role of myosin II in glioma invasion: A mathematical model]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdb876

Gliomas are malignant tumors that are commonly observed in primary brain cancer. Glioma cells migrate through a dense network of normal cells in microenvironment and spread long distances within brain. In this paper we present a two-dimensional multiscale model in which a glioma cell is surrounded by normal cells and its migration is controlled by cell-mechanical components in the microenvironment via the regulation of myosin II in response to chemoattractants. Our simulation results show that the myosin II plays a key role in the deformation of the cell nucleus as the glioma cell passes through the narrow intercellular space smaller than its nuclear diameter. We also demonstrate that the coordination of biochemical and mechanical components within the cell enables a glioma cell to take the mode of amoeboid migration. This study sheds lights on the understanding of glioma infiltration through the narrow intercellular spaces and may provide a potential approach for the development of anti-invasion strategies via the injection of chemoattractants for localization.

]]>
<![CDATA[Abnormal differentiation of Sandhoff disease model mouse-derived multipotent stem cells toward a neural lineage]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be0296

In Sandhoff disease (SD), the activity of the lysosomal hydrolytic enzyme, β-hexosaminidase (Hex), is lost due to a Hexb gene defect, which results in the abnormal accumulation of the substrate, GM2 ganglioside (GM2), in neuronal cells, causing neuronal loss, microglial activation, and astrogliosis. We established induced pluripotent stem cells from the cells of SD mice (SD-iPSCs). In the present study, we investigated the occurrence of abnormal differentiation and development of a neural lineage in the asymptomatic phase of SD in vitro using SD mouse fetus-derived neural stem cells (NSCs) and SD-iPSCs. It was assumed that the number of SD mouse fetal brain-derived NSCs was reduced and differentiation was promoted, resulting in the inhibition of differentiation into neurons and enhancement of differentiation into astrocytes. The number of SD-iPSC-derived NSCs was also reduced, suggesting that the differentiation of NSCs was promoted, resulting in the inhibition of differentiation into neurons and enhancement of that into astrocytes. This abnormal differentiation of SD-iPSCs toward a neural lineage was reduced by the glucosylceramide synthase inhibitor, miglustat. Furthermore, abnormal differentiation toward a neural lineage was reduced in SD-iPSCs with Hexb gene transfection. Therefore, differentiation ability along the time axis appears to be altered in SD mice in which the differentiation ability of NSCs is promoted and differentiation into neurons is completed earlier, while the timing of differentiation into astrocytes is accelerated. These results clarified that the abnormal differentiation of SD-iPSCs toward a neural lineage in vitro was shown to reflect the pathology of SD.

]]>
<![CDATA[Effects of Ranolazine on Astrocytes and Neurons in Primary Culture]]> https://www.researchpad.co/article/5989d9f3ab0ee8fa60b6f259

Ranolazine (Rn) is an antianginal agent used for the treatment of chronic angina pectoris when angina is not adequately controlled by other drugs. Rn also acts in the central nervous system and it has been proposed for the treatment of pain and epileptic disorders. Under the hypothesis that ranolazine could act as a neuroprotective drug, we studied its effects on astrocytes and neurons in primary culture. We incubated rat astrocytes and neurons in primary cultures for 24 hours with Rn (10−7, 10−6 and 10−5 M). Cell viability and proliferation were measured using trypan blue exclusion assay, MTT conversion assay and LDH release assay. Apoptosis was determined by Caspase 3 activity assay. The effects of Rn on pro-inflammatory mediators IL-β and TNF-α was determined by ELISA technique, and protein expression levels of Smac/Diablo, PPAR-γ, Mn-SOD and Cu/Zn-SOD by western blot technique. In cultured astrocytes, Rn significantly increased cell viability and proliferation at any concentration tested, and decreased LDH leakage, Smac/Diablo expression and Caspase 3 activity indicating less cell death. Rn also increased anti-inflammatory PPAR-γ protein expression and reduced pro-inflammatory proteins IL-1 β and TNFα levels. Furthermore, antioxidant proteins Cu/Zn-SOD and Mn-SOD significantly increased after Rn addition in cultured astrocytes. Conversely, Rn did not exert any effect on cultured neurons. In conclusion, Rn could act as a neuroprotective drug in the central nervous system by promoting astrocyte viability, preventing necrosis and apoptosis, inhibiting inflammatory phenomena and inducing anti-inflammatory and antioxidant agents.

]]>
<![CDATA[Changes in Expression of Aquaporin-4 and Aquaporin-9 in Optic Nerve after Crushing in Rats]]> https://www.researchpad.co/article/5989dac1ab0ee8fa60bb0ead

The purpose of this study was to determine the temporal and spatial changes in the expression of AQP4 and AQP9 in the optic nerve after it is crushed. The left optic nerves of rats were either crushed (crushed group) or sham operated (sham group), and they were excised before, and at 1, 2, 4, 7, and 14 days later. Four optic nerves were pooled for each time point in both groups. The expression of AQP4 and AQP9 was determined by western blot analyses. Immunohistochemistry was used to determine the spatial expression of AQP4, AQP9, and GFAP in the optic nerve. Optic nerve edema was determined by measuring the water content in the optic nerve. The barrier function of the optic nerve vessels was determined by the extravasated Evans blue dye on days 7 and 14. The results showed that the expression of AQP4 was increased on day 1 but the level was significantly lower than that in the sham group on days 4 and 7 (P<0.05). In contrast, the expression of AQP9 gradually increased, and the level was significantly higher than that in the sham group on days 7 and 14 (P<0.05, Tukey-Kramer). The down-regulation of AQP4 was associated with crush-induced optic nerve edema, and the water content of the nerve was significantly increased by 4.3% in the crushed optic nerve from that of the untouched fellow nerve on day 7. The expression of AQP4 and GFAP was reduced at the crushed site where AQP4-negative and AQP9-positive astrocytes were present. The barrier function was impaired at the crushed site on days 7 and 14, restrictedly where AQP4-negative and AQP9-positive astrocytes were present. The presence of AQP9-positive astrocytes at the crushed site may counteract the metabolic damage but this change did not fully compensate for the barrier function defect.

]]>
<![CDATA[Pertussis Toxin Is a Robust and Selective Inhibitor of High Grade Glioma Cell Migration and Invasion]]> https://www.researchpad.co/article/5989da90ab0ee8fa60b9fca4

In high grade glioma (HGG), extensive tumor cell infiltration of normal brain typically precludes identifying effective margins for surgical resection or irradiation. Pertussis toxin (PT) is a multimeric complex that inactivates diverse Gi/o G-protein coupled receptors (GPCRs). Despite the broad continuum of regulatory events controlled by GPCRs, PT may be applicable as a therapeutic. We have shown that the urokinase receptor (uPAR) is a major driver of HGG cell migration. uPAR-initiated cell-signaling requires a Gi/o GPCR, N-formyl Peptide Receptor 2 (FPR2), as an essential co-receptor and is thus, PT-sensitive. Herein, we show that PT robustly inhibits migration of three separate HGG-like cell lines that express a mutated form of the EGF Receptor (EGFR), EGFRvIII, which is constitutively active. PT also almost completely blocked the ability of HGG cells to invade Matrigel. In the equivalent concentration range (0.01–1.0 μg/mL), PT had no effect on cell survival and only affected proliferation of one cell line. Neutralization of EGFRvIII expression in HGG cells, which is known to activate uPAR-initiated cell-signaling, promoted HGG cell migration. The increase in HGG cell migration, induced by EGFRvIII neutralization, was entirely blocked by silencing FPR2 gene expression or by treating the cells with PT. When U87MG HGG cells were cultured as suspended neurospheres in serum-free, growth factor-supplemented medium, uPAR expression was increased. HGG cells isolated from neurospheres migrated through Transwell membranes without loss of cell contacts; this process was inhibited by PT by >90%. PT also inhibited expression of vimentin by HGG cells; vimentin is associated with epithelial-mesenchymal transition and worsened prognosis. We conclude that PT may function as a selective inhibitor of HGG cell migration and invasion.

]]>