ResearchPad - medicinal-chemistry https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Smart Protein‐Based Formulation of Dendritic Mesoporous Silica Nanoparticles: Toward Oral Delivery of Insulin]]> https://www.researchpad.co/article/elastic_article_7038 Insulin delivery: A pH‐responsive protein combined with the key attributes of dendrimer‐like mesoporous silica nanoparticles act synergistically as a smart oral drug‐delivery platform to reduce substantially the premature release and degradation of gastro‐sensitive insulin. As evidenced by confocal microscopy, the designed nanocarriers mediated significant cellular permeation of the nanopore‐confined fluorescent‐labeled insulin across human intestinal cells (see figure).

]]>
<![CDATA[Cancer‐Cell‐Specific Drug Delivery by a Tumor‐Homing CPP‐Gossypol Conjugate Employing a Tracelessly Cleavable Linker]]> https://www.researchpad.co/article/N3ceed812-819b-4c21-88ea-fbc84a20f188

Abstract

Tumor‐targeted drug delivery is highly important for improving chemotherapy, as it reduces the dose of cytotoxic agents and minimizes the death of healthy tissues. Towards this goal, a conjugate was synthesized of gossypol and a MCF‐7 cancer cell specific CPP (cell penetrating peptide), thus providing a selective drug delivery system. Utilizing the aldehyde moiety of gossypol, the tumor homing CPP RLYMRYYSPTTRRYG was attached through a semi‐labile imine linker, which was cleaved in a traceless fashion under aqueous conditions and had a half‐life of approximately 10 hours. The conjugate killed MCF‐7 cells to a significantly greater extent than HeLa cells or healthy fibroblasts.

]]>
<![CDATA[Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Receptor as a Molecular Target of the Utrophin Modulator Ezutromid]]> https://www.researchpad.co/article/Nd3df88fb-072a-4fe4-873f-05edb401f18d

Abstract

Duchenne muscular dystrophy (DMD) is a fatal muscle‐wasting disease arising from mutations in the dystrophin gene. Upregulation of utrophin to compensate for the missing dystrophin offers a potential therapy independent of patient genotype. The first‐in‐class utrophin modulator ezutromid/SMT C1100 was developed from a phenotypic screen through to a Phase 2 clinical trial. Promising efficacy and evidence of target engagement was observed in DMD patients after 24 weeks of treatment, however trial endpoints were not met after 48 weeks. The objective of this study was to understand the mechanism of action of ezutromid which could explain the lack of sustained efficacy and help development of new generations of utrophin modulators. Using chemical proteomics and phenotypic profiling we show that the aryl hydrocarbon receptor (AhR) is a target of ezutromid. Several lines of evidence demonstrate that ezutromid binds AhR with an apparent KD of 50 nm and behaves as an AhR antagonist. Furthermore, other reported AhR antagonists also upregulate utrophin, showing that this pathway, which is currently being explored in other clinical applications including oncology and rheumatoid arthritis, could also be exploited in future DMD therapies.

]]>
<![CDATA[Construction of an integrated database for hERG blocking small molecules]]> https://www.researchpad.co/article/5b4a289e463d7e4513b8980e

The inhibition of the hERG potassium channel is closely related to the prolonged QT interval, and thus assessing this risk could greatly facilitate the development of therapeutic compounds and the withdrawal of hazardous marketed drugs. The recent increase in SAR information about hERG inhibitors in public databases has led to many successful applications of machine learning techniques to predict hERG inhibition. However, most of these reports constructed their prediction models based on only one SAR database because the differences in the data format and ontology hindered the integration of the databases. In this study, we curated the hERG-related data in ChEMBL, PubChem, GOSTAR, and hERGCentral, and integrated them into the largest database about hERG inhibition by small molecules. Assessment of structural diversity using Murcko frameworks revealed that the integrated database contains more than twice as many chemical scaffolds for hERG inhibitors than any of the individual databases, and covers 18.2% of the Murcko framework-based chemical space occupied by the compounds in ChEMBL. The database provides the most comprehensive information about hERG inhibitors and will be useful to design safer compounds for drug discovery. The database is freely available at http://drugdesign.riken.jp/hERGdb/.

]]>
<![CDATA[Cytotoxic, DNA Cleavage and Pharmacokinetic Parameter Study of Substituted Novel Furan C-2 Quinoline Coupled 1, 2, 4-Triazole and Its Analogs]]> https://www.researchpad.co/article/5c064298d5eed0c484b751a6

Background:

Furan, quinoline and triazoles are known for their wide spectrum biologically active molecules. A series of novel furan C-2 quinoline and 1, 2, 4-triazole (FQT) coupled hybrids were designed and synthesized to evaluate for their DNA cleavage and cytotoxic studies.

Objectives:

In this work we describe the synthesis and biological evaluation of furan C-2 quinoline coupled triazoles exposed for cytotoxic and DNA cleavage study.

Methods:

The electrophoretic DNA cleavage studies on λ-DNA (Eco-RI/Hinda-III double digest) using agarose gelelectrophoresis and the cytotoxic activity were carried out by MTT assay method.

Results:

The results revealed that, the molecules 7(a-o) did cleave the DNA completely with no trace of fragments at 100 µg concentration, on the other hand, cytotoxic assay was achieved by two different human cancer cell lines (melanoma cell line-A375 and breast cancer cell line MDA-MB 231). Among the synthesized compounds 7a, 7b, 7c and 7k exhibited potent cytotoxic activity with IC50 values ranging from 2.9, 4.0, 7.8 and 5.1 µg/ml against A375 and 6.2, 9.5, 11.3 and 7.3 µg/ml against, MDA-MB 231, respectively.

Conclusion:

In synthesized compounds 7(a-o) exhibited complete DNA cleavage at 100 µg/ml and the compounds 7a, 7b, 7c and 7k showed very less cytotoxic in nature. The structure activity relationship revealed that, the presence of halogen group/atoms at para position of phenyl ring remarkably enhanced the DNA cleavage and cytotoxic activities among the synthesized compounds.

]]>
<![CDATA[Integrated Dataset of Screening Hits against Multiple Neglected Disease Pathogens]]> https://www.researchpad.co/article/5989da56ab0ee8fa60b8ef9b

New chemical entities are desperately needed that overcome the limitations of existing drugs for neglected diseases. Screening a diverse library of 10,000 drug-like compounds against 7 neglected disease pathogens resulted in an integrated dataset of 744 hits. We discuss the prioritization of these hits for each pathogen and the strong correlation observed between compounds active against more than two pathogens and mammalian cell toxicity. Our work suggests that the efficiency of early drug discovery for neglected diseases can be enhanced through a collaborative, multi-pathogen approach.

]]>
<![CDATA[Structure-Based Druggability Assessment of the Mammalian Structural Proteome with Inclusion of Light Protein Flexibility]]> https://www.researchpad.co/article/5989daa5ab0ee8fa60ba7703

Advances reported over the last few years and the increasing availability of protein crystal structure data have greatly improved structure-based druggability approaches. However, in practice, nearly all druggability estimation methods are applied to protein crystal structures as rigid proteins, with protein flexibility often not directly addressed. The inclusion of protein flexibility is important in correctly identifying the druggability of pockets that would be missed by methods based solely on the rigid crystal structure. These include cryptic pockets and flexible pockets often found at protein-protein interaction interfaces. Here, we apply an approach that uses protein modeling in concert with druggability estimation to account for light protein backbone movement and protein side-chain flexibility in protein binding sites. We assess the advantages and limitations of this approach on widely-used protein druggability sets. Applying the approach to all mammalian protein crystal structures in the PDB results in identification of 69 proteins with potential druggable cryptic pockets.

]]>
<![CDATA[Defining the Factors That Contribute to On-Target Specificity of Antisense Oligonucleotides]]> https://www.researchpad.co/article/5989da9bab0ee8fa60ba3ab1

To better understand the factors that influence the activity and specificity of antisense oligonucleotides (ASOs), we designed a minigene encoding superoxide dismutase 1 (SOD-1) and cloned the minigene into vectors for T7 transcription of pre-mRNA and splicing in a nuclear extract or for stable integration in cells. We designed a series of ASOs that covered the entire mRNA and determined the binding affinities and activities of the ASOs in a cell-free system and in cells. The mRNA bound known RNA-binding proteins on predicted binding sites in the mRNA. The higher order structure of the mRNA had a significantly greater effect than the RNA-binding proteins on ASO binding affinities as the ASO activities in cells and in the cell-free systems were consistent. We identified several ASOs that exhibited off-target hybridization to the SOD-1 minigene mRNA in the cell-free system. Off-target hybridization occurred only at highly accessible unstructured sites in the mRNA and these interactions were inhibited by both the higher order structure of the mRNA and by RNA-binding proteins. The same off-target hybridization interactions were identified in cells that overexpress E. coli RNase H1. No off-target activity was observed for cells expressing only endogenous human RNase H1. Neither were these off-target heteroduplexes substrates for recombinant human RNase H1 under multiple-turnover kinetics suggesting that the endogenous enzyme functions under similar kinetic parameters in cells and in the cell-free system. These results provide a blueprint for design of more potent and more specific ASOs.

]]>
<![CDATA[Phenylpropanoid Glycoside Analogues: Enzymatic Synthesis, Antioxidant Activity and Theoretical Study of Their Free Radical Scavenger Mechanism]]> https://www.researchpad.co/article/5989dac8ab0ee8fa60bb331b

Phenylpropanoid glycosides (PPGs) are natural compounds present in several medicinal plants that have high antioxidant power and diverse biological activities. Because of their low content in plants (less than 5% w/w), several chemical synthetic routes to produce PPGs have been developed, but their synthesis is a time consuming process and the achieved yields are often low. In this study, an alternative and efficient two-step biosynthetic route to obtain natural PPG analogues is reported for the first time. Two galactosides were initially synthesized from vanillyl alcohol and homovanillyl alcohol by a transgalactosylation reaction catalyzed by Kluyveromyces lactis β-galactosidase in saturated lactose solutions with a 30%–35% yield. To synthesize PPGs, the galactoconjugates were esterified with saturated and unsaturated hydroxycinnamic acid derivatives using Candida antarctica Lipase B (CaL-B) as a biocatalyst with 40%–60% yields. The scavenging ability of the phenolic raw materials, intermediates and PPGs was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) method. It was found that the biosynthesized PPGs had higher scavenging abilities when compared to ascorbic acid, the reference compound, while their antioxidant activities were found similar to that of natural PPGs. Moreover, density functional theory (DFT) calculations were used to determine that the PPGs antioxidant mechanism proceeds through a sequential proton loss single electron transfer (SPLET). The enzymatic process reported in this study is an efficient and versatile route to obtain PPGs from different phenylpropanoid acids, sugars and phenolic alcohols.

]]>
<![CDATA[Growth Inhibition of Human Gynecologic and Colon Cancer Cells by Phyllanthus watsonii through Apoptosis Induction]]> https://www.researchpad.co/article/5989dae6ab0ee8fa60bbd8fd

Phyllanthus watsonii Airy Shaw is an endemic plant found in Peninsular Malaysia. Although there are numerous reports on the anti cancer properties of other Phyllanthus species, published information on the cytotoxicity of P. watsonii are very limited. The present study was carried out with bioassay-guided fractionation approach to evaluate the cytotoxicity and apoptosis induction capability of the P. watsonii extracts and fractions on human gynecologic (SKOV-3 and Ca Ski) and colon (HT-29) cancer cells. P. watsonii extracts exhibited strong cytotoxicity on all the cancer cells studied with IC50 values of ≤ 20.0 µg/mL. Hexane extract of P. watsonii was further subjected to bioassay-guided fractionation and yielded 10 fractions (PW-1→PW-10). PW-4→PW-8 portrayed stronger cytotoxic activity and was further subjected to bioassay-guided fractionation and resulted with 8 sub-fractions (PPWH-1→PPWH-8). PPWH-7 possessed greatest cytotoxicity (IC50 values ranged from 0.66 – 0.83 µg/mL) and was selective on the cancer cells studied. LC-MS/MS analysis of PPWH-7 revealed the presence of ellagic acid, geranic acid, glochidone, betulin, phyllanthin and sterol glucoside. Marked morphological changes, ladder-like appearance of DNA and increment in caspase-3 activity indicating apoptosis were clearly observed in both human gynecologic and colon cancer cells treated with P. watsonii especially with PPWH-7. The study also indicated that P. watsonii extracts arrested cell cycle at different growth phases in SKOV-3, Ca Ski and HT-29 cells. Cytotoxic and apoptotic potential of the endemic P. watsonii was investigated for the first time by bioassay-guided approach. These results demonstrated that P. watsonii selectively inhibits the growth of SKOV-3, Ca Ski and HT-29 cells through apoptosis induction and cell cycle modulation. Hence, P. watsonii has the potential to be further exploited for the discovery and development of new anti cancer drugs.

]]>
<![CDATA[Antimalarial Activity and Mechanisms of Action of Two Novel 4-Aminoquinolines against Chloroquine-Resistant Parasites]]> https://www.researchpad.co/article/5989d9e1ab0ee8fa60b698c3

Chloroquine (CQ) is a cost effective antimalarial drug with a relatively good safety profile (or therapeutic index). However, CQ is no longer used alone to treat patients with Plasmodium falciparum due to the emergence and spread of CQ-resistant strains, also reported for P. vivax. Despite CQ resistance, novel drug candidates based on the structure of CQ continue to be considered, as in the present work. One CQ analog was synthesized as monoquinoline (MAQ) and compared with a previously synthesized bisquinoline (BAQ), both tested against P. falciparum in vitro and against P. berghei in mice, then evaluated in vitro for their cytotoxicity and ability to inhibit hemozoin formation. Their interactions with residues present in the NADH binding site of P falciparum lactate dehydrogenase were evaluated using docking analysis software. Both compounds were active in the nanomolar range evaluated through the HRPII and hypoxanthine tests. MAQ and BAQ derivatives were not toxic, and both compounds significantly inhibited hemozoin formation, in a dose-dependent manner. MAQ had a higher selectivity index than BAQ and both compounds were weak PfLDH inhibitors, a result previously reported also for CQ. Taken together, the two CQ analogues represent promising molecules which seem to act in a crucial point for the parasite, inhibiting hemozoin formation.

]]>
<![CDATA[L-Cysteine Administration Attenuates Pancreatic Fibrosis Induced by TNBS in Rats by Inhibiting the Activation of Pancreatic Stellate Cell]]> https://www.researchpad.co/article/5989da2aab0ee8fa60b8246d

Background and Aims

Recent studies have shown that activated pancreatic stellate cells (PSCs) play a major role in pancreatic fibrogenesis. We aimed to study the effect of L-cysteine administration on fibrosis in chronic pancreatitis (CP) induced by trinitrobenzene sulfonic acid (TNBS) in rats and on the function of cultured PSCs.

Methods

CP was induced by TNBS infusion into rat pancreatic ducts. L-cysteine was administrated for the duration of the experiment. Histological analysis and the contents of hydroxyproline were used to evaluate pancreatic damage and fibrosis. Immunohistochemical analysis of α-SMA in the pancreas was performed to detect the activation of PSCs in vivo. The collagen deposition related proteins and cytokines were determined by western blot analysis. DNA synthesis of cultured PSCs was evaluated by BrdU incorporation. We also evaluated the effect of L-cysteine on the cell cycle and cell activation by flow cytometry and immunocytochemistry. The expression of PDGFRβ, TGFβRII, collagen 1α1 and α-SMA of PSCs treated with different concentrations of L-cysteine was determined by western blot. Parameters of oxidant stress were evaluated in vitro and in vivo. Nrf2, NQO1, HO-1, IL-1β expression were evaluated in pancreas tissues by qRT-PCR.

Results

The inhibition of pancreatic fibrosis by L-cysteine was confirmed by histological observation and hydroxyproline assay. α-SMA, TIMP1, IL-1β and TGF-β1 production decreased compared with the untreated group along with an increase in MMP2 production. L-cysteine suppressed the proliferation and extracellular matrix production of PSCs through down-regulating of PDGFRβ and TGFβRII. Concentrations of MDA+4-HNE were decreased by L-cysteine administration along with an increase in GSH levels both in tissues and cells. In addition, L-cysteine increased the mRNA expression of Nrf2, NQO1 and HO-1 and reduced the expression of IL-1β in L-cysteine treated group when compared with control group.

Conclusion

L-cysteine treatment attenuated pancreatic fibrosis in chronic pancreatitis in rats.

]]>
<![CDATA[Toxic Element Contamination of Natural Health Products and Pharmaceutical Preparations]]> https://www.researchpad.co/article/5989da55ab0ee8fa60b8eae8

Background

Concern has recently emerged regarding the safety of natural health products (NHPs)–therapies that are increasingly recommended by various health providers, including conventional physicians. Recognizing that most individuals in the Western world now consume vitamins and many take herbal agents, this study endeavored to determine levels of toxic element contamination within a range of NHPs.

Methods

Toxic element testing was performed on 121 NHPs (including Ayurvedic, traditional Chinese, and various marine-source products) as well as 49 routinely prescribed pharmaceutical preparations. Testing was also performed on several batches of one prenatal supplement, with multiple samples tested within each batch. Results were compared to existing toxicant regulatory limits.

Results

Toxic element contamination was found in many supplements and pharmaceuticals; levels exceeding established limits were only found in a small percentage of the NHPs tested and none of the drugs tested. Some NHPs demonstrated contamination levels above preferred daily endpoints for mercury, cadmium, lead, arsenic or aluminum. NHPs manufactured in China generally had higher levels of mercury and aluminum.

Conclusions

Exposure to toxic elements is occurring regularly as a result of some contaminated NHPs. Best practices for quality control–developed and implemented by the NHP industry with government oversight–is recommended to guard the safety of unsuspecting consumers.

]]>
<![CDATA[Vaccination of Lactating Dairy Cows for the Prevention of Aflatoxin B1 Carry Over in Milk]]> https://www.researchpad.co/article/5989db2cab0ee8fa60bd1748

The potential of anaflatoxin B1 (AnAFB1) conjugated to keyhole limpet hemocyanin (KLH) as a vaccine (AnAFB1-KLH) in controlling the carry over of the aflatoxin B1 (AFB1) metabolite aflatoxin M1 (AFM1) in cow milk is reported. AFB1 is the most carcinogenic compound in food and foodstuffs amongst aflatoxins (AFs). AnAFB1 is AFB1 chemically modified as AFB1-1(O-carboxymethyl) oxime. In comparison to AFB1, AnAFB1 has proven to be non-toxic in vitro to human hepatocarcinoma cells and non mutagenic to Salmonella typhimurium strains. AnAFB1-KLH was used for immunization of cows proving to induce a long lasting titer of anti-AFB1 IgG antibodies (Abs) which were cross reactive with AFB1, AFG1, and AFG2. The elicited anti-AFB1 Abs were able to hinder the secretion of AFM1 into the milk of cows continuously fed with AFB1. Vaccination of lactating animals with conjugated AnAFB1 may represent a solution to the public hazard constituted by milk and cheese contaminated with AFs.

]]>
<![CDATA[The Binding Mode of Second-Generation Sulfonamide Inhibitors of MurD: Clues for Rational Design of Potent MurD Inhibitors]]> https://www.researchpad.co/article/5989da6fab0ee8fa60b94225

A series of optimized sulfonamide derivatives was recently reported as novel inhibitors of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD). These are based on naphthalene-N-sulfonyl-D-glutamic acid and have the D-glutamic acid replaced with rigidified mimetics. Here we have defined the binding site of these novel ligands to MurD using 1H/13C heteronuclear single quantum correlation. The MurD protein was selectively 13C-labeled on the methyl groups of Ile (δ1 only), Leu and Val, and was isolated and purified. Crucial Ile, Leu and Val methyl groups in the vicinity of the ligand binding site were identified by comparison of chemical shift perturbation patterns among the ligands with various structural elements and known binding modes. The conformational and dynamic properties of the bound ligands and their binding interactions were examined using the transferred nuclear Overhauser effect and saturation transfer difference. In addition, the binding mode of these novel inhibitors was thoroughly examined using unrestrained molecular dynamics simulations. Our results reveal the complex dynamic behavior of ligand–MurD complexes and its influence on ligand–enzyme contacts. We further present important findings for the rational design of potent Mur ligase inhibitors.

]]>
<![CDATA[What Does It Take to Synergistically Combine Sub-Potent Natural Products into Drug-Level Potent Combinations?]]> https://www.researchpad.co/article/5989da6fab0ee8fa60b946b3

There have been renewed interests in natural products as drug discovery sources. In particular, natural product combinations have been extensively studied, clinically tested, and widely used in traditional, folk and alternative medicines. But opinions about their therapeutic efficacies vary from placebo to synergistic effects. The important questions are whether synergistic effects can sufficiently elevate therapeutic potencies to drug levels, and by what mechanisms and at what odds such combinations can be assembled. We studied these questions by analyzing literature-reported cell-based potencies of 190 approved anticancer and antimicrobial drugs, 1378 anticancer and antimicrobial natural products, 99 natural product extracts, 124 synergistic natural product combinations, and 122 molecular interaction profiles of the 19 natural product combinations with collective potency enhanced to drug level or by >10-fold. Most of the evaluated natural products and combinations are sub-potent to drugs. Sub-potent natural products can be assembled into combinations of drug level potency at low probabilities by distinguished multi-target modes modulating primary targets, their regulators and effectors, and intracellular bioavailability of the active natural products.

]]>
<![CDATA[Standardization of Misleading Immunoassay Based 25-Hydroxyvitamin D Levels with Liquid Chromatography Tandem-Mass Spectrometry in a Large Cohort Study]]> https://www.researchpad.co/article/5989da1fab0ee8fa60b7e2fc

Background

The interest in vitamin D measurement has strongly increased in recent years. The best indicator for circulating vitamin D levels is 25-hydroxy-vitamin D (25(OH)D) which is often measured by different immunoassays. We demonstrate problems in comparability of measures by different immunoassays and the need for standardization in the context of a large population-based cohort study.

Methods

25(OH)D was measured with the immunoassays Diasorin Liaison in 2006 in 5,386 women and in the context of another project with IDS-iSYS in 4,199 men in 2009–2010 (when the Diasorin Liaison was no longer available in the version utilized in 2006). Standardization was performed by re-measuring of 25(OH)D levels in 97 men and 97 women with liquid chromatography tandem-mass spectrometry (LC-MS/MS) to obtain linear regression conversion equations.

Results

Applying a 30 nmol/L cut-off value for vitamin D deficiency would have resulted in 48.3% of women and 12.1% of men with vitamin D deficiency ahead of standardization. The large gender difference was strongly attenuated after standardization of the assays with only 15.7% of women and 14.3% of men with vitamin D deficiency. Standardization on average increased the 25(OH)D levels by 10.3 nmol/L in women and decreased 25(OH)D levels by 2.9 nmol/L in men.

Conclusion

The standardization with LC-MS/MS revealed that much of the observed gender difference was only assay-driven and the extremely high proportion of 48.3% vitamin D deficient women proved to be an exaggeration of the old version of the Diasorin-Liaison immunoassay. Standardization of 25(OH)D immunoassay results by LC-MS/MS is recommended to improve their accuracy and comparability, provided the LC-MS/MS method itself is adequately validated and standardized.

]]>
<![CDATA[Identification of Novel Human Dipeptidyl Peptidase-IV Inhibitors of Natural Origin (Part I): Virtual Screening and Activity Assays]]> https://www.researchpad.co/article/5989d9d2ab0ee8fa60b646af

Background

There has been great interest in determining whether natural products show biological activity toward protein targets of pharmacological relevance. One target of particular interest is DPP-IV whose most important substrates are incretins that, among other beneficial effects, stimulates insulin biosynthesis and secretion. Incretins have very short half-lives because of their rapid degradation by DPP-IV and, therefore, inhibiting this enzyme improves glucose homeostasis. As a result, DPP-IV inhibitors are of considerable interest to the pharmaceutical industry. The main goals of this study were (a) to develop a virtual screening process to identify potential DPP-IV inhibitors of natural origin; (b) to evaluate the reliability of our virtual-screening protocol by experimentally testing the in vitro activity of selected natural-product hits; and (c) to use the most active hit for predicting derivatives with higher binding affinities for the DPP-IV binding site.

Methodology/Principal Findings

We predicted that 446 out of the 89,165 molecules present in the natural products subset of the ZINC database would inhibit DPP-IV with good ADMET properties. Notably, when these 446 molecules were merged with 2,342 known DPP-IV inhibitors and the resulting set was classified into 50 clusters according to chemical similarity, there were 12 clusters that contained only natural products for which no DPP-IV inhibitory activity has been previously reported. Nine molecules from 7 of these 12 clusters were then selected for in vitro activity testing and 7 out of the 9 molecules were shown to inhibit DPP-IV (where the remaining two molecules could not be solubilized, preventing the evaluation of their DPP-IV inhibitory activity). Then, the hit with the highest activity was used as a lead compound in the prediction of more potent derivatives.

Conclusions/Significance

We have demonstrated that our virtual-screening protocol was successful in identifying novel lead compounds for developing more potent DPP-IV inhibitors.

]]>
<![CDATA[Drug Discovery Prospect from Untapped Species: Indications from Approved Natural Product Drugs]]> https://www.researchpad.co/article/5989d9f5ab0ee8fa60b7011b

Due to extensive bioprospecting efforts of the past and technology factors, there have been questions about drug discovery prospect from untapped species. We analyzed recent trends of approved drugs derived from previously untapped species, which show no sign of untapped drug-productive species being near extinction and suggest high probability of deriving new drugs from new species in existing drug-productive species families and clusters. Case histories of recently approved drugs reveal useful strategies for deriving new drugs from the scaffolds and pharmacophores of the natural product leads of these untapped species. New technologies such as cryptic gene-cluster exploration may generate novel natural products with highly anticipated potential impact on drug discovery.

]]>
<![CDATA[6-Arylpyrido[2,3-d]pyrimidines as Novel ATP-Competitive Inhibitors of Bacterial D-Alanine:D-Alanine Ligase]]> https://www.researchpad.co/article/5989db24ab0ee8fa60bcff2e

Background

ATP-dependent D-alanine:D-alanine ligase (Ddl) is a part of biochemical machinery involved in peptidoglycan biosynthesis, as it catalyzes the formation of the terminal D-ala-D-ala dipeptide of the peptidoglycan precursor UDPMurNAc-pentapeptide. Inhibition of Ddl prevents bacterial growth, which makes this enzyme an attractive and viable target in the urgent search of novel effective antimicrobial drugs. To address the problem of a relentless increase in resistance to known antimicrobial agents we focused our attention to discovery of novel ATP-competitive inhibitors of Ddl.

Methodology/Principal Findings

Encouraged by recent successful attempts to find selective ATP-competitive inhibitors of bacterial enzymes we designed, synthesized and evaluated a library of 6-arylpyrido[2,3-d]pyrimidine-based compounds as inhibitors of Escherichia coli DdlB. Inhibitor binding to the target enzyme was subsequently confirmed by surface plasmon resonance and studied with isothermal titration calorimetry. Since kinetic analysis indicated that 6-arylpyrido[2,3-d]pyrimidines compete with the enzyme substrate ATP, inhibitor binding to the ATP-binding site was additionally studied with docking. Some of these inhibitors were found to possess antibacterial activity against membrane-compromised and efflux pump-deficient strains of E. coli.

Conclusions/Significance

We discovered new ATP-competitive inhibitors of DdlB, which may serve as a starting point for development of more potent inhibitors of DdlB that could include both, an ATP-competitive and D-Ala competitive moiety.

]]>