ResearchPad - methionine https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[The impact of rumen-protected amino acids on the expression of key- genes involved in the innate immunity of dairy sheep]]> https://www.researchpad.co/article/elastic_article_14615 Rumen protected amino acids inclusion in ewes’ diets has been proposed to enhance their innate immunity. The objective of this work was to determine the impact of dietary supplementation with rumen-protected methionine or lysine, as well as with a combination of these amino acids in two different ratios, on the expression of selected key-genes (NLRs, MyD88, TRIF, MAPK-1, IRF-3, JunD, TRAF-3, IRF-5, IL-1α, IL-10, IKK-α, STAT-3 and HO-1). Thus, sixty Chios dairy ewes (Ovis aries) were assigned to one of the following five dietary treatments (12 animals/ treatment): A: basal diet consist of concentrates, wheat straw and alfalfa hay (control group); B: basal diet +6.0 g/head rumen-protected methionine; C: basal diet + 5.0 g/head rumen-protected lysine; D: basal diet +6.0 g/head rumen-protected methionine + 5.0 g/head rumen-protected lysine and E: basal diet +12.0 g/head rumen-protected methionine + 5.0 g/head rumen-protected lysine. The results revealed a significant downregulation of relative transcript level of the IL-1α gene in the neutrophils of C and in monocytes of D ewes compared with the control. Significantly lower mRNA transcript accumulation was also observed for the MyD88 gene in the neutrophils of ewes fed with lysine only (C). The mRNA relative expression levels of JunD gene were highly induced in the monocytes, while those of IL-10 and HO-1 genes were declined in the neutrophils of ewes fed with the C and D diets compared with the control. Lower transcript levels of STAT-3 gene were observed in the neutrophils of ewes fed with either C or with E diets in comparison with the control. In conclusion, our results suggest that the dietary supplementation of ewes with rumen-protected amino acids, down regulate the expression of some genes involved in the pro-inflammatory signalling.

]]>
<![CDATA[Collagen methionine sulfoxide and glucuronidine/LW-1 are markers of coronary artery disease in long-term survivors with type 1 diabetes. The Dialong study]]> https://www.researchpad.co/article/elastic_article_13877 Type 1 diabetes is a risk factor for coronary heart disease. The underlying mechanism behind the accelerated atherosclerosis formation is not fully understood but may be related to the formation of oxidation products and advanced glycation end-products (AGEs). We aimed to examine the associations between the collagen oxidation product methionine sulfoxide; the collagen AGEs methylglyoxal hydroimidazolone (MG-H1), glucosepane, pentosidine, glucuronidine/LW-1; and serum receptors for AGE (RAGE) with measures of coronary artery disease in patients with long-term type 1 diabetes.MethodsIn this cross-sectional study, 99 participants with type 1 diabetes of ≥ 45-year duration and 63 controls without diabetes had either established coronary heart disease (CHD) or underwent Computed Tomography Coronary Angiography (CTCA) measuring total, calcified and soft/mixed plaque volume. Skin collagen methionine sulfoxide and AGEs were measured by liquid chromatography-mass spectrometry and serum sRAGE/esRAGE by ELISA.ResultsIn the diabetes group, low levels of methionine sulfoxide (adjusted for age, sex and mean HbA1c) were associated with normal coronary arteries, OR 0.48 (95% CI 0.27–0.88). Glucuronidine/LW-1 was associated with established CHD, OR 2.0 (1.16–3.49). MG-H1 and glucuronidine/LW-1 correlated with calcified plaque volume (r = 0.23–0.28, p<0.05), while pentosidine correlated with soft/mixed plaque volume (r = 0.29, p = 0.008), also in the adjusted analysis.ConclusionsLow levels of collagen-bound methionine sulfoxide were associated with normal coronary arteries while glucuronidine/LW-1 was positively associated with established CHD in long-term type 1 diabetes, suggesting a role for metabolic and oxidative stress in the formation of atherosclerosis in diabetes. ]]> <![CDATA[Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: A targeted metabolomic and transcriptomic study]]> https://www.researchpad.co/article/Nf62c48b8-7c01-44cc-9110-a611b974b3f9

Background

There is growing evidence that Alzheimer disease (AD) is a pervasive metabolic disorder with dysregulation in multiple biochemical pathways underlying its pathogenesis. Understanding how perturbations in metabolism are related to AD is critical to identifying novel targets for disease-modifying therapies. In this study, we test whether AD pathogenesis is associated with dysregulation in brain transmethylation and polyamine pathways.

Methods and findings

We first performed targeted and quantitative metabolomics assays using capillary electrophoresis-mass spectrometry (CE-MS) on brain samples from three groups in the Baltimore Longitudinal Study of Aging (BLSA) (AD: n = 17; Asymptomatic AD [ASY]: n = 13; Control [CN]: n = 13) (overall 37.2% female; mean age at death 86.118 ± 9.842 years) in regions both vulnerable and resistant to AD pathology. Using linear mixed-effects models within two primary brain regions (inferior temporal gyrus [ITG] and middle frontal gyrus [MFG]), we tested associations between brain tissue concentrations of 26 metabolites and the following primary outcomes: group differences, Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) (neuritic plaque burden), and Braak (neurofibrillary pathology) scores. We found significant alterations in concentrations of metabolites in AD relative to CN samples, as well as associations with severity of both CERAD and Braak, mainly in the ITG. These metabolites represented biochemical reactions in the (1) methionine cycle (choline: lower in AD, p = 0.003; S-adenosyl methionine: higher in AD, p = 0.005); (2) transsulfuration and glutathione synthesis (cysteine: higher in AD, p < 0.001; reduced glutathione [GSH]: higher in AD, p < 0.001); (3) polyamine synthesis/catabolism (spermidine: higher in AD, p = 0.004); (4) urea cycle (N-acetyl glutamate: lower in AD, p < 0.001); (5) glutamate-aspartate metabolism (N-acetyl aspartate: lower in AD, p = 0.002); and (6) neurotransmitter metabolism (gamma-amino-butyric acid: lower in AD, p < 0.001). Utilizing three Gene Expression Omnibus (GEO) datasets, we then examined mRNA expression levels of 71 genes encoding enzymes regulating key reactions within these pathways in the entorhinal cortex (ERC; AD: n = 25; CN: n = 52) and hippocampus (AD: n = 29; CN: n = 56). Complementing our metabolomics results, our transcriptomics analyses also revealed significant alterations in gene expression levels of key enzymatic regulators of biochemical reactions linked to transmethylation and polyamine metabolism. Our study has limitations: our metabolomics assays measured only a small proportion of all metabolites participating in the pathways we examined. Our study is also cross-sectional, limiting our ability to directly test how AD progression may impact changes in metabolite concentrations or differential-gene expression. Additionally, the relatively small number of brain tissue samples may have limited our power to detect alterations in all pathway-specific metabolites and their genetic regulators.

Conclusions

In this study, we observed broad dysregulation of transmethylation and polyamine synthesis/catabolism, including abnormalities in neurotransmitter signaling, urea cycle, aspartate-glutamate metabolism, and glutathione synthesis. Our results implicate alterations in cellular methylation potential and increased flux in the transmethylation pathways, increased demand on antioxidant defense mechanisms, perturbations in intermediate metabolism in the urea cycle and aspartate-glutamate pathways disrupting mitochondrial bioenergetics, increased polyamine biosynthesis and breakdown, as well as abnormalities in neurotransmitter metabolism that are related to AD.

]]>
<![CDATA[Spatial and Temporal Resolution of Global Protein Synthesis during HSV Infection Using Bioorthogonal Precursors and Click Chemistry]]> https://www.researchpad.co/article/5989daadab0ee8fa60baa15b

We used pulse-labeling with the methionine analogue homopropargylglycine (HPG) to investigate spatiotemporal aspects of protein synthesis during herpes simplex virus (HSV) infection. In vivo incorporation of HPG enables subsequent selective coupling of fluorochrome-capture reagents to newly synthesised proteins. We demonstrate that HPG labeling had no effect on cell viability, on accumulation of test early or late viral proteins, or on overall virus yields. HPG pulse-labeling followed by SDS-PAGE analysis confirmed incorporation into newly synthesised proteins, while parallel processing by in situ cycloaddition revealed new insight into spatiotemporal aspects of protein localisation during infection. A striking feature was the rapid accumulation of newly synthesised proteins not only in a general nuclear pattern but additionally in newly forming sub-compartments represented by small discrete foci. These newly synthesised protein domains (NPDs) were similar in size and morphology to PML domains but were more numerous, and whereas PML domains were progressively disrupted, NPDs were progressively induced and persisted. Immediate-early proteins ICP4 and ICP0 were excluded from NPDs, but using an ICP0 mutant defective in PML disruption, we show a clear spatial relationship between NPDs and PML domains with NPDs frequently forming immediately adjacent and co-joining persisting PML domains. Further analysis of location of the chaperone Hsc70 demonstrated that while NPDs formed early in infection without overt Hsc70 recruitment, later in infection Hsc70 showed pronounced recruitment frequently in a coat-like fashion around NPDs. Moreover, while ICP4 and ICP0 were excluded from NPDs, ICP22 showed selective recruitment. Our data indicate that NPDs represent early recruitment of host and viral de novo translated protein to distinct structural entities which are precursors to the previously described VICE domains involved in protein quality control in the nucleus, and reveal new features from which we propose spatially linked platforms of newly synthesised protein processing after nuclear import.

]]>
<![CDATA[Decreased Brain Levels of Vitamin B12 in Aging, Autism and Schizophrenia]]> https://www.researchpad.co/article/5989db34ab0ee8fa60bd298f

Many studies indicate a crucial role for the vitamin B12 and folate-dependent enzyme methionine synthase (MS) in brain development and function, but vitamin B12 status in the brain across the lifespan has not been previously investigated. Vitamin B12 (cobalamin, Cbl) exists in multiple forms, including methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), serving as cofactors for MS and methylmalonylCoA mutase, respectively. We measured levels of five Cbl species in postmortem human frontal cortex of 43 control subjects, from 19 weeks of fetal development through 80 years of age, and 12 autistic and 9 schizophrenic subjects. Total Cbl was significantly lower in older control subjects (> 60 yrs of age), primarily reflecting a >10-fold age-dependent decline in the level of MeCbl. Levels of inactive cyanocobalamin (CNCbl) were remarkably higher in fetal brain samples. In both autistic and schizophrenic subjects MeCbl and AdoCbl levels were more than 3-fold lower than age-matched controls. In autistic subjects lower MeCbl was associated with decreased MS activity and elevated levels of its substrate homocysteine (HCY). Low levels of the antioxidant glutathione (GSH) have been linked to both autism and schizophrenia, and both total Cbl and MeCbl levels were decreased in glutamate-cysteine ligase modulatory subunit knockout (GCLM-KO) mice, which exhibit low GSH levels. Thus our findings reveal a previously unrecognized decrease in brain vitamin B12 status across the lifespan that may reflect an adaptation to increasing antioxidant demand, while accelerated deficits due to GSH deficiency may contribute to neurodevelopmental and neuropsychiatric disorders.

]]>
<![CDATA[Staphylococcus aureus Sortase A-Mediated Incorporation of Peptides: Effect of Peptide Modification on Incorporation]]> https://www.researchpad.co/article/5989daa5ab0ee8fa60ba720c

The endogenous Staphylococcus aureus sortase A (SrtA) transpeptidase covalently anchors cell wall-anchored (CWA) proteins equipped with a specific recognition motif (LPXTG) into the peptidoglycan layer of the staphylococcal cell wall. Previous in situ experiments have shown that SrtA is also able to incorporate exogenous, fluorescently labelled, synthetic substrates equipped with the LPXTG motif (K(FITC)LPETG-amide) into the bacterial cell wall, albeit at high concentrations of 500 μM to 1 mM. In the present study, we have evaluated the effect of substrate modification on the incorporation efficiency. This revealed that (i) by elongation of LPETG-amide with a sequence of positively charged amino acids, derived from the C-terminal domain of physiological SrtA substrates, the incorporation efficiency was increased by 20-fold at 10 μM, 100 μM and 250 μM; (ii) Substituting aspartic acid (E) for methionine increased the incorporation of the resulting K(FITC)LPMTG-amide approximately three times at all concentrations tested; (iii) conjugation of the lipid II binding antibiotic vancomycin to K(FITC)LPMTG-amide resulted in the same incorporation levels as K(FITC)LPETG-amide, but much more efficient at an impressive 500-fold lower substrate concentration. These newly developed synthetic substrates can potentially find broad applications in for example the in situ imaging of bacteria; the incorporation of antibody recruiting moieties; the targeted delivery and covalent incorporation of antimicrobial compounds into the bacterial cell wall.

]]>
<![CDATA[GnRH-mediated olfactory and visual inputs promote mating-like behaviors in male zebrafish]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc0b5

The engagement of sexual behaviors is regulated by a number of factors which include gene expression, hormone circulation, and multi-sensory information integration. In zebrafish, when a male and a female are placed in the same container, they show mating-like behaviors regardless of whether they are kept together or separated by a net. No mating-like behaviors are observed when same-sex animals are put together. Through the olfacto-visual centrifugal pathway, activation of the terminalis nerve in the olfactory bulb increases GnRH signaling in the brain and triggers mating-like behaviors between males. In zebrafish mutants or wild-type fish in which the olfacto-visual centrifugal pathway is impaired or chemically ablated, in response to odor stimulation the mating-like behaviors between males are no longer evident. Together, the data suggest that the combination of olfactory and visual signals alter male zebrafish's mating-like behaviors via GnRH signaling.

]]>
<![CDATA[K-Ras Activation Induces Differential Sensitivity to Sulfur Amino Acid Limitation and Deprivation and to Oxidative and Anti-Oxidative Stress in Mouse Fibroblasts]]> https://www.researchpad.co/article/5989dacfab0ee8fa60bb5b51

Background

Cancer cells have an increased demand for amino acids and require transport even of non-essential amino acids to support their increased proliferation rate. Besides their major role as protein synthesis precursors, the two proteinogenic sulfur-containing amino acids, methionine and cysteine, play specific biological functions. In humans, methionine is essential for cell growth and development and may act as a precursor for cysteine synthesis. Cysteine is a precursor for the biosynthesis of glutathione, the major scavenger for reactive oxygen species.

Methodology and Principal Findings

We study the effect of K-ras oncogene activation in NIH3T3 mouse fibroblasts on transport and metabolism of cysteine and methionine. We show that cysteine limitation and deprivation cause apoptotic cell death (cytotoxic effect) in both normal and K-ras-transformed fibroblasts, due to accumulation of reactive oxygen species and a decrease in reduced glutathione. Anti-oxidants glutathione and MitoTEMPO inhibit apoptosis, but only cysteine-containing glutathione partially rescues the cell growth defect induced by limiting cysteine. Methionine limitation and deprivation has a cytostatic effect on mouse fibroblasts, unaffected by glutathione. K-ras-transformed cells–but not their parental NIH3T3—are extremely sensitive to methionine limitation. This fragility correlates with decreased expression of the Slc6a15 gene—encoding the nutrient transporter SBAT1, known to exhibit a strong preference for methionine—and decreased methionine uptake.

Conclusions and Significance

Overall, limitation of sulfur-containing amino acids results in a more dramatic perturbation of the oxido-reductive balance in K-ras-transformed cells compared to NIH3T3 cells. Growth defects induced by cysteine limitation in mouse fibroblasts are largely–though not exclusively–due to cysteine utilization in the synthesis of glutathione, mouse fibroblasts requiring an exogenous cysteine source for protein synthesis. Therapeutic regimens of cancer involving modulation of methionine metabolism could be more effective in cells with limited methionine transport capability.

]]>
<![CDATA[Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor β/δ upon Ligand Binding]]> https://www.researchpad.co/article/5989daf2ab0ee8fa60bc1b35

Peroxisome proliferator-activated receptors (PPARs) have been intensively studied as drug targets to treat type 2 diabetes, lipid disorders, and metabolic syndrome. This study is part of our ongoing efforts to map conformational changes in PPARs in solution by a combination of chemical cross-linking and mass spectrometry (MS). To our best knowledge, we performed the first studies addressing solution structures of full-length PPAR-β/δ. We monitored the conformations of the ligand-binding domain (LBD) as well as full-length PPAR-β/δ upon binding of two agonists. (Photo-) cross-linking relied on (i) a variety of externally introduced amine- and carboxyl-reactive linkers and (ii) the incorporation of the photo-reactive amino acid p-benzoylphenylalanine (Bpa) into PPAR-β/δ by genetic engineering. The distances derived from cross-linking experiments allowed us to monitor conformational changes in PPAR-β/δ upon ligand binding. The cross-linking/MS approach proved highly advantageous to study nuclear receptors, such as PPARs, and revealed the interplay between DBD (DNA-binding domain) and LDB in PPAR-β/δ. Our results indicate the stabilization of a specific conformation through ligand binding in PPAR-β/δ LBD as well as full-length PPAR-β/δ. Moreover, our results suggest a close distance between the N- and C-terminal regions of full-length PPAR-β/δ in the presence of GW1516. Chemical cross-linking/MS allowed us gaining detailed insights into conformational changes that are induced in PPARs when activating ligands are present. Thus, cross-linking/MS should be added to the arsenal of structural methods available for studying nuclear receptors.

]]>
<![CDATA[Oxidation of Phe454 in the Gating Segment Inactivates Trametes multicolor Pyranose Oxidase during Substrate Turnover]]> https://www.researchpad.co/article/5989dad7ab0ee8fa60bb85ff

The flavin-dependent enzyme pyranose oxidase catalyses the oxidation of several pyranose sugars at position C-2. In a second reaction step, oxygen is reduced to hydrogen peroxide. POx is of interest for biocatalytic carbohydrate oxidations, yet it was found that the enzyme is rapidly inactivated under turnover conditions. We studied pyranose oxidase from Trametes multicolor (TmPOx) inactivated either during glucose oxidation or by exogenous hydrogen peroxide using mass spectrometry. MALDI-MS experiments of proteolytic fragments of inactivated TmPOx showed several peptides with a mass increase of 16 or 32 Da indicating oxidation of certain amino acids. Most of these fragments contain at least one methionine residue, which most likely is oxidised by hydrogen peroxide. One peptide fragment that did not contain any amino acid residue that is likely to be oxidised by hydrogen peroxide (DAFSYGAVQQSIDSR) was studied in detail by LC-ESI-MS/MS, which showed a +16 Da mass increase for Phe454. We propose that oxidation of Phe454, which is located at the flexible active-site loop of TmPOx, is the first and main step in the inactivation of TmPOx by hydrogen peroxide. Oxidation of methionine residues might then further contribute to the complete inactivation of the enzyme.

]]>
<![CDATA[Parallel Mutations Result in a Wide Range of Cooperation and Community Consequences in a Two-Species Bacterial Consortium]]> https://www.researchpad.co/article/5989daaaab0ee8fa60ba9016

Multi-species microbial communities play a critical role in human health, industry, and waste remediation. Recently, the evolution of synthetic consortia in the laboratory has enabled adaptation to be addressed in the context of interacting species. Using an engineered bacterial consortium, we repeatedly evolved cooperative genotypes and examined both the predictability of evolution and the phenotypes that determine community dynamics. Eight Salmonella enterica serovar Typhimurium strains evolved methionine excretion sufficient to support growth of an Escherichia coli methionine auxotroph, from whom they required excreted growth substrates. Non-synonymous mutations in metA, encoding homoserine trans-succinylase (HTS), were detected in each evolved S. enterica methionine cooperator and were shown to be necessary for cooperative consortia growth. Molecular modeling was used to predict that most of the non-synonymous mutations slightly increase the binding affinity for HTS homodimer formation. Despite this genetic parallelism and trend of increasing protein binding stability, these metA alleles gave rise to a wide range of phenotypic diversity in terms of individual versus group benefit. The cooperators with the highest methionine excretion permitted nearly two-fold faster consortia growth and supported the highest fraction of E. coli, yet also had the slowest individual growth rates compared to less cooperative strains. Thus, although the genetic basis of adaptation was quite similar across independent origins of cooperative phenotypes, quantitative measurements of metabolite production were required to predict either the individual-level growth consequences or how these propagate to community-level behavior.

]]>
<![CDATA[Identification of the potentiating mutations and synergistic epistasis that enabled the evolution of inter-species cooperation]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf753

Microbes often engage in cooperation through releasing biosynthetic compounds required by other species to grow. Given that production of costly biosynthetic metabolites is generally subjected to multiple layers of negative feedback, single mutations may frequently be insufficient to generate cooperative phenotypes. Synergistic epistatic interactions between multiple coordinated changes may thus often underlie the evolution of cooperation through overproduction of metabolites. To test the importance of synergistic mutations in cooperation we used an engineered bacterial consortium of an Escherichia coli methionine auxotroph and Salmonella enterica. S. enterica relies on carbon by-products from E. coli if lactose is the only carbon source. Directly selecting wild-type S. enterica in an environment that favored cooperation through secretion of methionine only once led to a methionine producer, and this producer both took a long time to emerge and was not very effective at cooperating. On the other hand, when an initial selection for resistance of S. enterica to a toxic methionine analog, ethionine, was used, subsequent selection for cooperation with E. coli was rapid, and the resulting double mutants were much more effective at cooperation. We found that potentiating mutations in metJ increase expression of metA, which encodes the first step of methionine biosynthesis. This increase in expression is required for the previously identified actualizing mutations in metA to generate cooperation. This work highlights that where biosynthesis of metabolites involves multiple layers of regulation, significant secretion of those metabolites may require multiple mutations, thereby constraining the evolution of cooperation.

]]>
<![CDATA[An integrative analysis of tissue-specific transcriptomic and metabolomic responses to short-term dietary methionine restriction in mice]]> https://www.researchpad.co/article/5989db5bab0ee8fa60bdfdcb

Dietary methionine restriction (MR) produces a coordinated series of transcriptional responses in peripheral tissues that limit fat accretion, remodel lipid metabolism in liver and adipose tissue, and improve overall insulin sensitivity. Hepatic sensing of reduced methionine leads to induction and release of fibroblast growth factor 21 (FGF21), which acts centrally to increase sympathetic tone and activate thermogenesis in adipose tissue. FGF21 also has direct effects in adipose to enhance glucose uptake and oxidation. However, an understanding of how the liver senses and translates reduced dietary methionine into these transcriptional programs remains elusive. A comprehensive systems biology approach integrating transcriptomic and metabolomic readouts in MR-treated mice confirmed that three interconnected mechanisms (fatty acid transport and oxidation, tricarboxylic acid cycle, and oxidative phosphorylation) were activated in MR-treated inguinal adipose tissue. In contrast, the effects of MR in liver involved up-regulation of anti-oxidant responses driven by the nuclear factor, erythroid 2 like 2 transcription factor, NFE2L2. Metabolomic analysis provided evidence for redox imbalance, stemming from large reductions in the master anti-oxidant molecule glutathione coupled with disproportionate increases in ophthalmate and its precursors, glutamate and 2-aminobutyrate. Thus, cysteine and its downstream product, glutathione, emerge as key early hepatic signaling molecules linking dietary MR to its metabolic phenotype.

]]>
<![CDATA[Contribution of Drosophila TRPA1 to Metabolism]]> https://www.researchpad.co/article/5989da49ab0ee8fa60b8c6c6

Transient receptor potential (TRP) cation channels are highly conserved in humans and insects. Some of these channels are expressed in internal organs and their functions remain incompletely understood. By direct knock-in of the GAL4 gene into the trpA1 locus in Drosophila, we identified the expression of this gene in the subesophageal ganglion (SOGs) region. In addition, the neurites present in the dorsal posterior region as well as the drosophila insulin-like peptide 2 (dILP2)-positive neurons send signals to the SOGs. The signal is sent to the crop, which is an enlarged organ of the esophagus and functions as a storage place for food in the digestive system. To systematically investigate the role of TRPA1 in metabolism, we applied non-targeted metabolite profiling analysis together with gas-chromatography/time-of-flight mass spectrometry, with an aim to identify a wide range of primary metabolites. We effectively captured distinctive metabolomic phenotypes and identified specific metabolic dysregulation triggered by TRPA1 mutation based on reconstructed metabolic network analysis. Primarily, the network analysis pinpointed the simultaneous down-regulation of intermediates in the methionine salvation pathway, in contrast to the synchronized up-regulation of a range of free fatty acids. The gene dosage-dependent dynamics of metabolite levels among wild-type, hetero- and homozygous mutants, and their coordinated metabolic modulation under multiple gene settings across five different genotypes confirmed the direct linkages of TRPA1 to metabolism.

]]>
<![CDATA[The Distribution of Prion Protein Allotypes Differs Between Sporadic and Iatrogenic Creutzfeldt-Jakob Disease Patients]]> https://www.researchpad.co/article/5989d9e2ab0ee8fa60b69eb1

Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent of the human prion diseases, which are fatal and transmissible neurodegenerative diseases caused by the infectious prion protein (PrPSc). The origin of sCJD is unknown, although the initiating event is thought to be the stochastic misfolding of endogenous prion protein (PrPC) into infectious PrPSc. By contrast, human growth hormone-associated cases of iatrogenic CJD (iCJD) in the United Kingdom (UK) are associated with exposure to an exogenous source of PrPSc. In both forms of CJD, heterozygosity at residue 129 for methionine (M) or valine (V) in the prion protein gene may affect disease phenotype, onset and progression. However, the relative contribution of each PrPC allotype to PrPSc in heterozygous cases of CJD is unknown. Using mass spectrometry, we determined that the relative abundance of PrPSc with M or V at residue 129 in brain specimens from MV cases of sCJD was highly variable. This result is consistent with PrPC containing an M or V at residue 129 having a similar propensity to misfold into PrPSc thus causing sCJD. By contrast, PrPSc with V at residue 129 predominated in the majority of the UK human growth hormone associated iCJD cases, consistent with exposure to infectious PrPSc containing V at residue 129. In both types of CJD, the PrPSc allotype ratio had no correlation with CJD type, age at clinical onset, or disease duration. Therefore, factors other than PrPSc allotype abundance must influence the clinical progression and phenotype of heterozygous cases of CJD.

]]>
<![CDATA[MTHFR C677T, A1298C and MS A2756G Gene Polymorphisms and Male Infertility Risk in a Chinese Population: A Meta-Analysis]]> https://www.researchpad.co/article/5989daafab0ee8fa60baa9d5

Background

Methylenetetrahydrofolate reductase gene (MTHFR C677T and A1298C) and methionine synthase gene (MS A2756G) polymorphisms have shown an association with male infertility risk in several ethnic populations. Although several studies have evaluated these associations in Chinese populations, their small sample sizes and inconsistent outcomes have prevented strong conclusions. Therefore, the present meta-analysis was performed with published studies to evaluate the associations of the three single nucleotide polymorphisms (SNPs) and male infertility in a Chinese population.

Methods

We conducted a search of PubMed, Embase, Web of Science, Chinese National Knowledge Infrastructure (CNKI), China biology medical literature (CBM), VIP, and Chinese literature (Wan Fang) databases up to May 31, 2016. Odds ratios (ORs) and 95% confidence intervals (95%CIs) were used to assess the strength of associations with a random-effect model or a fixed-effect model based on the heterogeneity analysis results. Sensitivity analysis was used to confirm the reliability and stability of the meta-analysis.

Results

A total of nine studies, including 1,713 cases and 1,104 controls, were included in the meta-analysis. The pooled results indicated that the MTHFR C667T polymorphism was significantly associated with increased risk of male infertility in the Chinese population in the allele model (T vs. C: OR = 1.47, 95%CI = 1.32–1.63), the dominant model (TT + CT vs. CC: OR = 1.51, 95%CI = 1.30–1.77), the additive model (TT vs. CC: OR = 2.08, 95%CI = 1.68–2.58) and the recessive model (TT vs. CT+CC: OR = 1.58, 95%CI = 1.31–1.90), whereas the MTHFR A1298C and MS A2756G polymorphisms were not risk factors. There was no significant heterogeneity in any genotype contrasts among the studies. The sensitivity analysis indicated that the results of this meta-analysis were relatively stable.

Conclusion

This study suggests that the MTHFR C667T polymorphism may contribute to the genetic susceptibility to male infertility in the Chinese population, whereas MTHFR A1298C and MS A2756G polymorphisms may be unrelated to male infertility. Studies with larger sample sizes and representative population-based cases and well-matched controls are needed to validate our results.

]]>
<![CDATA[Abnormal Hypermethylation at Imprinting Control Regions in Patients with S-Adenosylhomocysteine Hydrolase (AHCY) Deficiency]]> https://www.researchpad.co/article/5989dae0ab0ee8fa60bbb895

S-adenosylhomocysteine hydrolase (AHCY) deficiency is a rare autosomal recessive disorder in methionine metabolism caused by mutations in the AHCY gene. Main characteristics are psychomotor delay including delayed myelination and myopathy (hypotonia, absent tendon reflexes etc.) from birth, mostly associated with hypermethioninaemia, elevated serum creatine kinase levels and increased genome wide DNA methylation. The prime function of AHCY is to hydrolyse and efficiently remove S-adenosylhomocysteine, the by-product of transmethylation reactions and one of the most potent methyltransferase inhibitors. In this study, we set out to more specifically characterize DNA methylation changes in blood samples from patients with AHCY deficiency. Global DNA methylation was increased in two of three analysed patients. In addition, we analysed the DNA methylation levels at differentially methylated regions (DMRs) of six imprinted genes (MEST, SNRPN, LIT1, H19, GTL2 and PEG3) as well as Alu and LINE1 repetitive elements in seven patients. Three patients showed a hypermethylation in up to five imprinted gene DMRs. Abnormal methylation in Alu and LINE1 repetitive elements was not observed. We conclude that DNA hypermethylation seems to be a frequent but not a constant feature associated with AHCY deficiency that affects different genomic regions to different degrees. Thus AHCY deficiency may represent an ideal model disease for studying the molecular origins and biological consequences of DNA hypermethylation due to impaired cellular methylation status.

]]>
<![CDATA[Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine]]> https://www.researchpad.co/article/5989da7fab0ee8fa60b9a0af

Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA) absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24), nitrogen balance (n = 6), and the expression of small intestinal AA and peptide transporters (n = 6) were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1) was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption.

]]>
<![CDATA[Novel Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Varroa destructor Populations from the Southeastern USA]]> https://www.researchpad.co/article/5989dacbab0ee8fa60bb4144

The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes.

]]>
<![CDATA[Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals]]> https://www.researchpad.co/article/5989da96ab0ee8fa60ba1f07

Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha—an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia.

]]>