ResearchPad - meteorology https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Inference on dengue epidemics with Bayesian regime switching models]]> https://www.researchpad.co/article/elastic_article_14505 Dengue, a mosquito-borne infectious disease caused by the dengue viruses, is present in many parts of the tropical and subtropical regions of the world. All four serotypes of dengue viruses are endemic in Singapore, an equatorial city-state. Frequent outbreaks occur, sometimes leading to national epidemics. However, few studies have attempted to characterize breakpoints which precede large rises in dengue case counts. In this paper, Bayesian regime switching (BRS) models were employed to infer epidemic and endemic regimes of dengue transmissions, each containing regime specific processes which drive the growth and decline of dengue cases, estimated using a custom built multi-move Gibbs sampling algorithm. Assessments against various baseline showed that BRS performs better in characterizing dengue transmissions. The dengue regimes estimated by BRS are characterized by their persistent nature. Next, climate analysis showed no short nor long term associations between classified regimes with climate. Lastly, fitting BRS to simulated disease data generated from a mechanistic model, we showed links between disease infectivity and regimes classified using BRS. The model proposed could be applied to other localities and diseases under minimal data requirements where transmission counts over time are collected.

]]>
<![CDATA[Why do biting horseflies prefer warmer hosts? tabanids can escape easier from warmer targets]]> https://www.researchpad.co/article/elastic_article_14494 Blood-sucking horseflies (tabanids) prefer warmer (sunlit, darker) host animals and generally attack them in sunshine, the reason for which was unknown until now. Recently, it was hypothesized that blood-seeking female tabanids prefer elevated temperatures, because their wing muscles are quicker and their nervous system functions better at a warmer body temperature brought about by warmer microclimate, and thus they can more successfully avoid the host’s parasite-repelling reactions by prompt takeoffs. To test this hypothesis, we studied in field experiments the success rate of escape reactions of tabanids that landed on black targets as a function of the target temperature, and measured the surface temperature of differently coloured horses with thermography. We found that the escape success of tabanids decreased with decreasing target temperature, that is escape success is driven by temperature. Our results explain the behaviour of biting horseflies that they prefer warmer hosts against colder ones. Since in sunshine the darker the host the warmer its body surface, our results also explain why horseflies prefer sunlit dark (brown, black) hosts against bright (beige, white) ones, and why these parasites attack their hosts usually in sunshine, rather than under shaded conditions.

]]>
<![CDATA[Examination of the ocean as a source for atmospheric microplastics]]> https://www.researchpad.co/article/elastic_article_13804 Global plastic litter pollution has been increasing alongside demand since plastic products gained commercial popularity in the 1930’s. Current plastic pollutant research has generally assumed that once plastics enter the ocean they are there to stay, retained permanently within the ocean currents, biota or sediment until eventual deposition on the sea floor or become washed up onto the beach. In contrast to this, we suggest it appears that some plastic particles could be leaving the sea and entering the atmosphere along with sea salt, bacteria, virus’ and algae. This occurs via the process of bubble burst ejection and wave action, for example from strong wind or sea state turbulence. In this manuscript we review evidence from the existing literature which is relevant to this theory and follow this with a pilot study which analyses microplastics (MP) in sea spray. Here we show first evidence of MP particles, analysed by μRaman, in marine boundary layer air samples on the French Atlantic coast during both onshore (average of 2.9MP/m3) and offshore (average of 9.6MP/m3) winds. Notably, during sampling, the convergence of sea breeze meant our samples were dominated by sea spray, increasing our capacity to sample MPs if they were released from the sea. Our results indicate a potential for MPs to be released from the marine environment into the atmosphere by sea-spray giving a globally extrapolated figure of 136000 ton/yr blowing on shore.

]]>
<![CDATA[Forecasting the monthly incidence rate of brucellosis in west of Iran using time series and data mining from 2010 to 2019]]> https://www.researchpad.co/article/elastic_article_13811 The identification of statistical models for the accurate forecast and timely determination of the outbreak of infectious diseases is very important for the healthcare system. Thus, this study was conducted to assess and compare the performance of four machine-learning methods in modeling and forecasting brucellosis time series data based on climatic parameters.MethodsIn this cohort study, human brucellosis cases and climatic parameters were analyzed on a monthly basis for the Qazvin province–located in northwestern Iran- over a period of 9 years (2010–2018). The data were classified into two subsets of education (80%) and testing (20%). Artificial neural network methods (radial basis function and multilayer perceptron), support vector machine and random forest were fitted to each set. Performance analysis of the models were done using the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Root Error (MARE), and R2 criteria.ResultsThe incidence rate of the brucellosis in Qazvin province was 27.43 per 100,000 during 2010–2019. Based on our results, the values of the RMSE (0.22), MAE (0.175), MARE (0.007) criteria were smaller for the multilayer perceptron neural network than their values in the other three models. Moreover, the R2 (0.99) value was bigger in this model. Therefore, the multilayer perceptron neural network exhibited better performance in forecasting the studied data. The average wind speed and mean temperature were the most effective climatic parameters in the incidence of this disease.ConclusionsThe multilayer perceptron neural network can be used as an effective method in detecting the behavioral trend of brucellosis over time. Nevertheless, further studies focusing on the application and comparison of these methods are needed to detect the most appropriate forecast method for this disease. ]]> <![CDATA[The applicability of recreation-grade GNSS receiver (GPS watch, Suunto Ambit Peak 3) in a forested and an open area compared to a mapping-grade receiver (Trimble Juno T41)]]> https://www.researchpad.co/article/N8984bd8b-66a6-4b6e-8af7-92a53859b107

Due to developments in global navigation satellite systems (GNSS) and the miniaturization of their components, the usage of Global Positioning System (GPS) is no longer restricted to professional applications, but has become available in various consumer type devices, such as wristwatches. These commercial devices, however, were primarily designed for tracking activities in predominately urban settings and their accuracy has not been tested in forested areas. In this study, we present an assessment of the positional accuracy of a GPS watch (Ambit Peak 3, Suunto, Finland) under different forest cover types, seasons and meteorological conditions within the Whitehall Forest GPS Test Site located in Athens, Georgia, USA. As a standard of comparison, the performance of the GPS watch measurements was juxtaposed to that of a mapping-grade receiver (Juno T41, Trimble Inc., USA). In this study, we analyzed the differences between the determined and control positions using root-mean-square-error (RMSE), along with the distribution of observed positions through the standard deviational ellipse. The results suggest that the seasonal variations contributed to a statistically significant impact on the RMSE values for the GPS watch. However, there were no statistically significant differences in horizontal position accuracy by forest cover-type when using the GPS watch. Furthermore, no significant differences were found in horizontal position accuracy during the leaf-off period between the RMSE values for the GPS watch and those of the mapping-grade receiver. Lastly, the positional accuracies for both types of receivers were found to be weakly, but significantly correlated with fluctuations in air temperature and absolute humidity.

]]>
<![CDATA[Future trends of water resources and influences on agriculture in China]]> https://www.researchpad.co/article/N87c2566a-6970-4c5f-9ecf-ecac024e386a

Water resources are indispensable for all social-economic activities and ecosystem functions. In addition, changes in water resources have great significance for agricultural production. This paper uses five global climate models from CMIP5 to evaluate the future spatiotemporal variation in water resources in China under four RCP scenarios. The results show that the available precipitation significantly decreases due to evapotranspiration. Comparing the four RCP scenarios, the national average of the available precipitation is the highest under the RCP 2.6 and 4.5 scenarios, followed by that under the RCP 8.5 scenario. In terms of spatial distribution, the amount of available precipitation shows a decreasing trend from southeast to northwest. Regarding temporal changes, the available precipitation under RCP 8.5 exhibits a trend of first increasing and then decreasing, while the available precipitation under the RCP 6.0 scenario exhibits a trend of first decreasing and then increasing. Under the RCP 2.6 and 4.5 scenarios, the available precipitation increases, and the RCP 4.5 scenario has a higher rate of increase than that of RCP 2.6. In the context of climate change, changes in water resources and temperature cause widespread increases in potential agricultural productivity around Hu’s line, especially in southwestern China. However, the potential agricultural productivity decreases in a large area of southeastern China. Hu’s line has a partial breakthrough in the locking of agriculture, mainly in eastern Tibet, western Sichuan, northern Yunnan and northwestern Inner Mongolia. The results provide a reference for the management and deployment of future water resources and can aid in agricultural production in China.

]]>
<![CDATA[The Land‐Sea Breeze of the Red Sea: Observations, Simulations, and Relationships to Regional Moisture Transport]]> https://www.researchpad.co/article/Na2316739-693c-4b23-a87b-686438623071

Abstract

Unique in situ observations of atmospheric conditions over the Red Sea and the coastal Arabian Peninsula are examined to study the dynamics and regional impacts of the local land‐sea breeze cycle (LSBC). During a 26‐month data record spanning 2008–2011, observed LSBC events occurred year‐round, frequently exhibiting cross‐shore wind velocities in excess of 8 m/s. Observed onshore and offshore features of both the land‐ and sea‐breeze phases of the cycle are presented, and their seasonal modulation is considered. Weather Research and Forecasting climate downscaling simulations and satellite measurements are used to extend the analysis. In the model, the amplitude of the LSBC is significantly larger in the vicinity of the steeper terrain elements encircling the basin, suggesting an enhancement by the associated slope winds. Observed and simulated conditions also reflected distinct gravity‐current characteristics of the intrinsic moist marine air mass during both phases of the LSBC. Specifically, the advance and retreat of marine air mass was directly tied to the development of internal boundary layers onshore and offshore throughout the period of study. Convergence in the lateral moisture flux resulting from this air mass ascending the coastal topography (sea‐breeze phase) as well as colliding with air masses from the opposing coastline (land‐breeze phase) further resulted in cumulous cloud formation and precipitation.

]]>
<![CDATA[Relative Humidity on Mars: New Results From the Phoenix TECP Sensor]]> https://www.researchpad.co/article/N30658b03-7b46-436c-bd01-532f775c0725

Abstract

In situ measurements of relative humidity (RH) on Mars have only been performed by the Phoenix (PHX) and Mars Science Laboratory (MSL) missions. Here we present results of our recalibration of the PHX thermal and electrical conductivity probe (TECP) RH sensor. This recalibration was conducted using a TECP engineering model subjected to the full range of environmental conditions at the PHX landing site in the Michigan Mars Environmental Chamber. The experiments focused on the warmest and driest conditions (daytime) because they were not covered in the original calibration (Zent et al., 2010, https://doi.org/10.1029/2009JE003420) and previous recalibration (Zent et al., 2016, https://doi.org/10.1002/2015JE004933). In nighttime conditions, our results are in excellent agreement with the previous 2016 recalibration, while in daytime conditions, our results show larger water vapor pressure values. We obtain vapor pressure values in the range ~0.005–1.4 Pa, while Zent et al. (2016, https://doi.org/10.1002/2015JE004933) obtain values in the range ~0.004–0.4 Pa. Our higher daytime values are in better agreement with independent estimates from the ground by the PHX Surface Stereo Imager instrument and from orbit by Compact Reconnaissance Imaging Spectrometer for Mars. Our results imply larger day‐to‐night ratios of water vapor pressure at PHX compared to MSL, suggesting a stronger atmosphere‐regolith interchange in the Martian arctic than at lower latitudes. Further, they indicate that brine formation at the PHX landing site via deliquescence can be achieved only temporarily between midnight and 6 a.m. on a few sols. The results from our recalibration are important because they shed light on the near‐surface humidity environment on Mars.

]]>
<![CDATA[Seasonal Variations of Arctic Low‐Level Clouds and Its Linkage to Sea Ice Seasonal Variations]]> https://www.researchpad.co/article/Nc90d0f70-96a6-4435-827b-4592ce32542f

Abstract

Using CALIPSO‐CloudSat‐Clouds and the Earth's Radiant Energy System‐Moderate Resolution Imaging Spectrometer data set, this study documents the seasonal variation of sea ice, cloud, and atmospheric properties in the Arctic (70°N–82°N) for 2007–2010. A surface‐type stratification—consisting Permanent Ocean, Land, Permanent Ice, and Transient Sea Ice—is used to investigate the influence of surface type on low‐level Arctic cloud liquid water path (LWP) seasonality. The results show significant variations in the Arctic low‐level cloud LWP by surface type linked to differences in thermodynamic state. Subdividing the Transient Ice region (seasonal sea ice zone) by melt/freeze season onset dates reveals a complex influence of sea ice variations on low cloud LWP seasonality. We find that lower tropospheric stability is the primary factor affecting the seasonality of cloud LWP. Our results suggest that variations in sea ice melt/freeze onset have a significant influence on the seasonality of low‐level cloud LWP by modulating the lower tropospheric thermal structure and not by modifying the surface evaporation rate in late spring and midsummer. We find no significant dependence of the May low‐level cloud LWP peak on the melt/freeze onset dates, whereas and September/October low‐level cloud LWP maximum shifts later in the season for earlier melt/later freeze onset regions. The Arctic low cloud LWP seasonality is controlled by several surface‐atmosphere interaction processes; the importance of each varies seasonally due to the thermodynamic properties of sea ice. Our results demonstrate that when analyzing Arctic cloud‐sea ice interactions, a seasonal perspective is critical.

]]>
<![CDATA[The Western Tibetan Vortex as an Emergent Feature of Near‐Surface Temperature Variations]]> https://www.researchpad.co/article/N1bf0379a-74fc-4336-b19e-848eaabf9a8f

Abstract

Glaciers around the world are shrinking, yet in a region in northwestern High Mountain Asia (HMA), glaciers show growth. A proposed explanation for this anomalous behavior is related to the variability of the “Western Tibetan Vortex” (WTV), which correlates well with near‐surface temperatures in northwestern HMA. Using analytical formulations and ERA5 reanalysis data, we show that the WTV is the change of wind field resulting from changes in near‐surface temperature gradients in geostrophic flow and that it is not unique to northwestern HMA. Instead, we argue that net radiation is likely the main driver of near‐surface temperatures in Western HMA in summer and autumn. The decreasing strength of the WTV during summer in the twentieth century is thus likely the result of decreasing net radiation. We do argue that the WTV is a useful concept that could yield insights in other regions as well.

]]>
<![CDATA[Sap flow of Salix psammophila and its principal influencing factors at different slope positions in the Mu Us desert]]> https://www.researchpad.co/article/N9e08a49c-6957-422b-bc2c-73a7e35a95db

The changes in sap flow of Salix psammophila growing on a gentle slope (lower slope, P1), a middle slope (P2), and an upper slope (P3), and the response of sap flow to meteorological factors at the different slope positions were studied using the continuous and synchronized observations, the instrument were wrapped stem flowmeter EMS 62 sap-flow heat-balance-based system and the LSI-LASTEM automatic weather station. The results revealed that the soil moisture content was the highest and the growth conditions of Salix psammophila were the best at P1, followed by P2. At P3, however, although good apical dominance was observed, the proportion of dead branches was the highest. Furthermore, the daily variation patterns of sap flow on the three slopes presented as multi-peak bell-shaped curves. The daily accumulation changes in sap flow showed a trend of P1 > P3 > P2, and within the same diameter range, the sap flow at P1 was significantly different from that at P2 and P3, whereas the sap flow at P2 and P3 did not vary significantly. All the three slopes showed a significant and positive correlation with photosynthetically active radiation, atmospheric temperature, and vapor pressure difference, and a significant and negative correlation with relative humidity; however, the degrees of correlation varied slightly. The stepwise regression analysis showed that, at different slopes, different variables were selected for different branch diameters, but photosynthetically active radiation and atmospheric temperature played dominant roles on all slopes. This study reveals the sap flow pattern of Salix psammophila on different slopes and its response mechanism to meteorological factors, which was essential for understanding the restoration ability, physiological adaptability, and ecosystem stability of Salix psammophila communities.

]]>
<![CDATA[A δ2H Isoscape of blackberry as an example application for determining the geographic origins of plant materials in New Zealand]]> https://www.researchpad.co/article/Nea2d9f77-f900-4107-8de8-5a146688a563

In this investigation, two previously reported precipitation δ2H isoscapes for New Zealand were used to develop a δ2H isoscape for blackberry (Rubus sp.) leaf. These isoscapes were calibrated using the measured δ2H values of 120 authentic blackberry leaf samples collected from across the country. A regression model based on environmental variables available for New Zealand was also determined to predict δ2H values measured from blackberry leaves without initially modelling the precipitation δ2H values. The three models were compared for their accuracy and precision when assigning 10 samples of blackberry leaves for their geographic location based on their measured δ2H values. One of the models based on a precipitation isoscape was similar in accuracy and precision of assignment to the model determined from the environmental variables and provides an approach for determining valid isoscapes for future plant materials.

]]>
<![CDATA[Prediction model for dengue fever based on interactive effects between multiple meteorological factors in Guangdong, China (2008–2016)]]> https://www.researchpad.co/article/Nfe4e2064-ca0a-4d6d-a8b7-4f75eb296e9a

Introduction

In order to improve the prediction accuracy of dengue fever incidence, we constructed a prediction model with interactive effects between meteorological factors, based on weekly dengue fever cases in Guangdong, China from 2008 to 2016.

Methods

Dengue fever data were derived from statistical data from the China National Notifiable Infectious Disease Reporting Information System. Daily meteorological data were obtained from the China Integrated Meteorological Information Sharing System. The minimum temperature for transmission was identified using data fitting and the Ross-Macdonald model. Correlations and interactive effects were examined using Spearman’s rank correlation and multivariate analysis of variance. A probit regression model to describe the incidence of dengue fever from 2008 to 2016 and forecast the 2017 incidence was constructed, based on key meteorological factors, interactive effects, mosquito-vector factors, and other important factors.

Results

We found the minimum temperature suitable for dengue transmission was ≥18°C, and as 97.91% of cases occurred when the minimum temperature was above 18 °C, the data were used for model training and construction. Epidemics of dengue are related to mean temperature, maximum/minimum and mean atmospheric pressure, and mean relative humidity. Moreover, interactions occur between mean temperature, minimum atmospheric pressure, and mean relative humidity. Our weekly probit regression prediction model is 0.72. Prediction of dengue cases for the first 41 weeks of 2017 exhibited goodness of fit of 0.60.

Conclusion

Our model was accurate and timely, with consideration of interactive effects between meteorological factors.

]]>
<![CDATA[Seasonal characteristics of influenza vary regionally across US]]> https://www.researchpad.co/article/5c897716d5eed0c4847d2428

Given substantial regional differences in absolute humidity across the US and our understanding of the relationship between absolute humidity and influenza, we may expect important differences in regional seasonal influenza activity. Here, we assessed cross-seasonal influenza activity by comparing counts of positive influenza A and B rapid test results during the influenza season versus summer baseline periods for the 2016/2017 and 2017/2018 influenza years. Our analysis indicates significant regional patterns in cross-seasonal influenza activity, with relatively fewer influenza cases during the influenza season compared to summertime baseline periods in humid areas of the US, particularly in Florida and Hawaii. The cross-seasonal ratios vary from year-to-year and influenza type, but the geographic patterning of the ratios is relatively consistent. Mixed-effects regression models indicated absolute humidity during the influenza season was the strongest predictor of cross-seasonal influenza activity, suggesting a relationship between absolute humidity and cross-seasonal influenza activity. There was also evidence that absolute humidity during the summer plays a role, as well. This analysis suggests that spatial variation in seasonal absolute humidity levels may generate important regional differences in seasonal influenza activity and dynamics in the US.

]]>
<![CDATA[Factors affecting Dupont´s lark distribution and range regression in Spain]]> https://www.researchpad.co/article/5c70676ad5eed0c4847c6fdd

In this work, we analyse factors explaining the distribution and range regression of Dupont’s lark in Spain, the only European country in which this threatened alaudid is present. Dupont’s lark is an extremely elusive and scarce species, distributed across a reduced and strongly fragmented range, showing a metapopulational structure with unknown dispersive and connective mechanisms. We used maximum entropy modelling (Maxent) on nearly 15,000 Dupont’s lark observations (1985–2015) to assess the probability of presence at a 1 km resolution across its European range. Moreover, we tested the probability of extinction by comparing pre- and post-2000 observations by means of a GLM over a subset of cells with presence-absence data. We obtained strong model fitting (AUC = 0.919), in which species occurrence was explained by low values of plant productivity (NDVI), climate (high temperature range and medium annual precipitation), land use (increasing with sclerophyllous scrubland), flat topography and human disturbance (associated with low human population density). The species also tolerates dry farming, but not other farm types or forest cover. The probability map identified two main regions known as the species' core areas: the steppes of the Iberian System and the Ebro Valley. The North Plateau is characterised by a dispersed structure of small and very fragmented patches of suitable habitat, while a succession of discontinuous probability patches form an Eastern Corridor connecting the central core areas to the southernmost populations. Finally, the model identified small and isolated patches of high probability of presence along the eastern coastline. The species tends to occur in the best available areas but, at the same time, the model revealed a large area of suitable but unoccupied habitat. Our results correct the previous estimation of occupation area from 1,480 to 1,010.78 km2, a reduction of 26.22%. The current distribution of Dupont’s lark is almost completely covered by Important Bird Areas (IBAs), highlighting their importance for bird conservation, but only 44.89% is included in Natura 2000 Special Protection Areas (SPAs). A comparison of pre- and post-2000 periods revealed a range contraction of 44%. Probability of extinction increased with higher temperature range and lower annual precipitation, and with decreases in population density, which suggests that this species is extremely vulnerable to both climate change and rural abandonment, due to its dependence on traditional grazing. These results suggest the need for a re-evaluation of the conservation status of Dupont’s lark in Spain. They urge the preservation of not only current extant populations, but also the unoccupied suitable areas that could be critical for metapopulation structure, and the development of policies addressing the preservation of traditional grazing.

]]>
<![CDATA[Temporal evolution and pathway models of poly(ethylene-terephthalate) degradation under multi-factor accelerated weathering exposures]]> https://www.researchpad.co/article/5c70673ad5eed0c4847c6c71

Photolytic and hydrolytic degradation of poly(ethylene-terephthalate) (PET) polymers with different stabilizers were performed under multiple accelerated weathering exposures and changes in the polymers were monitored by various evaluation techniques. Yellowing was caused by photolytic degradation and haze formation was induced by combined effects of photolytic and hydrolytic degradation. The formation of light absorbing chromophores and bleaching of the UV stabilizer additive were recorded through optical spectroscopy. Chain scission and crystallization were found to be common mechanisms under both photolytic and hydrolytic conditions, based on the infrared absorption of the carbonyl (C = O) band and the trans ethylene glycol unit, respectively. The degradation mechanisms determined from these evaluations were then used to construct a set of degradation pathway network models using the network structural equation modeling (netSEM) approach. This method captured the temporal evolution of degradation by assessing statistically significant relationships between applied stressors, mechanistic variables, and performance level responses. Quantitative pathway equations provided the contributions from mechanistic variables to the response changes.

]]>
<![CDATA[Benefits of zebra stripes: Behaviour of tabanid flies around zebras and horses]]> https://www.researchpad.co/article/5c76fe02d5eed0c484e5b282

Averting attack by biting flies is increasingly regarded as the evolutionary driver of zebra stripes, although the precise mechanism by which stripes ameliorate attack by ectoparasites is unknown. We examined the behaviour of tabanids (horse flies) in the vicinity of captive plains zebras and uniformly coloured domestic horses living on a horse farm in Britain. Observations showed that fewer tabanids landed on zebras than on horses per unit time, although rates of tabanid circling around or briefly touching zebra and horse pelage did not differ. In an experiment in which horses sequentially wore cloth coats of different colours, those wearing a striped pattern suffered far lower rates of tabanid touching and landing on coats than the same horses wearing black or white, yet there were no differences in attack rates to their naked heads. In separate, detailed video analyses, tabanids approached zebras faster and failed to decelerate before contacting zebras, and proportionately more tabanids simply touched rather than landed on zebra pelage in comparison to horses. Taken together, these findings indicate that, up close, striped surfaces prevented flies from making a controlled landing but did not influence tabanid behaviour at a distance. To counteract flies, zebras swished their tails and ran away from fly nuisance whereas horses showed higher rates of skin twitching. As a consequence of zebras’ striping, very few tabanids successfully landed on zebras and, as a result of zebras’ changeable behaviour, few stayed a long time, or probed for blood.

]]>
<![CDATA[Rainfall trend and variability in Southeast Florida: Implications for freshwater availability in the Everglades]]> https://www.researchpad.co/article/5c6c759ed5eed0c4843cff23

Freshwater demand in Southeast Florida is predicted to increase over the next few decades. However, shifting patterns in the intensity and frequency of drought create considerable pressure on local freshwater availability. Well-established water resources management requires evaluating and understanding long-term rainfall patterns, drought intensity and cycle, and related rainfall deficit. In this study, the presence of rainfall monotonic trends was analyzed using linear regression and Mann–Kendal trend tests. Pettit's single point detection test examined the presence of an abrupt change of rainfall. Drought in Southeast Florida is assessed using the Standardized Precipitation Index (SPI) in 3-, 6-, 12-, and 24-months scale; and the Fast Fourier Transform is applied to evaluate the frequency of each drought intensity. There was an increase of rainfall in most of the wet season months, the total wet season, and the annual total. The wet season duration showed a decrease driven by a decrease in October rainfall. Since 1990, wet season and total annual rainfall exhibited an abrupt increase. The SPI analysis has indicated that extended wetness characterizes the contemporary rainfall regime since 1995, except for the incidence of intermittent dry spells. Short-term droughts have 3-year to 5-year recurrence intervals, and sustained droughts have a 10-year and 20-year recurrence intervals. In Southeast Florida, prolonged drought limits freshwater availability by decreasing recharge, resulting in a longer hydro-period to maintain the health of the Everglades Ecosystem, and to control saltwater intrusion. The increasing dry season duration suggests the growing importance of promoting surface water storage and demand-side management practices.

]]>
<![CDATA[Social media usage patterns during natural hazards]]> https://www.researchpad.co/article/5c6dc99cd5eed0c484529ecf

Natural hazards are becoming increasingly expensive as climate change and development are exposing communities to greater risks. Preparation and recovery are critical for climate change resilience, and social media are being used more and more to communicate before, during, and after disasters. While there is a growing body of research aimed at understanding how people use social media surrounding disaster events, most existing work has focused on a single disaster case study. In the present study, we analyze five of the costliest disasters in the last decade in the United States (Hurricanes Irene and Sandy, two sets of tornado outbreaks, and flooding in Louisiana) through the lens of Twitter. In particular, we explore the frequency of both generic and specific food-security related terms, and quantify the relationship between network size and Twitter activity during disasters. We find differences in tweet volume for keywords depending on disaster type, with people using Twitter more frequently in preparation for Hurricanes, and for real-time or recovery information for tornado and flooding events. Further, we find that people share a host of general disaster and specific preparation and recovery terms during these events. Finally, we find that among all account types, individuals with “average” sized networks are most likely to share information during these disasters, and in most cases, do so more frequently than normal. This suggests that around disasters, an ideal form of social contagion is being engaged in which average people rather than outsized influentials are key to communication. These results provide important context for the type of disaster information and target audiences that may be most useful for disaster communication during varying extreme events.

]]>
<![CDATA[Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014?]]> https://www.researchpad.co/article/5c648cd6d5eed0c484c818e1

The planning of the energy transition from fossil fuels to renewables requires estimates for how much electricity wind turbines can generate from the prevailing atmospheric conditions. Here, we estimate monthly ideal wind energy generation from datasets of wind speeds, air density and installed wind turbines in Germany and compare these to reported actual yields. Both yields were used in a statistical model to identify and quantify factors that reduced actual compared to ideal yields. The installed capacity within the region had no significant influence. Turbine age and park size resulted in significant yield reductions. Predicted yields increased from 9.1 TWh/a in 2000 to 58.9 TWh/a in 2014 resulting from an increase in installed capacity from 5.7 GW to 37.6 GW, which agrees very well with reported estimates for Germany. The age effect, which includes turbine aging and possibly other external effects, lowered yields from 3.6 to 6.7% from 2000 to 2014. The effect of park size decreased annual yields by 1.9% throughout this period. However, actual monthly yields represent on average only 73.7% of the ideal yields, with unknown causes. We conclude that the combination of ideal yields predicted from wind conditions with observed yields is suitable to derive realistic estimates of wind energy generation as well as realistic resource potentials.

]]>