ResearchPad - medical-hypoxia https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Levosimendan reduces segmental pulmonary vascular resistance in isolated perfused rat lungs and relaxes human pulmonary vessels]]> https://www.researchpad.co/article/elastic_article_15739 Levosimendan is approved for acute heart failure. Within this context, pulmonary hypertension represents a frequent co-morbidity. Hence, the effects of levosimendan on segmental pulmonary vascular resistance (PVR) are relevant. So far, this issue has been not studied. Beyond that the relaxant effects of levosimendan in human pulmonary vessel are unknown. We addressed these topics in rats’ isolated perfused lungs (IPL) and human precision-cut lung slices (PCLS).Material and methodsIn IPL, levosimendan (10 μM) was perfused in untreated and endothelin-1 pre-contracted lungs. The pulmonary arterial pressure (PPA) was continuously recorded and the capillary pressure (Pcap) was determined by the double-occlusion method. Thereafter, segmental PVR, expressed as precapillary (Rpre) and postcapillary resistance (Rpost) and PVR were calculated. Human PCLS were prepared from patients undergoing lobectomy. Levosimendan-induced relaxation was studied in naïve and endothelin-1 pre-contracted PAs and PVs. In endothelin-1 pre-contracted PAs, the role of K+-channels was studied by inhibition of KATP-channels (glibenclamide), BKCa2+-channels (iberiotoxin) and Kv-channels (4-aminopyridine). All changes of the vascular tone were measured by videomicroscopy. In addition, the increase of cAMP/GMP due to levosimendan was measured by ELISA.ResultsLevosimendan did not relax untreated lungs or naïve PAs and PVs. In IPL, levosimendan attenuated the endothelin-1 induced increase of PPA, PVR, Rpre and Rpost. In human PCLS, levosimendan relaxed pre-contracted PAs or PVs to 137% or 127%, respectively. In pre-contracted PAs, the relaxant effect of levosimendan was reduced, if KATP- and Kv-channels were inhibited. Further, levosimendan increased cGMP in PAs/PVs, but cAMP only in PVs.DiscussionLevosimendan reduces rats’ segmental PVR and relaxes human PAs or PVs, if the pulmonary vascular tone is enhanced by endothelin-1. Regarding levosimendan-induced relaxation, the activation of KATP- and Kv-channels is of impact, as well as the formation of cAMP and cGMP. In conclusion, our results suggest that levosimendan improves pulmonary haemodynamics, if PVR is increased as it is the case in pulmonary hypertension. ]]> <![CDATA[Impact of moderate to severe obstructive sleep apnea on the cognition in idiopathic pulmonary fibrosis]]> https://www.researchpad.co/article/5c5df31bd5eed0c484580d2d

Introduction

Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive lung disease with a fatal prognosis to whose rapid evolution multiple comorbidities may contribute, one of the most common being obstructive sleep apnea (OSA). There are several potential factors and conditions for the emergence of a cognitive deficit in relation to IPF or associated morbidities.

Objectives

The goals of this study were to assess cognition in patients with IPF in stable phase and to identify clinical cognition modifiers.

Methods

In a cross-sectional study, 23 patients with IPF were evaluated using Montreal Cognitive Assessment (MoCA), an instrument for detecting mild cognitive impairments and were screened for OSA through overnight cardiorespiratory polygraphy and for anxiety and depression with three specific scale (Generalized Anxiety Disorder 7-item scale: GAD-7; the Patient Health Questionnaire: PHQ-9; Hospital Anxiety and Depression Scale: HADS).

Results

MoCA score was lower in patients with IPF when compared to controls subjects (24 [21,26] vs. 27 [26,28], p = 0.003) but not as significantly as in COPD patients (21 [18.8,23.3], p<0.0001). OSA was diagnosed in 19 (82.6%) IPF patients, 12 patients showed the presence of moderate-severe forms (63.15%). IPF patients with cognitive impairment (MoCA<23) exhibit a higher severity of OSA (apneea hypopnea index–AHI: 33.0±19.1 vs. 12.44±8.2, p = 0.018), and a higher Epworth score (7.1±3.3 vs. 4.3±1.8, p = 0.013). Anxiety and depression scores were not correlated with MoCA results.

Conclusions

Impaired cognition in patients with IPF is mild and affect the areas of visuospatial abilities, language and working memory. OSA could be a possible predictor of IPF cognition deficit. Given the high prevalence of multiple types of sleep disorders in IPF patients, these should be investigated at least by cardiorespiratory polygraphy.

]]>
<![CDATA[The influence of sleep apnea syndrome and intermittent hypoxia in carotid adventitial vasa vasorum]]> https://www.researchpad.co/article/5c63397cd5eed0c484ae689b

Subjects with sleep apnea-hypopnea syndrome (SAHS) show an increased carotid intima-media thickness. However, no data exist about earlier markers of atheromatous disease, such as the proliferation and expansion of the adventitial vasa vasorum (VV) to the avascular intima in this setting. Our aim was to assess carotid VV density and its relationship with sleep parameters in a cohort of obese patients without prior vascular events. A total of 55 subjects evaluated for bariatric surgery were prospectively recruited. A non-attended respiratory polygraphy was performed. The apnea-hypopnea index (AHI) and the cumulative percentage of time spent with oxygen saturation below 90% (CT90) were assessed. Serum concentrations of soluble intercellular adhesion molecule 1, P-selectin, lipocalin-2 and soluble vascular cell adhesion molecule 1 (sVCAM-1) were measured. Contrast-enhanced carotid ultrasound was used to assess the VV density. Patients with SAHS (80%) showed a higher adventitial VV density (0.801±0.125 vs. 0.697±0.082, p = 0.005) and higher levels of sVCAM-1 (745.2±137.8 vs. 643.3±122.7 ng/ml, p = 0.035) than subjects with an AHI lower than 10 events/hour. In addition, a positive association exist between mean VV density and AHI (r = 0.445, p = 0.001) and CT90 (r = 0.399, p = 0.005). Finally, in the multiple linear regression analysis, female sex, fasting plasma glucose and AHI (but not CT90) were the only variables independently associated with the mean adventitial VV density (R2 = 0.327). In conclusion, a high VV density is present in obese subjects with SAHS, and chronic intermittent hypoxia is pointed as an independent risk factor for the development of this early step of atheromatous disease.

]]>
<![CDATA[Sildenafil does not improve performance in 16.1 km cycle exercise time-trial in acute hypoxia]]> https://www.researchpad.co/article/5c605a97d5eed0c4847cd2ae

Sildenafil is a pulmonary vasodilator that has potential to mitigate the decrement in endurance performance caused by hypoxic pulmonary vasoconstriction. The purpose of this study was to determine the effects of sildenafil on pulmonary artery pressure, cardiac output, pulse oxygen saturation, and exercise performance at moderate simulated altitude. We hypothesized that sildenafil would reduce the decline in exercise performance in hypoxia by blunting the rise in pulmonary artery pressure and causing a relative increase in cardiac output and oxygen saturation. Twelve endurance trained men performed three experimental cycling trials at sea level and simulated moderate altitude of 3,000m (FIO2 = 0.147) after ingesting either a placebo or sildenafil 50 mg capsule in a double blinded fashion. Each test consisted of a warmup period, a 15-minute steady state period at 60% of peak power output, and a 16.1 km time-trial. All subjects experienced a decline in maximal exercise capacity in hypoxia that ranged from 6% to 24%. This decline was correlated with the reduction in pulse oxygen saturation in hypoxic maximal exercise. Sildenafil had no effect on pulmonary artery pressure, cardiac output, or pulse oxygen saturation measured during steady state exercise. There was no effect of sildenafil on mean power output during the time-trial. During high intensity cycle exercise in acute, moderate hypoxia pulmonary artery pressure is unaffected by sildenafil and does not appear to influence cardiovascular function or exercise performance.

]]>
<![CDATA[Effects of acute hypoxia exposure with different durations on activation of Nrf2-ARE pathway in mouse skeletal muscle]]> https://www.researchpad.co/article/5c10287dd5eed0c4842474bf

Background

Hypoxia training enhances the endurance capacity of athletes. This response may in part be attributed to the hypoxia-induced increase in antioxidant capacity in skeletal muscles. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor which regulates the expression of genes via binding to the antioxidant-response element (ARE) of these genes, plays a crucial role in stimulating the body’s defense system and potentially responds to hypoxia. Meanwhile, hypoxia-inducible factor-1α (HIF-1α) is an important player in protecting cells from hypoxic stress. The purpose of this study was to investigate the effects of acute hypoxia exposure with different durations on the activation of Nrf2-ARE pathway and a possible regulatory role of HIF-1α in these responses.

Methods

C57BL/6J mice were allocated into the non-hypoxia 0-hour, 6-hour, 24-hour, and 48-hour hypoxic exposure (11.2% oxygen) groups. The quadriceps femoris was collected immediately after hypoxia. Further, to investigate the possible role of HIF-1α, C2C12 myoblasts with HIF-1α knockdown by small interfering RNA (siRNA) and the inducible HIF-1α transgenic mice were employed.

Results

The results showed that 48-hour hypoxia exposure up-regulated protein expression of Nrf2, Nrf2/ARE binding activity and the transcription of antioxidative genes containing ARE (Sod1 and others) in mouse skeletal muscle. Moreover, HIF-1α siRNA group of C2C12 myoblasts showed a remarkable inhibition of Nrf2 protein expression and nuclear accumulation in hypoxia exposure for 72 hours compared with that in siRNA-Control group of the cells. In addition, HIF-1α transgenic mice gave higher Nrf2 protein expression, Nrf2/ARE binding activity and expressions of Nrf2-mediated antioxidative genes in their skeletal muscle, compared with those in the wild-type mice.

Conclusions

The findings suggested that the acute hypoxia exposure could trigger the activation of Nrf2-ARE pathway, with longer duration associated with higher responses, and HIF-1α expression might be involved in promoting the Nrf2-mediated antioxidant responses in skeletal muscle.

]]>
<![CDATA[Effects of cold on murine brain mitochondrial function]]> https://www.researchpad.co/article/5c12cf83d5eed0c4849147f5

Therapeutic hypothermia is a strategy that reduces metabolic rate and brain damage during clinically-relevant hypoxic events. Mitochondrial respiration is compromised by hypoxia, with deleterious consequences for the mammalian brain; however, little is known about the effects of reduced temperature on mitochondrial metabolism. Therefore, we examined how mitochondrial function is impacted by temperature using high resolution respirometry to assess electron transport system (ETS) function in saponin-permeabilized mouse brain at 28 and 37°C. Respirometric analysis revealed that, at the colder temperature, ETS respiratory flux was ~ 40–75% lower relative to the physiological temperature in all respiratory states and for all fuel substrates tested. In whole brain tissue, the enzyme maximum respiratory rates for complexes I-V were similarly reduced by between 37–88%. Complexes II and V were particularly temperature-sensitive; a temperature-mediated decrease in complex II activity may support a switch to complex I mediated ATP-production, which is considerably more oxygen-efficient. Finally, the mitochondrial H+-gradient was more tightly coupled, indicating that mitochondrial respiration is more efficient at the colder temperature. Taken together, our results suggest that improvements in mitochondrial function with colder temperatures may contribute to energy conservation and enhance cellular viability in hypoxic brain.

]]>
<![CDATA[Role of altered proteostasis network in chronic hypobaric hypoxia induced skeletal muscle atrophy]]> https://www.researchpad.co/article/5bae98fc40307c0c23a1c155

Background

High altitude associated hypobaric hypoxia is one of the cellular and environmental perturbation that alters proteostasis network and push the healthy cell towards loss of muscle mass. The present study has elucidated the robust proteostasis network and signaling mechanism for skeletal muscle atrophy under chronic hypobaric hypoxia (CHH).

Methods

Male Sprague Dawley rats were exposed to simulated hypoxia equivalent to a pressure of 282 torr for different durations (1, 3, 7 and 14 days). After CHH exposure, skeletal muscle tissue was excised from the hind limb of rats for biochemical analysis.

Results

Chronic hypobaric hypoxia caused a substantial increase in protein oxidation and exhibited a greater activation of ER chaperones, glucose-regulated protein-78 (GRP-78) and protein disulphide isomerase (PDI) till 14d of CHH. Presence of oxidized proteins triggered the proteolytic systems, 20S proteasome and calpain pathway which were accompanied by a marked increase in [Ca2+]. Upregulated Akt pathway was observed upto 07d of CHH which was also linked with enhanced glycogen synthase kinase-3β (GSk-3β) expression, a negative regulator of Akt. Muscle-derived cytokines, tumor necrosis factor-α (TNF-α), interferon-ϒ (IFN-©) and interleukin-1β (IL-1β) levels significantly increased from 07d onwards. CHH exposure also upregulated the expression of nuclear factor kappa-B (NF-κB) and E3 ligase, muscle atrophy F-box-1 (Mafbx-1/Atrogin-1) and MuRF-1 (muscle ring finger-1) on 07d and 14d. Further, severe hypoxia also lead to increase expression of ER-associated degradation (ERAD) CHOP/ GADD153, Ub-proteasome and apoptosis pathway.

Conclusions

The disrupted proteostasis network was tightly coupled to degradative pathways, altered anabolic signaling, inflammation, and apoptosis under chronic hypoxia. Severe and prolonged hypoxia exposure affected the protein homeostasis which overwhelms the muscular system and tends towards skeletal muscle atrophy.

]]>
<![CDATA[Characterization and functional analysis of hypoxia-inducible factor HIF1α and its inhibitor HIF1αn in tilapia]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc506

Hypoxia is a major cause of fish morbidity and mortality in the aquatic environment. Hypoxia-inducible factors are very important modulators in the transcriptional response to hypoxic stress. In this study, we characterized and conducted functional analysis of hypoxia-inducible factor HIF1α and its inhibitor HIF1αn in Nile tilapia (Oreochromis niloticus). By cloning and Sanger sequencing, we obtained the full length cDNA sequences for HIF1α (2686bp) and HIF1αn (1308bp), respectively. The CDS of HIF1α includes 15 exons encoding 768 amino acid residues and the CDS of HIF1αn contains 8 exons encoding 354 amino acid residues. The complete CDS sequences of HIF1α and HIF1αn cloned from tilapia shared very high homology with known genes from other fishes. HIF1α show differentiated expression in different tissues (brain, heart, gill, spleen, liver) and at different hypoxia exposure times (6h, 12h, 24h). HIF1αn expression level under hypoxia is generally increased (6h, 12h, 24h) and shows extremely highly upregulation in brain tissue under hypoxia. A functional determination site analysis in the protein sequences between fish and land animals identified 21 amino acid sites in HIF1α and 2 sites in HIF1αn as significantly associated sites (α = 0.05). Phylogenetic tree-based positive selection analysis suggested 22 sites in HIF1α as positively selected sites with a p-value of at least 95% for fish lineages compared to the land animals. Our study could be important for clarifying the mechanism of fish adaptation to aquatic hypoxia environment.

]]>
<![CDATA[Effects of Acute Systemic Hypoxia and Hypercapnia on Brain Damage in a Rat Model of Hypoxia-Ischemia]]> https://www.researchpad.co/article/5989db11ab0ee8fa60bcc2a8

Therapeutic hypercapnia has the potential for neuroprotection after global cerebral ischemia. Here we further investigated the effects of different degrees of acute systemic hypoxia in combination with hypercapnia on brain damage in a rat model of hypoxia and ischemia. Adult wistar rats underwent unilateral common carotid artery (CCA) ligation for 60 min followed by ventilation with normoxic or systemic hypoxic gas containing 11%O2,13%O2,15%O2 and 18%O2 (targeted to PaO2 30–39 mmHg, 40–49 mmHg, 50–59 mmHg, and 60–69 mmHg, respectively) or systemic hypoxic gas containing 8% carbon dioxide (targeted to PaCO2 60–80 mmHg) for 180 min. The mean artery pressure (MAP), blood gas, and cerebral blood flow (CBF) were evaluated. The cortical vascular permeability and brain edema were examined. The ipsilateral cortex damage and the percentage of hippocampal apoptotic neurons were evaluated by Nissl staining and terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′-triphosphate-biotin nick end labeling (TUNEL) assay as well as flow cytometry, respectively. Immunofluorescence and western blotting were performed to determine aquaporin-4 (AQP4) expression. In rats treated with severe hypoxia (PaO2 < 50 mmHg), hypercapnia augmented the decline of MAP with cortical CBF and damaged blood–brain barrier permeability (p < 0.05). In contrast, in rats treated with mild to moderate hypoxia (PaO2 > 50 mmHg), hypercapnia protected against these pathophysiological changes. Moreover, hypercapnia treatment significantly reduced brain damage in the ischemic ipsilateral cortex and decreased the percentage of apoptotic neurons in the hippocampus after the CCA ligated rats were exposed to mild or moderate hypoxemia (PaO2 > 50 mmHg); especially under mild hypoxemia (PaO2 > 60 mmHg), hypercapnia significantly attenuated the expression of AQP4 protein with brain edema (p < 0.05). Hypercapnia exerts beneficial effects under mild to moderate hypoxemia and augments detrimental effects under severe hypoxemia on brain damage in a rat model of hypoxia-ischemia.

]]>
<![CDATA[cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants]]> https://www.researchpad.co/article/5989da07ab0ee8fa60b76416

Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP) has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE) with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2) for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation) mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities) and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions.

]]>
<![CDATA[Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition]]> https://www.researchpad.co/article/5989da38ab0ee8fa60b870ee

The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems.

]]>
<![CDATA[Early biomarkers of brain injury and cerebral hypo- and hyperoxia in the SafeBoosC II trial]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbfb4

Background

The randomized clinical trial, SafeBoosC II, examined the effect of monitoring of cerebral oxygenation by near-infrared spectroscopy combined with a guideline on treatment when cerebral oxygenation was out of the target range. Data on cerebral oxygenation was collected in both the intervention and the control group. The primary outcome was the reduction in the burden of cerebral hypo- and hyperoxia between the two groups. In this study we describe the associations between the burden of cerebral hypo- and hyperoxia, regardless of allocation to intervention or control group, and the biomarkers of brain injury from birth till term equivalent age that was collected as secondary and explorative outcomes in the SafeBoosC II trial.

Methods

Cerebral oxygenation was continuously monitored during the first 72h of life in 166 extremely preterm infants. Cranial ultrasound was performed at day 1,4,7,14, and 35 and at term. Electroencephalogram (EEG) was recorded at 64h. Blood-samples taken at 6 and 64 hours were analysed for the brain injury biomarkers; S100beta, brain-fatty-acid-binding-protein, and neuroketal. All analyses were conducted post hoc.

Results

Significantly more infants with a cerebral burden of hypoxia within the 4th quartile versus infants within quartile 1–3 were diagnosed with severe intracranial haemorrhage (11/39 versus 11/117, p = 0.003), had low burst rate on EEG (12/28 versus 21/103, p = 0.015), or died (14/41 versus 18/123, p = 0.006), whereas none of these events were significantly associated with cerebral hyperoxia. The blood biomarkers were not significantly associated with the burden of cerebral hypo- or hyperoxia.

Conclusions

The explorative analysis showed that early burden of cerebral hypoxia, but not hyperoxia was significantly associated with low brain electrical activity and severe intracranial haemorrhage while none of the three blood biomarkers were associated with the burden of either cerebral hypo- or hyperoxia.

]]>
<![CDATA[Systematic Review of Micro-RNA Expression in Pre-Eclampsia Identifies a Number of Common Pathways Associated with the Disease]]> https://www.researchpad.co/article/5989da52ab0ee8fa60b8e20d

Background

Pre-eclampsia (PE) is a complex, multi-systemic condition of pregnancy which greatly impacts maternal and perinatal morbidity and mortality. MicroRNAs (miRs) are differentially expressed in PE and may be important in helping to understand the condition and its pathogenesis.

Methods

Case-control studies investigating expression of miRs in PE were collected through a systematic literature search. Data was extracted and compared from 58 studies to identify the most promising miRs associated with PE pathogenesis and identify areas of methodology which could account for often conflicting results.

Results

Some of the most frequently differentially expressed miRs in PE include miR-210, miR-223 and miR-126/126* which associate strongly with the etiological domains of hypoxia, immunology and angiogenesis. Members of the miR-515 family belonging to the imprinted chromosome 19 miR cluster with putative roles in trophoblast invasion were also found to be differentially expressed. Certain miRs appear to associate with more severe forms of PE such as miR-210 and the immune-related miR-181a and miR-15 families. Patterns of miR expression may help pinpoint key pathways (e.g. IL-6/miR-223/STAT3) and aid in untangling the heterogeneous nature of PE. The detectable presence of many PE-associated miRs in antenatal circulatory samples suggests their usefulness as predictive biomarkers. Further progress in ascertaining the clinical value of miRs and in understanding how they might contribute to pathogenesis is predicated upon resolving current methodological challenges in studies. These include differences in diagnostic criteria, cohort characteristics, sampling technique, RNA isolation and platform-dependent variation in miR profiling.

Conclusion

Reviewing studies of PE-associated miRs has revealed their potential as informants of underlying target genes and pathways relating to PE pathogenesis. However, the incongruity in results across current studies hampers their capacity to be useful biomarkers of the condition.

]]>
<![CDATA[Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia]]> https://www.researchpad.co/article/5989da69ab0ee8fa60b928ae

Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD.

]]>
<![CDATA[The Effects of Exercise Intensity vs. Metabolic State on the Variability and Magnitude of Left Ventricular Twist Mechanics during Exercise]]> https://www.researchpad.co/article/5989da62ab0ee8fa60b913a5

Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32–69% of O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results.

]]>
<![CDATA[The Arachidonate 15-Lipoxygenase Enzyme Product 15-HETE Is Present in Heart Tissue from Patients with Ischemic Heart Disease and Enhances Clot Formation]]> https://www.researchpad.co/article/5989db02ab0ee8fa60bc703f

Ischemic heart disease is a major cause of death and morbidity and the search for novel therapeutic targets is still required. We have previously shown that the enzyme arachidonate 15 lipoxygenase (ALOX15), which catalyzes the conversion of arachidonic acid to 15-hydroxy eicosatetraenoic acid (15-HETE), is highly expressed in ischemic heart tissue, but its role in the pathogenesis of ischemic heart disease is unclear. Here we showed that expression of ALOX15, but not ALOX12 or ALOX15B, was increased in ischemic versus non-ischemic human heart biopsy samples. A similar ALOX expression pattern was found in hypoxic human cardiomyocytes and cardiac endothelial cells. We also showed that levels of 15-HETE were significantly higher in ischemic versus non-ischemic human heart biopsy samples and showed a tendency to increase in serum from the patients with ischemic heart disease. Moreover, hypoxia increased the production of 15-HETE levels from human cardiomyocytes and cardiac endothelial cells. The hypoxia-induced increase in 15-HETE levels from human cardiomyocytes was inhibited by the ALOX15 inhibitor baicalein. Finally, by using intrinsic rotational thromboelastometry, we showed that human whole blood clotted faster in the presence of 15-HETE. In summary, we propose that increased ALOX15 expression in heart tissue under ischemic conditions may lead to increased production of 15-HETE, potentially contributing to thrombosis.

]]>
<![CDATA[Tumor Necrosis Factor-Alpha and the ERK Pathway Drive Chemerin Expression in Response to Hypoxia in Cultured Human Coronary Artery Endothelial Cells]]> https://www.researchpad.co/article/5989da75ab0ee8fa60b96829

Background

Chemerin, a novel adipokine, plays a role in the inflammation status of vascular endothelial cells. Hypoxia causes endothelial-cell proliferation, migration, and angiogenesis. This study was aimed at evaluating the protein and mRNA expression of chemerin after exposure of human coronary artery endothelial cells (HCAECs) to hypoxia.

Methods and Results

Cultured HCAECs underwent hypoxia for different time points. Chemerin protein levels increased after 4 h of hypoxia at 2.5% O2, with a peak of expression of tumor necrosis factor-alpha (TNF-alpha) at 1 h. Both hypoxia and exogenously added TNF-alpha during normoxia stimulated chemerin expression, whereas an ERK inhibitor (PD98059), ERK small interfering RNA (siRNA), or an anti-TNF-alpha antibody attenuated the chemerin upregulation induced by hypoxia. A gel shift assay indicated that hypoxia induced an increase in DNA-protein binding between the chemerin promoter and transcription factor SP1. A luciferase assay confirmed an increase in transcriptional activity of SP1 on the chemerin promoter during hypoxia. Hypoxia significantly increased the tube formation and migration of HCAECs, whereas PD98059, the anti-TNF-alpha antibody, and chemerin siRNA each attenuated these effects.

Conclusion

Hypoxia activates chemerin expression in cultured HCAECs. Hypoxia-induced chemerin expression is mediated by TNF-alpha and at least in part by the ERK pathway. Chemerin increases early processes of angiogenesis by HCAECs after hypoxic treatment.

]]>
<![CDATA[Imaging Mass Spectrometry Revealed the Accumulation Characteristics of the 2-Nitroimidazole-Based Agent “Pimonidazole” in Hypoxia]]> https://www.researchpad.co/article/5989daf0ab0ee8fa60bc0e6a

Hypoxia, or low oxygen concentration, is a key factor promoting tumor progression and angiogenesis and resistance of cancer to radiotherapy and chemotherapy. 2-Nitroimidazole-based agents have been widely used in pathological and nuclear medicine examinations to detect hypoxic regions in tumors; in particular, pimonidazole is used for histochemical staining of hypoxic regions. It is considered to accumulate in hypoxic cells via covalent binding with macromolecules or by forming reductive metabolites after reduction of its nitro group. However, the detailed mechanism of its accumulation remains unknown. In this study, we investigated the accumulation mechanism of pimonidazole in hypoxic tumor tissues in a mouse model by mass spectrometric analyses including imaging mass spectrometry (IMS). Pimonidazole and its reductive metabolites were observed in the tumor tissues. However, their locations in the tumor sections were not similar to the positively stained areas in pimonidazole-immunohistochemistry, an area considered hypoxic. The glutathione conjugate of reduced pimonidazole, a low-molecular-weight metabolite of pimonidazole, was found in tumor tissues by LC-MS analysis, and our IMS study determined that the intratumor localization of the glutathione conjugate was consistent with the area positively immunostained for pimonidazole. We also found complementary localization of the glutathione conjugate and reduced glutathione (GSH), implying that formation of the glutathione conjugate occurred in the tumor tissue. These results suggest that in hypoxic tumor cells, pimonidazole is reduced at its nitro group, followed by conjugation with GSH.

]]>
<![CDATA[A non-synonymous SNP with the allele frequency correlated with the altitude may contribute to the hypoxia adaptation of Tibetan chicken]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdbb9a

The hypoxia adaptation to high altitudes is of considerable interest in the biological sciences. As a breed with adaptability to highland environments, the Tibetan chicken (Gallus gallus domestics), provides a biological model to search for genetic differences between high and lowland chickens. To address mechanisms of hypoxia adaptability at high altitudes for the Tibetan chicken, we focused on the Endothelial PAS domain protein 1 (EPAS1), a key regulatory factor in hypoxia responses. Detected were polymorphisms of EPAS1 exons in 157 Tibetan chickens from 8 populations and 139 lowland chickens from 7 breeds. We then designed 15 pairs of primers to amplify exon sequences by Sanger sequencing methods. Six single nucleotide polymorphisms (SNPs) were detected, including 2 missense mutations (SNP3 rs316126786 and SNP5 rs740389732) and 4 synonymous mutations (SNP1 rs315040213, SNP4 rs739281102, SNP6 rs739010166, and SNP2 rs14330062). There were negative correlations between altitude and mutant allele frequencies for both SNP6 (rs739010166, r = 0.758, p<0.001) and SNP3 (rs316126786, r = 0.844, P<0.001). We also aligned the EPAS1 protein with ortholog proteins from diverse vertebrates and focused that SNP3 (Y333C) was a conserved site among species. Also, SNP3 (Y333C) occurred in a well-defined protein domain Per-AhR-Arnt-Sim (PAS domain). These results imply that SNP3 (Y333C) is the most likely casual mutation for the high-altitude adaption in Tibetan chicken. These variations of EPAS1 provide new insights into the gene’s function.

]]>
<![CDATA[Tumor-Derived Factors and Reduced p53 Promote Endothelial Cell Centrosome Over-Duplication]]> https://www.researchpad.co/article/5989da18ab0ee8fa60b7bdcb

Approximately 30% of tumor endothelial cells have over-duplicated (>2) centrosomes, which may contribute to abnormal vessel function and drug resistance. Elevated levels of vascular endothelial growth factor A induce excess centrosomes in endothelial cells, but how other features of the tumor environment affect centrosome over-duplication is not known. To test this, we treated endothelial cells with tumor-derived factors, hypoxia, or reduced p53, and assessed centrosome numbers. We found that hypoxia and elevated levels of bone morphogenetic protein 2, 6 and 7 induced excess centrosomes in endothelial cells through BMPR1A and likely via SMAD signaling. In contrast, inflammatory mediators IL-8 and lipopolysaccharide did not induce excess centrosomes. Finally, down-regulation in endothelial cells of p53, a critical regulator of DNA damage and proliferation, caused centrosome over-duplication. Our findings suggest that some tumor-derived factors and genetic changes in endothelial cells contribute to excess centrosomes in tumor endothelial cells.

]]>