ResearchPad - membrane-potential https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Inferring a simple mechanism for alpha-blocking by fitting a neural population model to EEG spectra]]> https://www.researchpad.co/article/elastic_article_13836 One of the most striking features of the human electroencephalogram (EEG) is the presence of neural oscillations in the range of 8-13 Hz. It is well known that attenuation of these alpha oscillations, a process known as alpha blocking, arises from opening of the eyes, though the cause has remained obscure. In this study we infer the mechanism underlying alpha blocking by fitting a neural population model to EEG spectra from 82 different individuals. Although such models have long held the promise of being able to relate macroscopic recordings of brain activity to microscopic neural parameters, their utility has been limited by the difficulty of inferring these parameters from fits to data. Our approach involves fitting eyes-open and eyes-closed EEG spectra in a way that minimizes unnecessary differences in model parameters between the two states. Surprisingly, we find that changes in just one parameter, the level of external input to the inhibitory neurons in cortex, is sufficient to explain the attenuation of alpha oscillations. This indicates that opening of the eyes reduces alpha activity simply by increasing external inputs to the inhibitory neurons in the cortex.

]]>
<![CDATA[Low-rate firing limit for neurons with axon, soma and dendrites driven by spatially distributed stochastic synapses]]> https://www.researchpad.co/article/elastic_article_13830 Neurons are extended cells with multiple branching dendrites, a cell body and an axon. In an active neuronal network, neurons receive vast numbers of incoming synaptic pulses throughout their dendrites and cell body that each exhibit significant variability in amplitude and arrival time. The resulting synaptic input causes voltage fluctuations throughout their structure that evolve in space and time. The dynamics of how these signals are integrated and how they ultimately trigger outgoing spikes have been modelled extensively since the late 1960s. However, until relatively recently the majority of the mathematical formulae describing how fluctuating synaptic drive triggers action potentials have been applicable only for small neurons with the dendritic and axonal structure ignored. This has been largely due to the mathematical complexity of including the effects of spatially distributed synaptic input. Here we show that in a physiologically relevant, low-firing-rate regime, an approximate level-crossing approach can be used to provide an estimate for the neuronal firing rate even when the dendrites and axons are included. We illustrate this approach using basic neuronal morphologies that capture the fundamentals of neuronal structure. Though the models are simple, these preliminary results show that it is possible to obtain useful formulae that capture the effects of spatially distributed synaptic drive. The generality of these results suggests they will provide a mathematical framework for future studies that might require the structure of neurons to be taken into account, such as the effect of electrical fields or multiple synaptic input streams that target distinct spatial domains of cortical pyramidal cells.

]]>
<![CDATA[Genetic algorithm-based personalized models of human cardiac action potential]]> https://www.researchpad.co/article/elastic_article_7669 We present a novel modification of genetic algorithm (GA) which determines personalized parameters of cardiomyocyte electrophysiology model based on set of experimental human action potential (AP) recorded at different heart rates. In order to find the steady state solution, the optimized algorithm performs simultaneous search in the parametric and slow variables spaces. We demonstrate that several GA modifications are required for effective convergence. Firstly, we used Cauchy mutation along a random direction in the parametric space. Secondly, relatively large number of elite organisms (6–10% of the population passed on to new generation) was required for effective convergence. Test runs with synthetic AP as input data indicate that algorithm error is low for high amplitude ionic currents (1.6±1.6% for IKr, 3.2±3.5% for IK1, 3.9±3.5% for INa, 8.2±6.3% for ICaL). Experimental signal-to-noise ratio above 28 dB was required for high quality GA performance. GA was validated against optical mapping recordings of human ventricular AP and mRNA expression profile of donor hearts. In particular, GA output parameters were rescaled proportionally to mRNA levels ratio between patients. We have demonstrated that mRNA-based models predict the AP waveform dependence on heart rate with high precision. The latter also provides a novel technique of model personalization that makes it possible to map gene expression profile to cardiac function.

]]>
<![CDATA[An electrodiffusive, ion conserving Pinsky-Rinzel model with homeostatic mechanisms]]> https://www.researchpad.co/article/elastic_article_7780 Neurons generate their electrical signals by letting ions pass through their membranes. Despite this fact, most models of neurons apply the simplifying assumption that ion concentrations remain effectively constant during neural activity. This assumption is often quite good, as neurons contain a set of homeostatic mechanisms that make sure that ion concentrations vary quite little under normal circumstances. However, under some conditions, these mechanisms can fail, and ion concentrations can vary quite dramatically. Standard models are thus not able to simulate such conditions. Here, we present what to our knowledge is the first multicompartmental neuron model that accounts for ion concentration variations in a way that ensures complete and consistent ion concentration and charge conservation. In this work, we use the model to explore under which activity conditions the ion concentration variations become important for predicting the neurodynamics. We expect the model to be of great value for the field of neuroscience, as it can be used to simulate a range of pathological conditions, such as spreading depression or epilepsy, which are associated with large changes in extracellular ion concentrations.

]]>
<![CDATA[Activity-dependent switches between dynamic regimes of extracellular matrix expression]]> https://www.researchpad.co/article/Ndfacbadd-d1b4-4759-ab64-7c15dc34928b

Experimental studies highlight the important role of the extracellular matrix (ECM) in the regulation of neuronal excitability and synaptic connectivity in the nervous system. In its turn, the neural ECM is formed in an activity-dependent manner. Its maturation closes the so-called critical period of neural development, stabilizing the efficient configurations of neural networks in the brain. ECM is locally remodeled by proteases secreted and activated in an activity-dependent manner into the extracellular space and this process is important for physiological synaptic plasticity. We ask if ECM remodeling may be exaggerated under pathological conditions and enable activity-dependent switches between different regimes of ECM expression. We consider an analytical model based on known mechanisms of interaction between neuronal activity and expression of ECM, ECM receptors and ECM degrading proteases. We demonstrate that either inhibitory or excitatory influence of ECM on neuronal activity may lead to the bistability of ECM expression, so two stable stationary states are observed. Noteworthy, only in the case when ECM has predominant inhibitory influence on neurons, the bistability is dependent on the activity of proteases. Excitatory ECM-neuron feedback influences may also result in spontaneous oscillations of ECM expression, which may coexist with a stable stationary state. Thus, ECM-neuronal interactions support switches between distinct dynamic regimes of ECM expression, possibly representing transitions into disease states associated with remodeling of brain ECM.

]]>
<![CDATA[Electrical synapses regulate both subthreshold integration and population activity of principal cells in response to transient inputs within canonical feedforward circuits]]> https://www.researchpad.co/article/5c7d95e0d5eed0c484734e89

As information about the world traverses the brain, the signals exchanged between neurons are passed and modulated by synapses, or specialized contacts between neurons. While neurotransmitter-based synapses tend to exert either excitatory or inhibitory pulses of influence on the postsynaptic neuron, electrical synapses, composed of plaques of gap junction channels, continuously transmit signals that can either excite or inhibit a coupled neighbor. A growing body of evidence indicates that electrical synapses, similar to their chemical counterparts, are modified in strength during physiological neuronal activity. The synchronizing role of electrical synapses in neuronal oscillations has been well established, but their impact on transient signal processing in the brain is much less understood. Here we constructed computational models based on the canonical feedforward neuronal circuit and included electrical synapses between inhibitory interneurons. We provided discrete closely-timed inputs to the circuits, and characterize the influence of electrical synapse strength on both subthreshold summation and spike trains in the output neuron. Our simulations highlight the diverse and powerful roles that electrical synapses play even in simple circuits. Because these canonical circuits are represented widely throughout the brain, we expect that these are general principles for the influence of electrical synapses on transient signal processing across the brain.

]]>
<![CDATA[Trpm4 ion channels in pre-Bötzinger complex interneurons are essential for breathing motor pattern but not rhythm]]> https://www.researchpad.co/article/5c784fa8d5eed0c484007252

Inspiratory breathing movements depend on pre-Bötzinger complex (preBötC) interneurons that express calcium (Ca2+)-activated nonselective cationic current (ICAN) to generate robust neural bursts. Hypothesized to be rhythmogenic, reducing ICAN is predicted to slow down or stop breathing; its contributions to motor pattern would be reflected in the magnitude of movements (output). We tested the role(s) of ICAN using reverse genetic techniques to diminish its putative ion channels Trpm4 or Trpc3 in preBötC neurons in vivo. Adult mice transduced with Trpm4-targeted short hairpin RNA (shRNA) progressively decreased the tidal volume of breaths yet surprisingly increased breathing frequency, often followed by gasping and fatal respiratory failure. Mice transduced with Trpc3-targeted shRNA survived with no changes in breathing. Patch-clamp and field recordings from the preBötC in mouse slices also showed an increase in the frequency and a decrease in the magnitude of preBötC neural bursts in the presence of Trpm4 antagonist 9-phenanthrol, whereas the Trpc3 antagonist pyrazole-3 (pyr-3) showed inconsistent effects on magnitude and no effect on frequency. These data suggest that Trpm4 mediates ICAN, whose influence on frequency contradicts a direct role in rhythm generation. We conclude that Trpm4-mediated ICAN is indispensable for motor output but not the rhythmogenic core mechanism of the breathing central pattern generator.

]]>
<![CDATA[Introducing chaotic codes for the modulation of code modulated visual evoked potentials (c-VEP) in normal adults for visual fatigue reduction]]> https://www.researchpad.co/article/5c897745d5eed0c4847d28a9

Code modulated Visual Evoked Potentials (c-VEP) based BCI studies usually employ m-sequences as a modulating codes for their broadband spectrum and correlation property. However, subjective fatigue of the presented codes has been a problem. In this study, we introduce chaotic codes containing broadband spectrum and similar correlation property. We examined whether the introduced chaotic codes could be decoded from EEG signals and also compared the subjective fatigue level with m-sequence codes in normal subjects. We generated chaotic code from one-dimensional logistic map and used it with conventional 31-bit m-sequence code. In a c-VEP based study in normal subjects (n = 44, 21 females) we presented these codes visually and recorded EEG signals from the corresponding codes for their four lagged versions. Canonical correlation analysis (CCA) and spatiotemporal beamforming (STB) methods were used for target identification and comparison of responses. Additionally, we compared the subjective self-declared fatigue using VAS caused by presented m-sequence and chaotic codes. The introduced chaotic code was decoded from EEG responses with CCA and STB methods. The maximum total accuracy values of 93.6 ± 11.9% and 94 ± 14.4% were achieved with STB method for chaotic and m-sequence codes for all subjects respectively. The achieved accuracies in all subjects were not significantly different in m-sequence and chaotic codes. There was significant reduction in subjective fatigue caused by chaotic codes compared to the m-sequence codes. Both m-sequence and chaotic codes were similar in their accuracies as evaluated by CCA and STB methods. The chaotic codes significantly reduced subjective fatigue compared to the m-sequence codes.

]]>
<![CDATA[Tuft dendrites of pyramidal neurons operate as feedback-modulated functional subunits]]> https://www.researchpad.co/article/5c897706d5eed0c4847d22c8

Dendrites of pyramidal cells exhibit complex morphologies and contain a variety of ionic conductances, which generate non-trivial integrative properties. Basal and proximal apical dendrites have been shown to function as independent computational subunits within a two-layer feedforward processing scheme. The outputs of the subunits are linearly summed and passed through a final non-linearity. It is an open question whether this mathematical abstraction can be applied to apical tuft dendrites as well. Using a detailed compartmental model of CA1 pyramidal neurons and a novel theoretical framework based on iso-response methods, we first show that somatic sub-threshold responses to brief synaptic inputs cannot be described by a two-layer feedforward model. Then, we relax the core assumption of subunit independence and introduce non-linear feedback from the output layer to the subunit inputs. We find that additive feedback alone explains the somatic responses to synaptic inputs to most of the branches in the apical tuft. Individual dendritic branches bidirectionally modulate the thresholds of their input-output curves without significantly changing the gains. In contrast to these findings for precisely timed inputs, we show that neuronal computations based on firing rates can be accurately described by purely feedforward two-layer models. Our findings support the view that dendrites of pyramidal neurons possess non-linear analog processing capabilities that critically depend on the location of synaptic inputs. The iso-response framework proposed in this computational study is highly efficient and could be directly applied to biological neurons.

]]>
<![CDATA[Efficient neural decoding of self-location with a deep recurrent network]]> https://www.researchpad.co/article/5c70678ed5eed0c4847c7217

Place cells in the mammalian hippocampus signal self-location with sparse spatially stable firing fields. Based on observation of place cell activity it is possible to accurately decode an animal’s location. The precision of this decoding sets a lower bound for the amount of information that the hippocampal population conveys about the location of the animal. In this work we use a novel recurrent neural network (RNN) decoder to infer the location of freely moving rats from single unit hippocampal recordings. RNNs are biologically plausible models of neural circuits that learn to incorporate relevant temporal context without the need to make complicated assumptions about the use of prior information to predict the current state. When decoding animal position from spike counts in 1D and 2D-environments, we show that the RNN consistently outperforms a standard Bayesian approach with either flat priors or with memory. In addition, we also conducted a set of sensitivity analysis on the RNN decoder to determine which neurons and sections of firing fields were the most influential. We found that the application of RNNs to neural data allowed flexible integration of temporal context, yielding improved accuracy relative to the more commonly used Bayesian approaches and opens new avenues for exploration of the neural code.

]]>
<![CDATA[Cationic chitosan-propolis nanoparticles alter the zeta potential of S. epidermidis, inhibit biofilm formation by modulating gene expression and exhibit synergism with antibiotics]]> https://www.researchpad.co/article/5c818e84d5eed0c484cc2423

Staphylococcus epidermidis, is a common microflora of human body that can cause opportunistic infections associated with indwelling devices. It is resistant to multiple antibiotics necessitating the need for naturally occurring antibacterial agents. Malaysian propolis, a natural product obtained from beehives exhibits antimicrobial and antibiofilm properties. Chitosan-propolis nanoparticles (CPNP) were prepared using Malaysian propolis and tested for their effect against S. epidermidis. The cationic nanoparticles depicted a zeta potential of +40 and increased the net electric charge (zeta potential) of S. epidermidis from -17 to -11 mV in a concentration-dependent manner whereas, ethanol (Eth) and ethyl acetate (EA) extracts of propolis further decreased the zeta potential from -17 to -20 mV. Confocal laser scanning microscopy (CLSM) depicted that CPNP effectively disrupted biofilm formation by S. epidermidis and decreased viability to ~25% compared to Eth and EA with viability of ~60–70%. CPNP was more effective in reducing the viability of both planktonic as well as biofilm bacteria compared to Eth and EA. At 100 μg/mL concentration, CPNP decreased the survival of biofilm bacteria by ~70% compared to Eth or EA extracts which decreased viability by only 40%-50%. The morphology of bacterial biofilm examined by scanning electron microscopy depicted partial disruption of biofilm by Eth and EA extracts and significant disruption by CPNP reducing bacterial number in the biofilm by ~90%. Real time quantitative PCR analysis of gene expression in treated bacteria showed that genes involved in intercellular adhesion such as IcaABCD, embp and other related genes were significantly downregulated by CPNP. In addition to having a direct inhibitory effect on the survival of S. epidermidis, CPNP showed synergism with the antibiotics rifampicin, ciprofloxacin, vancomycin and doxycycline suggestive of effective treatment regimens. This would help decrease antibiotic treatment dose by at least 4-fold in combination therapies thereby opening up ways of tackling antibiotic resistance in bacteria.

]]>
<![CDATA[Potassium response and homeostasis in Mycobacterium tuberculosis modulates environmental adaptation and is important for host colonization]]> https://www.researchpad.co/article/5c61e93cd5eed0c48496fa58

Successful host colonization by bacteria requires sensing and response to the local ionic milieu, and coordination of responses with the maintenance of ionic homeostasis in the face of changing conditions. We previously discovered that Mycobacterium tuberculosis (Mtb) responds synergistically to chloride (Cl-) and pH, as cues to the immune status of its host. This raised the intriguing concept of abundant ions as important environmental signals, and we have now uncovered potassium (K+) as an ion that can significantly impact colonization by Mtb. The bacterium has a unique transcriptional response to changes in environmental K+ levels, with both distinct and shared regulatory mechanisms controlling Mtb response to the ionic signals of K+, Cl-, and pH. We demonstrate that intraphagosomal K+ levels increase during macrophage phagosome maturation, and find using a novel fluorescent K+-responsive reporter Mtb strain that K+ is not limiting during macrophage infection. Disruption of Mtb K+ homeostasis by deletion of the Trk K+ uptake system results in dampening of the bacterial response to pH and Cl-, and attenuation in host colonization, both in primary murine bone marrow-derived macrophages and in vivo in a murine model of Mtb infection. Our study reveals how bacterial ionic homeostasis can impact environmental ionic responses, and highlights the important role that abundant ions can play during host colonization by Mtb.

]]>
<![CDATA[Population dynamics and entrainment of basal ganglia pacemakers are shaped by their dendritic arbors]]> https://www.researchpad.co/article/5c65dcf2d5eed0c484dec628

The theory of phase oscillators is an essential tool for understanding population dynamics of pacemaking neurons. GABAergic pacemakers in the substantia nigra pars reticulata (SNr), a main basal ganglia (BG) output nucleus, receive inputs from the direct and indirect pathways at distal and proximal regions of their dendritic arbors, respectively. We combine theory, optogenetic stimulation and electrophysiological experiments in acute brain slices to ask how dendritic properties impact the propensity of the various inputs, arriving at different locations along the dendrite, to recruit or entrain SNr pacemakers. By combining cable theory with sinusoidally-modulated optogenetic activation of either proximal somatodendritic regions or the entire somatodendritic arbor of SNr neurons, we construct an analytical model that accurately fits the empirically measured somatic current response to inputs arising from illuminating the soma and various portions of the dendritic field. We show that the extent of the dendritic tree that is illuminated generates measurable and systematic differences in the pacemaker’s phase response curve (PRC), causing a shift in its peak. Finally, we show that the divergent PRCs correctly predict differences in two major features of the collective dynamics of SNr neurons: the fidelity of population responses to sudden step-like changes in inputs; and the phase latency at which SNr neurons are entrained by rhythmic stimulation, which can occur in the BG under both physiological and pathophysiological conditions. Our novel method generates measurable and physiologically meaningful spatial effects, and provides the first empirical demonstration of how the collective responses of SNr pacemakers are determined by the transmission properties of their dendrites. SNr dendrites may serve to delay distal striatal inputs so that they impinge on the spike initiation zone simultaneously with pallidal and subthalamic inputs in order to guarantee a fair competition between the influence of the monosynaptic direct- and polysynaptic indirect pathways.

]]>
<![CDATA[Short-term synaptic depression can increase the rate of information transfer at a release site]]> https://www.researchpad.co/article/5c366803d5eed0c4841a6dbe

The release of neurotransmitters from synapses obeys complex and stochastic dynamics. Depending on the recent history of synaptic activation, many synapses depress the probability of releasing more neurotransmitter, which is known as synaptic depression. Our understanding of how synaptic depression affects the information efficacy, however, is limited. Here we propose a mathematically tractable model of both synchronous spike-evoked release and asynchronous release that permits us to quantify the information conveyed by a synapse. The model transits between discrete states of a communication channel, with the present state depending on many past time steps, emulating the gradual depression and exponential recovery of the synapse. Asynchronous and spontaneous releases play a critical role in shaping the information efficacy of the synapse. We prove that depression can enhance both the information rate and the information rate per unit energy expended, provided that synchronous spike-evoked release depresses less (or recovers faster) than asynchronous release. Furthermore, we explore the theoretical implications of short-term synaptic depression adapting on longer time scales, as part of the phenomenon of metaplasticity. In particular, we show that a synapse can adjust its energy expenditure by changing the dynamics of short-term synaptic depression without affecting the net information conveyed by each successful release. Moreover, the optimal input spike rate is independent of the amplitude or time constant of synaptic depression. We analyze the information efficacy of three types of synapses for which the short-term dynamics of both synchronous and asynchronous release have been experimentally measured. In hippocampal autaptic synapses, the persistence of asynchronous release during depression cannot compensate for the reduction of synchronous release, so that the rate of information transmission declines with synaptic depression. In the calyx of Held, the information rate per release remains constant despite large variations in the measured asynchronous release rate. Lastly, we show that dopamine, by controlling asynchronous release in corticostriatal synapses, increases the synaptic information efficacy in nucleus accumbens.

]]>
<![CDATA[Interaction of two antitumor peptides with membrane lipids – Influence of phosphatidylserine and cholesterol on specificity for melanoma cells]]> https://www.researchpad.co/article/5c57e69ad5eed0c484ef394a

R-DIM-P-LF11-322 and DIM-LF11-318, derived from the cationic human host defense peptide lactoferricin show antitumor activity against human melanoma. While R-DIM-P-LF11-322 interacts specifically with cancer cells, the non-specific DIM-LF11-318 exhibits as well activity against non-neoplastic cells. Recently we have shown that cancer cells expose the negatively charged lipid phosphatidylserine (PS) in the outer leaflet of the plasma membrane, while non-cancer cells just expose zwitterionic or neutral lipids, such as phosphatidylcholine (PC) or cholesterol. Calorimetric and zeta potential studies with R-DIM-P-LF11-322 and cancer-mimetic liposomes composed of PS, PC and cholesterol indicate that the cancer-specific peptide interacts specifically with PS. Cholesterol, however, reduces the effectiveness of the peptide. The non-specific DIM-LF11-318 interacts with PC and PS. Cholesterol does not affect its interaction. The dependence of activity of R-DIM-P-LF11-322 on the presence of exposed PS was also confirmed in vitro upon PS depletion of the outer leaflet of cancer cells by the enzyme PS-decarboxylase. Further corresponding to model studies, cholesterol depleted melanoma plasma membranes showed increased sensitivity to R-DIM-P-LF11-322, whereas activity of DIM-LF11-318 was unaffected. Microscopic studies using giant unilamellar vesicles and melanoma cells revealed strong changes in lateral distribution and domain formation of lipids upon addition of both peptides. Whereas R-DIM-P-LF11-322 enters the cancer cell specifically via PS and reaches an intracellular organelle, the Golgi, inducing mitochondrial swelling and apoptosis, DIM-LF11-318 kills rapidly and non-specifically by lysis of the plasma membrane. In conclusion, the specific interaction of R-DIM-P-LF11-322 with PS and sensitivity to cholesterol seem to modulate its specificity for cancer membranes.

]]>
<![CDATA[Estimation of auditory steady-state responses based on the averaging of independent EEG epochs]]> https://www.researchpad.co/article/5c5369bcd5eed0c484a465a1

The amplitude of auditory steady-state responses (ASSRs) generated in the brainstem of rats exponentially decreases over the sequential averaging of EEG epochs. This behavior is partially due to the adaptation of the ASSR induced by the continuous and monotonous stimulation. In this study, we analyzed the potential clinical relevance of the ASSR adaptation. ASSR were elicited in eight anesthetized adult rats by 8-kHz tones, modulated in amplitude at 115 Hz. We called independent epochs to those EEG epochs acquired with sufficiently long inter-stimulus interval, so the ASSR contained in any given epoch is not affected by the previous stimulation. We tested whether the detection of ASSRs is improved when the response is computed by averaging independent EEG epochs, containing only unadapted auditory responses. The improvements in the ASSR detection obtained with standard, weighted and sorted averaging were compared. In the absence of artifacts, when the ASSR was elicited by continuous acoustic stimulation, the computation of the ASSR amplitude relied upon the averaging method. While the adaptive behavior of the ASSR was still evident after the weighting of epochs, the sorted averaging resulted in under-estimations of the ASSR amplitude. In the absence of artifacts, the ASSR amplitudes computed by averaging independent epochs did not depend on the averaging procedure. Averaging independent epochs resulted in higher ASSR amplitudes and halved the number of EEG epochs needed to be acquired to achieve the maximum detection rate of the ASSR. Acquisition protocols based on averaging independent EEG epochs, in combination with appropriate averaging methods for artifact reduction might contribute to develop more accurate hearing assessments based on ASSRs.

]]>
<![CDATA[Establishment of a pulmonary epithelial barrier on biodegradable poly-L-lactic-acid membranes]]> https://www.researchpad.co/article/5c605a31d5eed0c4847ccb43

Development of biocompatible and functional scaffolds for tissue engineering is a major challenge, especially for development of polarised epithelia that are critical structures in tissue homeostasis. Different in vitro models of the lung epithelial barrier have been characterized using non-degradable polyethylene terephthalate membranes which limits their uses for tissue engineering. Although poly-L-lactic acid (PLLA) membranes are biodegradable, those prepared via conventional Diffusion Induced Phase Separation (DIPS) lack open-porous geometry and show limited permeability compromising their use for epithelial barrier studies. Here we used PLLA membranes prepared via a modification of the standard DIPS protocol to control the membrane surface morphology and permeability. These were bonded to cell culture inserts for use in barrier function studies. Pulmonary epithelial cells (H441) readily attached to the PLLA membranes and formed a confluent cell layer within two days. This was accompanied by a significant increase in trans-epithelial electrical resistance and correlated with the formation of tight junctions and vectorial cytokine secretion in response to TNFα. Our data suggest that a structurally polarized and functional epithelial barrier can be established on PLLA membranes produced via a non-standard DIPS protocol. Therefore, PLLA membranes have potential utility in lung tissue engineering applications requiring bio-absorbable membranes.

]]>
<![CDATA[Calcium phosphate precipitation inhibits mitochondrial energy metabolism]]> https://www.researchpad.co/article/5c3d00f1d5eed0c484036e71

Early studies have shown that moderate levels of calcium overload can cause lower oxidative phosphorylation rates. However, the mechanistic interpretations of these findings were inadequate. And while the effect of excessive calcium overload on mitochondrial function is well appreciated, there has been little to no reports on the consequences of low to moderate calcium overload. To resolve this inadequacy, mitochondrial function from guinea pig hearts was quantified using several well-established methods including high-resolution respirometry and spectrofluorimetry and analyzed using mathematical modeling. We measured key mitochondrial variables such as respiration, mitochondrial membrane potential, buffer calcium, and substrate effects for a range of mitochondrial calcium loads from near zero to levels approaching mitochondrial permeability transition. In addition, we developed a computer model closely mimicking the experimental conditions and used this model to design experiments capable of eliminating many hypotheses generated from the data analysis. We subsequently performed those experiments and determined why mitochondrial ADP-stimulated respiration is significantly lowered during calcium overload. We found that when calcium phosphate levels, not matrix free calcium, reached sufficient levels, complex I activity is inhibited, and the rate of ATP synthesis is reduced. Our findings suggest that calcium phosphate granules form physical barriers that isolate complex I from NADH, disrupt complex I activity, or destabilize cristae and inhibit NADH-dependent respiration.

]]>
<![CDATA[The effects and mechanism of peiminine-induced apoptosis in human hepatocellular carcinoma HepG2 cells]]> https://www.researchpad.co/article/5c3d0128d5eed0c484038c7f

Peiminine is a compound isolated from Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae family), which has demonstrated antitumor activities. But its precise molecular mechanism underlying antitumor activity remain elusive. In this study, peiminine-induced apoptosis towards human hepatocellular carcinoma and its molecular mechanism were investigated. MTT assay was employed to assess anticancer effects of peiminine upon Hela, HepG2, SW480 and MCF-7 cell lines. Nuclear staining and flow cytometry were carried out to detect apoptosis induced by peiminine. Mitochondrial membrane potential evaluation and Western blot analysis were performed to investigate the mechanism of peiminine-induced apoptosis. The results showed peiminine reduced the viability of HepG2 cells in a time- and dose-dependent manner and had an IC50 of 4.58 μg/mL at 24h. Peiminine significantly increased the percentage of apoptotic cells and the mitochondrial membrane potential dose-dependently in HepG2 cells. The results of Western blotting indicated the expressions of Bcl-2, procaspase-3, procaspase-8, procaspase-9, and PARP decreased in HepG2 cells treated with peiminine, while the expressions of Bax, caspase-3, caspase-8, caspase-9, and cleaved PARP1 increased. The result suggests that peiminine can induce apoptosis in human hepatocellular carcinoma HepG2 cells through both extrinsic and intrinsic apoptotic pathways.

]]>
<![CDATA[Human scalp evoked potentials related to the fusion between a sound source and its simulated reflection]]> https://www.researchpad.co/article/5c3fa5ced5eed0c484ca8cc3

The auditory system needs to fuse the direct wave (lead) from a sound source and its time-delayed reflections (lag) to achieve a single sound image perception. This lead-lag fusion plays crucial roles in auditory processing in reverberant environments. Here, we investigated neural correlates of the lead-lag fusion by tracking human cortical potentials evoked by a break in the correlation (BIC) between the lead and lag when the time delay between the two was 0, 2, or 4 ms. The BIC evoked a scalp potential consisting of an N1 and a P2 component. Both components were modulated by the delay. The effects of the delay on the amplitude of the two components were similar, an increase of the delay resulting in a decrease of the amplitude. In contrast, the delay differently modulated the latency of the two components, an increase of the delay resulting in an increase of the P2 latency but not an increase of the N1 latency. Similar to the P2 latency, the reaction time for subjective detection of the BIC also increased with the delay. These findings suggest that both the N1 and the P2 evoked by the BIC are neural correlates of the lead-lag fusion and that, relative to the N1, the P2 may be more closely related to listeners’ perception of the fusion. Our study thus provides a neurophysiological and objective approach for investigating the fusion between the direct sound wave from a sound source and its reflections.

]]>