ResearchPad - marine-and-aquatic-sciences https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Examination of the ocean as a source for atmospheric microplastics]]> https://www.researchpad.co/article/elastic_article_13804 Global plastic litter pollution has been increasing alongside demand since plastic products gained commercial popularity in the 1930’s. Current plastic pollutant research has generally assumed that once plastics enter the ocean they are there to stay, retained permanently within the ocean currents, biota or sediment until eventual deposition on the sea floor or become washed up onto the beach. In contrast to this, we suggest it appears that some plastic particles could be leaving the sea and entering the atmosphere along with sea salt, bacteria, virus’ and algae. This occurs via the process of bubble burst ejection and wave action, for example from strong wind or sea state turbulence. In this manuscript we review evidence from the existing literature which is relevant to this theory and follow this with a pilot study which analyses microplastics (MP) in sea spray. Here we show first evidence of MP particles, analysed by μRaman, in marine boundary layer air samples on the French Atlantic coast during both onshore (average of 2.9MP/m3) and offshore (average of 9.6MP/m3) winds. Notably, during sampling, the convergence of sea breeze meant our samples were dominated by sea spray, increasing our capacity to sample MPs if they were released from the sea. Our results indicate a potential for MPs to be released from the marine environment into the atmosphere by sea-spray giving a globally extrapolated figure of 136000 ton/yr blowing on shore.

]]>
<![CDATA[Investigating barriers and challenges to the integrated management of neglected tropical skin diseases in an endemic setting in Nigeria]]> https://www.researchpad.co/article/elastic_article_13828 Community perceptions of causation of neglected tropical diseases (NTDs) of the skin may play an important role in access to or utilization of health services. The World Health Organization (WHO) has recommended empowerment of populations affected by or at risk of NTDs in control interventions. Furthermore, the WHO recommends that social mobilisation needs to be maintained in order to create demand for integrated management of skin NTDs and to address specific community aspects and concerns related to the diseases. There are no studies on community knowledge, attitudes and practices (KAP) on skin NTDs co-occurring in the same community in Nigeria. We surveyed community members and health workers and also held group discussions with community members, health workers and individuals with lymphatic filariasis and Buruli ulcer in order to assess their understanding of the causes, treatment and effects of the skin NTDs (leprosy, Buruli ulcer and lymphatic filariasis) which were all occurring in the study communities. There was a shared understanding that these NTDs were caused by germ/infection or through witchcraft/curse/poison. Also, a substantial proportion of the community believed that these conditions are not amenable to treatment. The focus group discussions reinforced these findings.

]]>
<![CDATA[Sustainability management of short-lived freshwater fish in human-altered ecosystems should focus on adult survival]]> https://www.researchpad.co/article/elastic_article_7859 Fish populations globally are susceptible to endangerment through exploitation and habitat loss. We present theoretical simulations to explore how reduced adult survival (age truncation) might affect short-lived freshwater fish species in human-altered contemporary environments. Our simulations evaluate two hypothetical "average fish" and five example fish species of age 1 or age 2 maturity. From a population equilibrium baseline representing a natural, unaltered environment we impose systematic reductions in adult survival and quantify how age truncation affects the causes of variation in population growth rate. We estimate the relative contributions to population growth rate arising from simulated temporal variation in age-specific vital rates and population structure. At equilibrium and irrespective of example species, population structure (first adult age class) and survival probability of the first two adult age classes are the most important determinants of population growth. As adult survival decreases, the first reproductive age class becomes increasingly important to variation in population growth. All simulated examples show the same general pattern of change with age truncation as known for exploited, longer-lived fish species in marine and freshwater environments. This implies age truncation is a general potential concern for fish biodiversity across life history strategies and ecosystems. Managers of short-lived, freshwater fishes in contemporary environments often focus on supporting reproduction to ensure population persistence. However, a strong focus on water management to support reproduction may reduce adult survival. Sustainability management needs a focus on mitigating adult mortality in human-altered ecosystems. A watershed spatial extent embracing land and water uses may be necessary to identify and mitigate causes of age truncation in freshwater species. Achieving higher adult survival will require paradigm transformations in society and government about water management priorities.

]]>
<![CDATA[The 2015-2016 El Niño increased infection parameters of copepods on Eastern Tropical Pacific dolphinfish populations]]> https://www.researchpad.co/article/elastic_article_7672 The oceanographic conditions of the Pacific Ocean are largely modified by El Niño (EN), affecting several ecological processes. Parasites and other marine organisms respond to environmental variation, but the influence of the EN cycle on the seasonal variation of parasitic copepods has not been yet evaluated. We analysed the relation between infection parameters (prevalence and mean intensity) of the widespread parasitic copepods Caligus bonito and Charopinopsis quaternia in the dolphinfish Coryphaena hippurus and oceanography during the strong 2015–16 EN. Fish were collected from capture fisheries on the Ecuadorian coast (Tropical Eastern Pacific) over a 2-year period. Variations of sea surface temperature (SST), salinity, chlorophyll a (Chl-a), Oceanic Niño Index (ONI), total host length (TL) and monthly infection parameters of both copepod species were analysed using time series and cross-correlations. We used the generalised additive models for determine the relationship between environmental variables and infection parameters. The total body length of the ovigerous females and the length of the eggs of C. bonito were measured in both periods. Infection parameters of both C. bonito and Ch. quaternia showed seasonal and annual patterns associated with the variation of environmental variables examined (SST, salinity, Chl-a and ONI 1+2). Infection parameters of both copepod species were significantly correlated with ONI 1+2, SST, TL and Chl-a throughout the GAMLSS model, and the explained deviance contribution ranged from 16%-36%. Our results suggest than an anomaly higher than +0.5°C triggers a risen in infection parameters of both parasitic copepods. This risen could be related to increases in egg length, female numbers and the total length of the ovigerous females in EN period. This study provides the first evidence showing that tropical parasitic copepods are sensitive to the influence of EN event, especially from SST variations. The observed behaviour of parasitic copepods likely affects the host populations and structure of the marine ecosystem at different scales.

]]>
<![CDATA[Effects of sea-level rise on physiological ecology of populations of a ground-dwelling ant]]> https://www.researchpad.co/article/N7f89605c-5421-4b76-a019-ba0e7ddd5b34

Introduction

Sea-level rise is a consequence of climate change that can impact the ecological and physiological changes of coastal, ground-dwelling species. Sea-level rise has a potential to inundate birds, rodents, spiders, and insects that live on the ground in coastal areas. Yet, there is still much to be learned concerning the specifics of these impacts. The red imported fire ant Solenopsis invicta (Buren) excavates soil for its home and is capable of surviving flooding. Because of their ground-dwelling life history and rapid reproduction, fire ants make an ideal model for discovery and prediction of changes that may be due to sea-level rise. There are up to 500,000 individuals in a colony, and these invasive ants naturally have a painful sting. However, observations suggest that colonies of fire ants that dwell in tidally-influenced areas are more aggressive with more frequent stings and more venom injected per sting (behavioral and physiological changes) than those located inland. This may be an adaption to sea-level rise. Therefore, the objective of this study is to elucidate differences in inland and coastal defensiveness via micro-dissection and comparison of head width, head length, stinger length, and venom sac volume. But first because fire ants’ ability to raft on brackish tidal water is unknown, it had to be determined if fire ants could indeed raft in brackish water and examine the behavior differences between those flooded with freshwater vs. saltwater.

Methods

To test the coastal-aggression hypothesis, inland colonies and coastal colonies, which experience relatively greater amounts of flooding, specifically regular tidal and windblown water and oscillations (i.e. El Nińo Southern Oscillation) from the Gulf of Mexico, were collected. To mimic sea-level rise, the colonies were flooded in salinities that correspond to both their collection site and conditions found in a variety of locales and situations (such as storm surge from a tropical storm). Individual ants were immediately taken from each colony for dissection before flooding, 1-hour into flooding, and 24-hours into flooding.

Results and discussion

Fire ants use their venom to defend themselves and to communicate alarm or aggression. Dissections and measurement of heads, venom sacs, and stingers revealed both coastal and inland colonies experience an increase in venom sac volume after 24 hours; in fact coastal colonies increased their venom volume by 75% after 24 h of flooding Whether this venom sac enlargement is due to diffusion of water or venom sac production is unknown. These ground-dwelling ants exhibit physiological and behavioral adaptations to ongoing sea-level rise possibly indicating that they are responding to increased flooding. Fire ants will raft on high-salinity water; and sea-level rise may cause stings by flooded ants to be more severe because of increased venom volume.

]]>
<![CDATA[Land use change affects water erosion in the Nepal Himalayas]]> https://www.researchpad.co/article/N98261953-1324-4322-aaeb-9737bf3bbcea

Soil erosion is a global environmental threat, and Land Use Land Cover Changes (LUCC) have significant impacts on it. Nepal, being a mountainous country, has significant soil erosion issues. To examine the effects of LUCC on water erosion, we studied the LUCC in Sarada, Rapti and Thuli Bheri river basins of Nepal during the 1995–2015 period using the Remote Sensing. We calculated the average annual soil loss using the Revised Universal Soil Loss Equation and Geographical Information System. Our results suggest that an increase in the agricultural lands at the expense of bare lands and forests escalated the soil erosion through the years; rates being 5.35, 5.47 and 6.03 t/ha/year in 1995, 2007 and 2015, respectively. Of the different land uses, agricultural land experienced the most erosion, whereas the forests experienced the least erosion. Agricultural lands, particularly those on the steeper slopes, were severely degraded and needed urgent soil and water conservation measures. Our study confirms that the long term LUCC has considerable impacts on soil loss, and these results can be implemented in similar river basins in other parts of the country.

]]>
<![CDATA[Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish]]> https://www.researchpad.co/article/N4fc7d71e-6de4-4251-8df9-22327ccf5952

Understanding the extent to which ecological divergence is repeatable is essential for predicting responses of biodiversity to environmental change. Here we test the predictability of evolution, from genotype to phenotype, by studying parallel evolution in a salmonid fish, Arctic charr (Salvelinus alpinus), across eleven replicate sympatric ecotype pairs (benthivorous-planktivorous and planktivorous-piscivorous) and two evolutionary lineages. We found considerable variability in eco-morphological divergence, with several traits related to foraging (eye diameter, pectoral fin length) being highly parallel even across lineages. This suggests repeated and predictable adaptation to environment. Consistent with ancestral genetic variation, hundreds of loci were associated with ecotype divergence within lineages of which eight were shared across lineages. This shared genetic variation was maintained despite variation in evolutionary histories, ranging from postglacial divergence in sympatry (ca. 10-15kya) to pre-glacial divergence (ca. 20-40kya) with postglacial secondary contact. Transcriptome-wide gene expression (44,102 genes) was highly parallel across replicates, involved biological processes characteristic of ecotype morphology and physiology, and revealed parallelism at the level of regulatory networks. This expression divergence was not only plastic but in part genetically controlled by parallel cis-eQTL. Lastly, we found that the magnitude of phenotypic divergence was largely correlated with the genetic differentiation and gene expression divergence. In contrast, the direction of phenotypic change was mostly determined by the interplay of adaptive genetic variation, gene expression, and ecosystem size. Ecosystem size further explained variation in putatively adaptive, ecotype-associated genomic patterns within and across lineages, highlighting the role of environmental variation and stochasticity in parallel evolution. Together, our findings demonstrate the parallel evolution of eco-morphology and gene expression within and across evolutionary lineages, which is controlled by the interplay of environmental stochasticity and evolutionary contingencies, largely overcoming variable evolutionary histories and genomic backgrounds.

]]>
<![CDATA[Perceived socio-economic impacts of the marbled crayfish invasion in Madagascar]]> https://www.researchpad.co/article/N7a6c5db8-4016-4d26-87a6-87422e70e8c1

The negative environmental and economic impacts of many invasive species are well known. However, given the increased homogenization of global biota, and the difficulty of eradicating species once established, a balanced approach to considering the impacts of invasive species is needed. The marbled crayfish (Procambarus virginalis) is a parthenogenetic freshwater crayfish that was first observed in Madagascar around 2005 and has spread rapidly. We present the results of a socio-economic survey (n = 385) in three regions of Madagascar that vary in terms of when the marbled crayfish first arrived. Respondents generally considered marbled crayfish to have a negative impact on rice agriculture and fishing, however the animals were seen as making a positive contribution to household economy and food security. Regression modeling showed that respondents in regions with longer experience of marbled crayfish have more positive perceptions. Unsurprisingly, considering the perception that crayfish negatively impact rice agriculture, those not involved in crayfish harvesting and trading had more negative views towards the crayfish than those involved in crayfish-related activities. Food preference ranking and market surveys revealed the acceptance of marbled crayfish as a cheap source of animal protein; a clear positive in a country with widespread malnutrition. While data on biodiversity impacts of the marbled crayfish invasion in Madagascar are still completely lacking, this study provides insight into the socio-economic impacts of the dramatic spread of this unique invasive species. Biby kely tsy fantam-piaviana, mahavelona fianakaviana” (a small animal coming from who knows where which supports the needs of the family). Government worker Analamanga, Madagascar.

]]>
<![CDATA[Lake-depth related pattern of genetic and morphological diatom diversity in boreal Lake Bolshoe Toko, Eastern Siberia]]> https://www.researchpad.co/article/N3e538c26-938b-46fc-81d6-ffac689cc377

Large, old and heterogenous lake systems are valuable sources of biodiversity. The analysis of current spatial variability within such lakes increases our understanding of the origin and establishment of biodiversity. The environmental sensitivity and the high taxonomic richness of diatoms make them ideal organisms to investigate intra-lake variability. We investigated modern intra-lake diatom diversity in the large and old sub-arctic Lake Bolshoe Toko in Siberia. Our study uses diatom-specific metabarcoding, applying a short rbcL marker combined with next-generation sequencing and morphological identification to analyse the diatom diversity in modern sediment samples of 17 intra-lake sites. We analysed abundance-based compositional taxonomic diversity and generic phylogenetic diversity to investigate the relationship of diatom diversity changes with water depth. The two approaches show differences in taxonomic identification and alpha diversity, revealing a generally higher diversity with the genetic approach. With respect to beta diversity and ordination analyses, both approaches result in similar patterns. Water depth or related lake environmental conditions are significant factors influencing intra-lake diatom patterns, showing many significant negative correlations between alpha and beta diversity and water depth. Further, one near-shore and two lagoon lake sites characterized by low (0-10m) and medium (10-30m) water depth are unusual with unique taxonomic compositions. At deeper (>30m) water sites we identified strongest phylogenetic clustering in Aulacoseira, but generally much less in Staurosira, which supports that water depth is a strong environmental filter on the Aulacoseira communities. Our study demonstrates the utility of combining analyses of genetic and morphological as well as phylogenetic diversity to decipher compositional and generic phylogenetic patterns, which are relevant in understanding intra-lake heterogeneity as a source of biodiversity in the sub-arctic glacial Lake Bolshoe Toko.

]]>
<![CDATA[The southern Gulf of Mexico: A baseline radiocarbon isoscape of surface sediments and isotopic excursions at depth]]> https://www.researchpad.co/article/Ne8afb4d0-568f-42aa-84a3-644a9625edfc

The southern Gulf of Mexico (sGoM) is home to an extensive oil recovery and development infrastructure. In addition, the basin harbors sites of submarine hydrocarbon seepage and receives terrestrial inputs from bordering rivers. We used stable carbon, nitrogen, and radiocarbon analyses of bulk sediment organic matter to define the current baseline isoscapes of surface sediments in the sGoM and determined which factors might influence them. These baseline surface isoscapes will be useful for accessing future environmental impacts. We also examined the region for influence of hydrocarbon deposition in the sedimentary record that might be associated with hydrocarbon recovery, spillage and seepage, as was found in the northern Gulf of Mexico (nGoM) following the Deepwater Horizon (DWH) oil spill in 2010. In 1979, the sGoM experienced a major oil spill, Ixtoc 1. Surface sediment δ13C values ranged from -22.4‰ to -19.9‰, while Δ14C values ranged from -337.1‰ to -69.2‰. Sediment δ15N values ranged from 2.8‰ to 7.2‰, while the %C on a carbonate-free basis ranged in value of 0.65% to 3.89% and %N ranged in value of 0.09% to 0.49%. Spatial trends for δ13C and Δ14C were driven by water depth and distance from the coastline, while spatial trends for δ15N were driven by location (latitude and longitude). Location and distance from the coastline were significantly correlated with %C and %N. At depth in two of twenty (10%) core profiles, we found negative δ13C and Δ14C excursions from baseline values in bulk sedimentary organic material, consistent with either oil-residue deposition or terrestrial inputs, but likely the latter. We then used 210Pb dating on those two profiles to determine the time in which the excursion-containing horizons were deposited. Despite the large spill in 1979, no evidence of hydrocarbon residue remained in the sediments from this specific time period.

]]>
<![CDATA[Origin of the natural variation in the storage of dietary carotenoids in freshwater amphipod crustaceans]]> https://www.researchpad.co/article/N905bc2f7-7243-429f-9b99-7855ae079227

Carotenoids are diverse lipophilic natural pigments which are stored in variable amounts by animals. Given the multiple biological functions of carotenoids, such variation may have strong implications in evolutionary biology. Crustaceans such as Gammarus amphipods store large amounts of these pigments and inter-population variation occurs. While differences in parasite selective pressure have been proposed to explain this variation, the contribution of other factors such as genetic differences in the gammarid ability to assimilate and/or store pigments, and the environmental availability of carotenoids cannot be dismissed. This study investigates the relative contributions of the gammarid genotype and of the environmental availability of carotenoids in the natural variability in carotenoid storage. It further explores the link of this natural variability in carotenoid storage with major crustacean immune parameters. We addressed these aspects using the cryptic diversity in the amphipod crustacean Gammarus fossarum and a diet supplementation protocol in the laboratory. Our results suggest that natural variation in G. fossarum storage of dietary carotenoids results from both the availability of the pigments in the environment and the genetically-based ability of the gammarids to assimilate and/or store them, which is associated to levels of stimulation of cellular immune defences. While our results may support the hypothesis that carotenoids storage in this crustacean may evolve in response to parasitic pressure, a better understanding of the specific roles of this large pigment storage in the crustacean physiology is needed.

]]>
<![CDATA[Bund removal to re-establish tidal flow, remove aquatic weeds and restore coastal wetland services—North Queensland, Australia]]> https://www.researchpad.co/article/Neac5db12-b809-4a22-afa7-0c243544d6ab

The shallow tidal and freshwater coastal wetlands adjacent to the Great Barrier Reef lagoon provide a vital nursery and feeding complex that supports the life cycles of marine and freshwater fish, important native vegetation and vital bird habitat. Urban and agricultural development threaten these wetlands, with many of the coastal wetlands becoming lost or changed due to the construction of artificial barriers (e.g. bunds, roads, culverts and floodgates). Infestation by weeds has become a major issue within many of the wetlands modified (bunded) for ponded pasture growth last century. A range of expensive chemical and mechanical control methods have been used in an attempt to restore some of these coastal wetlands, with limited success. This study describes an alternative approach to those methods, investigating the impact of tidal reinstatement after bund removal on weed infestation, associated changes in water quality, and fish biodiversity, in the Boolgooroo lagoon region of the Mungalla wetlands, East of Ingham in North Queensland. High resolution remote sensing, electrofishing and in-water logging was used to track changes over time– 1 year before and 4 years after removal of an earth bund. With tides only penetrating the wetland a few times yearly, gross changes towards a more natural system occurred within a relatively short timeframe, leading to a major reduction in infestation of olive hymenachne, water hyacinth and salvina, reappearance of native vegetation, improvements in water quality, and a tripling of fish diversity. Weed abundance and water quality does appear to oscillate however, dependent on summer rainfall, as changes in hydraulic pressure stops or allows tidal ingress (fresh/saline cycling). With an estimated 30% of coastal wetlands bunded in the Great Barrier Reef region, a passive remediation method such as reintroduction of tidal flow by removal of an earth bund or levee could provide a more cost effective and sustainable means of controlling freshwater weeds and improving coastal water quality into the future.

]]>
<![CDATA[How “simple” methodological decisions affect interpretation of population structure based on reduced representation library DNA sequencing: A case study using the lake whitefish]]> https://www.researchpad.co/article/N3bb2bc39-24d6-4fe3-98ed-f97dea058c57

Reduced representation (RRL) sequencing approaches (e.g., RADSeq, genotyping by sequencing) require decisions about how much to invest in genome coverage and sequencing depth, as well as choices of values for adjustable bioinformatics parameters. To empirically explore the importance of these “simple” methodological decisions, we generated two independent sequencing libraries for the same 142 individual lake whitefish (Coregonus clupeaformis) using a nextRAD RRL approach: (1) a larger number of loci at low sequencing depth based on a 9mer (library A); and (2) fewer loci at higher sequencing depth based on a 10mer (library B). The fish were selected from populations with different levels of expected genetic subdivision. Each library was analyzed using the STACKS pipeline followed by three types of population structure assessment (FST, DAPC and ADMIXTURE) with iterative increases in the stringency of sequencing depth and missing data requirements, as well as more specific a priori population maps. Library B was always able to resolve strong population differentiation in all three types of assessment regardless of the selected parameters, largely due to retention of more loci in analyses. In contrast, library A produced more variable results; increasing the minimum sequencing depth threshold (-m) resulted in a reduced number of retained loci, and therefore lost resolution at high -m values for FST and ADMIXTURE, but not DAPC. When detecting fine population differentiation, the population map influenced the number of loci and missing data, which generated artefacts in all downstream analyses tested. Similarly, when examining fine scale population subdivision, library B was robust to changing parameters but library A lost resolution depending on the parameter set. We used library B to examine actual subdivision in our study populations. All three types of analysis found complete subdivision among populations in Lake Huron, ON and Dore Lake, SK, Canada using 10,640 SNP loci. Weak population subdivision was detected in Lake Huron with fish from sites in the north-west, Search Bay, North Point and Hammond Bay, showing slight differentiation. Overall, we show that apparently simple decisions about library construction and bioinformatics parameters can have important impacts on the interpretation of population subdivision. Although potentially more costly on a per-locus basis, early investment in striking a balance between the number of loci and sequencing effort is well worth the reduced genomic coverage for population genetics studies. More conservative stringency settings on STACKS parameters lead to a final dataset that was more consistent and robust when examining both weak and strong population differentiation. Overall, we recommend that researchers approach “simple” methodological decisions with caution, especially when working on non-model species for the first time.

]]>
<![CDATA[Reproductive life-history strategies in a species-rich assemblage of Amazonian electric fishes]]> https://www.researchpad.co/article/N810c6abb-a507-4d5b-89ae-f4ccddeb69e1

The reproductive biology of only a small fraction of Neotropical freshwater fishes has been described, and detailed comparative studies of reproductive life-history variation in the Neotropical ichthyofauna are lacking. Here we describe interspecific variation in reproductive life history for a multi-species assemblage of the electric knifefish genus Brachyhypopomus (Hypopomidae: Gymnotiformes: Ostariophysi) from Amazonian floodplain and terra firme stream systems. During a year-round quantitative sampling program, we collected and measured key life-history traits from 3,410 individuals. Based on oocyte size distributions, and on circannual variation in gonadosomatic indices, hepatosomatic indices, and capture-per-unit-effort abundance of reproductive adults, we concluded that all species exhibit a single protracted annual breeding season during which females spawn fractionally. We found small clusters of post-larval individuals in one floodplain species and one terra firme stream species, but no signs of parental care. From analyses of body size-frequency distributions and otolith growth increments, we concluded that five species in our study area have approximately one-year (annual) semelparous life history with a single reproductive period followed by death, while two species have a two-year iteroparous life history, with breeding in both year-groups. Despite predictions from life-history theory we found no salient correlations between life history strategy (semelparity or iteroparity) and habitat occupancy (floodplain or terra firme stream). In the iteroparous species B. beebei, we documented evidence for reproductive restraint in the first breeding season relative to the second breeding season and argue that this is consistent with age-regulated terminal investment.

]]>
<![CDATA[A simplistic approach of algal biofuels production from wastewater using a Hybrid Anaerobic Baffled Reactor and Photobioreactor (HABR-PBR) System]]> https://www.researchpad.co/article/Nef4e691d-a854-4652-b105-625011806151

The current technologies of algal biofuels production and wastewater treatment (e.g., aerobic) process are still in question, due to the significant amount of fresh water and nutrients requirements for microalgae cultivation, and negative energy balance in both processes, especially when considered in the context of developing counties around the world. In this research, a simplistic sustainable approach of algal biofuels production from wastewater was proposed using a Hybrid Anaerobic Baffled Reactor (HABR) and Photobioreactor (PBR) system. The study suggests that the HABR was capable of removing most of the organic and solid (>90% COD and TSS removal) from wastewater, and produced a healthy feedstock (high N: P = 3:1) for microalgae cultivation in PBRs for biofuels production. A co-culture of Chlorella vulgaris, Chlorella sorokiniana, and Scenedesmus simris002 showed high lipid content up to 44.1%; and the dominant FAMEs composition (C16-C18) of 87.9% in produced biofuels. Perhaps, this proposed low-cost technological approach (e.g., HABR-PBR system) would connect the currently broken link of sustainable bioenergy generation and wastewater treatment pathway for developing countries.

]]>
<![CDATA[Advanced approach to analyzing calcareous protists for present and past pelagic ecology: Comprehensive analysis of 3D-morphology, stable isotopes, and genes of planktic foraminifers]]> https://www.researchpad.co/article/5c8acce4d5eed0c484990244

Marine protists play an important role in oceanic ecosystems and biogeochemical cycles. However, the difficulties in culturing pelagic protists indicate that their ecology and behavior remain poorly understood; phylogeographic studies based on single-cell genetic analyses have often shown that they are highly divergent at the biological species level, with variable geographic distributions. This indicates that their ecology could be complex. On the other hand, the biomineral (calcareous) shells of planktic foraminifers are widely used in geochemical analyses to estimate marine paleoenvironmental characteristics (i.e., temperature), because the shell chemical composition reflects ambient seawater conditions. Among the pelagic protists, planktic foraminifers are ideal study candidates to develop a combined approach of genetic, morphological, and geochemical methods, thus reflecting environmental and ecological characteristics. The present study precisely tested whether the DNA extraction process physically and chemically affects the shells of the planktic foraminifer Globigerinoides ruber. We used a nondestructive method for analyzing physical changes (micro-focus X-ray computed tomography (MXCT) scanning) to compare specimens at the pre- and post-DNA extraction stages. Our results demonstrate that DNA extraction has no significant effect on shell density and thickness. We measured stable carbon and oxygen isotopes on the shell of each individual in a negative control or one of two DNA-extracted groups and detected no significant differences in isotopic values among the three groups. Moreover, we evaluated isotopic variations at the biological species level with regard to their ecological characteristics such as depth habitat, life stages, and symbionts. Thus, our examination of the physiochemical effects on biomineral shells through DNA extraction shows that morphological and isotopic analyses of foraminifers can be combined with genetic analysis. These analytical methods are applicable to other shell-forming protists and microorganisms. In this study, we developed a powerful analytical tool for use in ecological and environmental studies of modern and past oceans.

]]>
<![CDATA[Biogeography of the endosymbiotic dinoflagellates (Symbiodiniaceae) community associated with the brooding coral Favia gravida in the Atlantic Ocean]]> https://www.researchpad.co/article/5c8c1937d5eed0c484b4d1a6

Zooxanthellate corals live in symbiosis with phototrophic dinoflagellates of the family Symbiodiniaceae, enabling the host coral to dwell in shallow, nutrient-poor marine waters. The South Atlantic Ocean is characterized by low coral diversity with high levels of endemism. However, little is known about coral–dinoflagellate associations in the region. This study examined the diversity of Symbiodiniaceae associated with the scleractinian coral Favia gravida across its distributional range using the ITS-2 marker. This brooding coral endemic to the South Atlantic can be found across a wide range of latitudes and longitudes, including the Mid-Atlantic islands. Even though it occurs primarily in shallower environments, F. gravida is among the few coral species that live in habitats with extreme environmental conditions (high irradiance, temperature, and turbidity) such as very shallow tide pools. In the present study, we show that F. gravida exhibits some degree of flexibility in its symbiotic association with zooxanthellae across its range. F. gravida associates predominantly with Cladocopium C3 (ITS2 type Symbiodinium C3) but also with Symbiodinium A3, Symbiodinium linucheae (ITS2 type A4), Cladocopium C1, Cladocopium C130, and Fugacium F3. Symbiont diversity varied across biogeographic regions (Symbiodinium A3 and S. linucheae were found in the Tropical Eastern Atlantic, Cladocopium C1 in the Mid-Atlantic, and other subtypes in the Southwestern Atlantic) and was affected by local environmental conditions. In addition, Symbiodiniaceae diversity was highest in a southwestern Atlantic oceanic island (Rocas Atoll). Understanding the relationship between corals and their algal symbionts is critical in determining the factors that control the ecological niches of zooxanthellate corals and their symbionts, and identifying host-symbiont pairs that may be more resistant to environmental changes.

]]>
<![CDATA[Human traffic and habitat complexity are strong predictors for the distribution of a declining amphibian]]> https://www.researchpad.co/article/5c8acce2d5eed0c484990222

Invasive species and habitat modification threaten California's native pond-breeding amphibians, including the federally threatened California Red-legged Frog (Rana draytonii). The relative contributions of invasive species, including the American Bullfrog (Lithobates catesbeianus), and of habitat changes to these declines are disputed. I conducted a field study over several years in central California to examine the presence/absence of these two species at 79 breeding ponds to determine the predictive role for occupancy of factors including vegetation, pond characteristics, and measures of human activity. I used a boosted regression tree approach to determine the relative value of each predictor variable. Increased measures of human activity, especially proximity to trails and roads, were the best predictors for the absence of California Red-legged Frogs and California Newts. Historical factors and habitat conditions were associated with the extent and spread of the American Bullfrog. The extent and complexity of aquatic macrophytes and pond surface area were good predictors for the presence of these and other amphibian species. Surprisingly, invasive species played a relatively small role in predicting pond occupancy by the native species. These findings can inform conservation and restoration efforts for California Red-legged Frogs, which apparently persist best in small vegetated ponds in areas of low human disturbance.

]]>
<![CDATA[Geological significance of new zircon U–Pb geochronology and geochemistry: Niuxinshan intrusive complex, northern North China Craton]]> https://www.researchpad.co/article/5c897791d5eed0c4847d303a

The Huajian gold deposit is one of the largest hydrothermal intrusion-related gold deposits in eastern Hebei Province, located in the northern margin of the North China Craton (NCC). The mineralization in this district displays a close spatial association with the shoshonitic Niuxinshan intrusive complex (NIC), which contributes to the characterization of the metallogeny associated with convergent margin magmatism. In the current study, new geochronological and geochemical data are combined with previously published isotopic data, obtained from the granitic rocks in the NIC, to constrain the timing of the district’s tectonic setting transformation and determine its bearing on regional metallogeny. The new geochronological data constrain the timing of the tectonic transformation between 155 and 185 Ma. The NIC’s granitic rocks can be geochemically subdivided into two groups. One group’s geochemical signature exhibits steep rare earth element (REE) patterns with negligible Eu anomalies, lower Yb, higher Sr, and negative Nb–Ta–Ti (NTT) anomalies, which indicate a volcanic-arc environment with a thickened crust in a convergent setting. The other group exhibits flat REE patterns with obvious negative Eu anomalies, higher Yb, lower Sr, and weak NTT anomalies, which indicate an intra-plate extensional environment with a thinning crust. Combining geochronologic and isotopic data, the mineralization is Late Jurassic (~155 Ma). This is interpreted to be genetically related to the crystallization of the shallow crustal-sourced portions of this complex. Additionally, a tectonic model is presented that provides a plausible explanation for the abundant polymetallic mineralization that occurs in the northern margin of the NCC after 155 Ma.

]]>
<![CDATA[Urban and semi-urban mosquitoes of Mexico City: A risk for endemic mosquito-borne disease transmission]]> https://www.researchpad.co/article/5c897788d5eed0c4847d2f3b

Since past century, vector-borne diseases have been a major public health concern in several states of Mexico. However, Mexico City continues to be free of endemic mosquito-borne viral diseases. The city is the most important politic and economic state of Mexico and one of the most important city of Latin America. Its subtropical highland climate and high elevation (2240 masl) had historically made the occurrence of Aedes species unlikely. However, the presence of other potential disease vectors (Culex spp, Culiseta spp), and the current intermittent introductions of Aedes aegypti, have revealed that control programs must adopt routine vector surveillance in the city. In this study, we provide an updated species list from a five-years of vector surveillance performed in Mexico City. A total of 18,553 mosquito larvae were collected. Twenty-two species from genus Culex, Aedes, Culiseta, Anopheles, Lutzia and Uranotaenia were observed. Nine new mosquito records for the city were found. Ae. albopictus was recorded for the first time in Mexico City. Interestingly, a new record, Ae. epactius was the most frequent species reported. Cx. pipiens quinquefasciatus exhibited the highest number of individuals collected. We detected six areas which harbor the highest mosquito species records in the city. Cemeteries included 68.9% of our collection sites. Temporarily ponds showed the highest species diversity. We detected an increasing presence of Ae. aegypti, which was detected for three consecutive years (2015–2017), predominantly in the warmer microclimates of the city. We found a possible correlation between increasing temperature and Ae. aegypti and Ae. albopictus expanding range. This study provides a starting point for developing strategies related to environmental management for mosquito control. The promotion of mosquito control practices through community participation, mass media and education programmes in schools should be introduced in the city.

]]>