ResearchPad - microbial-physiology https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Mycelial biomass estimation and metabolic quotient of <i>Lentinula edodes</i> using species-specific qPCR]]> https://www.researchpad.co/article/elastic_article_15715 Lentinula edodes, commonly known as shiitake, is an edible mushroom that is cultivated and consumed around the globe, especially in Asia. Monitoring mycelial growth inside a woody substrate is difficult, but it is essential for effective management of mushroom cultivation. Mycelial biomass also affects the rate of wood decomposition under natural conditions and must be known to determine the metabolic quotient, an important ecophysiological parameter of fungal growth. Therefore, developing a method to measure it inside a substrate would be very useful. In this study, as the first step in understanding species-specific rates of fungal decomposition of wood, we developed species-specific primers and qPCR procedures for L. edodes. We tested primer specificity using strains of L. edodes from Japan and Southeast Asia, as well as related species of fungi and plant species for cultivation of L. edodes, and generated a calibration curve for quantification of mycelial biomass in wood dust inoculated with L. edodes. The qPCR procedure we developed can specifically detect L. edodes and allowed us to quantify the increase in L. edodes biomass in wood dust substrate and calculate the metabolic quotient based on the mycelial biomass and respiration rate. Development of a species-specific method for biomass quantification will be useful for both estimation of mycelial biomass and determining the kinetics of fungal growth in decomposition processes.

]]>
<![CDATA[Toxin-neutralizing antibodies elicited by naturally acquired cutaneous anthrax are elevated following severe disease and appear to target conformational epitopes]]> https://www.researchpad.co/article/N0733fdcc-4c39-44e4-82cd-032e69d54dbc

Understanding immune responses to native antigens in response to natural infections can lead to improved approaches to vaccination. This study sought to characterize the humoral immune response to anthrax toxin components, capsule and spore antigens in individuals (n = 46) from the Kayseri and Malatya regions of Turkey who had recovered from mild or severe forms of cutaneous anthrax infection, compared to regional healthy controls (n = 20). IgG antibodies to each toxin component, the poly-γ-D-glutamic acid capsule, the Bacillus collagen-like protein of anthracis (BclA) spore antigen, and the spore carbohydrate anthrose, were detected in the cases, with anthrax toxin neutralization and responses to Protective Antigen (PA) and Lethal Factor (LF) being higher following severe forms of the disease. Significant correlative relationships among responses to PA, LF, Edema Factor (EF) and capsule were observed among the cases. Though some regional control sera exhibited binding to a subset of the tested antigens, these samples did not neutralize anthrax toxins and lacked correlative relationships among antigen binding specificities observed in the cases. Comparison of serum binding to overlapping decapeptides covering the entire length of PA, LF and EF proteins in 26 cases compared to 8 regional controls revealed that anthrax toxin-neutralizing antibody responses elicited following natural cutaneous anthrax infection are directed to conformational epitopes. These studies support the concept of vaccination approaches that preserve conformational epitopes.

]]>
<![CDATA[Evaluation of liposomal ciprofloxacin formulations in a murine model of anthrax]]> https://www.researchpad.co/article/Ne17111d7-5152-4c88-81b1-0e84a1b58e42

The in vivo efficacy of liposomal encapsulated ciprofloxacin in two formulations, lipoquin and apulmiq, were evaluated against the causative agent of anthrax, Bacillus anthracis. Liposomal encapsulated ciprofloxacin is attractive as a therapy since it allows for once daily dosing and achieves higher concentrations of the antibiotic at the site of initial mucosal entry but lower systemic drug concentrations. The in vivo efficacy of lipoquin and apulmiq delivered by intranasal instillation was studied at different doses and schedules in both a post exposure prophylaxis (PEP) therapy model and in a delayed treatment model of murine inhalational anthrax. In the mouse model of infection, the survival curves for all treatment cohorts differed significantly from the vehicle control. Ciprofloxacin, lipoquin and apulmiq provided a high level of protection (87–90%) after 7 days of therapy when administered within 24 hours of exposure. Reducing therapy to only three days still provided protection of 60–87%, if therapy was provided within 24 hours of exposure. If treatment was initiated 48 hours after exposure the survival rate was reduced to 46–65%. These studies suggest that lipoquin and apulmiq may be attractive therapies as PEP and as part of a treatment cocktail for B. anthracis.

]]>
<![CDATA[MUC1 is a receptor for the Salmonella SiiE adhesin that enables apical invasion into enterocytes]]> https://www.researchpad.co/article/5c61e93fd5eed0c48496fa96

The cellular invasion machinery of the enteric pathogen Salmonella consists of a type III secretion system (T3SS) with injectable virulence factors that induce uptake by macropinocytosis. Salmonella invasion at the apical surface of intestinal epithelial cells is inefficient, presumably because of a glycosylated barrier formed by transmembrane mucins that prevents T3SS contact with host cells. We observed that Salmonella is capable of apical invasion of intestinal epithelial cells that express the transmembrane mucin MUC1. Knockout of MUC1 in HT29-MTX cells or removal of MUC1 sialic acids by neuraminidase treatment reduced Salmonella apical invasion but did not affect lateral invasion that is not hampered by a defensive barrier. A Salmonella deletion strain lacking the SiiE giant adhesin was unable to invade intestinal epithelial cells through MUC1. SiiE-positive Salmonella closely associated with the MUC1 layer at the apical surface, but invaded Salmonella were negative for the adhesin. Our findings uncover that the transmembrane mucin MUC1 is required for Salmonella SiiE-mediated entry of enterocytes via the apical route.

]]>
<![CDATA[Role of SpaO in the assembly of the sorting platform of a Salmonella type III secretion system]]> https://www.researchpad.co/article/5c50c486d5eed0c4845e8885

Many bacterial pathogens and symbionts use type III secretion machines to interact with their hosts by injecting bacterial effector proteins into host target cells. A central component of this complex machine is the cytoplasmic sorting platform, which orchestrates the engagement and preparation of type III secreted proteins for their delivery to the needle complex, the substructure of the type III secretion system that mediates their passage through the bacterial envelope. The sorting platform is thought to be a dynamic structure whose components alternate between assembled and disassembled states. However, how this dynamic behavior is controlled is not understood. In S. Typhimurium a core component of the sorting platform is SpaO, which is synthesized in two tandemly translated products, a full length (SpaOL) and a short form (SpaOS) composed of the C-terminal 101 amino acids. Here we show that in the absence of SpaOS the assembly of the needle substructure of the needle complex, which requires a functional sorting platform, can still occur although with reduced efficiency. Consistent with this observation, in the absence of SpaOS secretion of effectors proteins, which requires a fully assembled injectisome, is only slightly compromised. In the absence of SpaOS we detect a significant number of fully assembled needle complexes that are not associated with fully assembled sorting platforms. We also find that although binding of SpaOL to SpaOS can be detected in the absence of other components of the sorting platform, this interaction is not detected in the context of a fully assembled sorting platform suggesting that SpaOS may not be a core structural component of the sorting platform. Consistent with this observation we find that SpaOS and OrgB, a component of the sorting platform, share the same binding surface on SpaOL. We conclude that SpaOS regulates the assembly of the sorting platform during type III secretion.

]]>
<![CDATA[R pyocin tail fiber structure reveals a receptor-binding domain with a lectin fold]]> https://www.researchpad.co/article/5c633948d5eed0c484ae63f5

R pyocins are ɸCTX-like myophage tailocins of Pseudomonas sp. Adsorption of R pyocins to target strains occurs by the interaction of tail fiber proteins with core lipopolysaccharide (LPS). Here, we demonstrate that N-terminally truncated R pyocin tail fibers corresponding to a region of variation between R-subtypes are sufficient to bind target strains according to R-subtype. We also report the crystal structures of these tail fiber proteins and show that they form an elongated helical trimer composed of three domains arranged linearly from N- to C-terminus: a baseplate proximal head, medial shaft, and distal foot. The head and shaft domains contain novel structural motifs. The foot domain, however, is composed of a conserved jellyroll fold and shares high structural similarity to the tail fiber of myophage AP22, podophage tailspike C-terminal domains (LKA-1 and ɸ297), and several eukaryotic adhesins (discoidin I/II, agglutinin, and octocoral lectin). Many of these proteins bind polysaccharides by means of their distal loop network, a series of highly variable loops at one end of the conserved jellyroll fold backbone. Our structures reveal that the majority of R-subtype specific polymorphisms cluster in patches covering a cleft formed at the oligomeric interface of the head domain and in a large patch covering much of the foot domain, including the distal loop network. Based on the structural variation in distal loops within the foot region, we propose that the foot is the primary sugar-binding domain of R pyocins and R-subtype specific structural differences in the foot domain distal loop network are responsible for binding target strains in an R-subtype dependent manner.

]]>
<![CDATA[Protein fortification with mealworm (Tenebrio molitor L.) powder: Effect on textural, microbiological, nutritional and sensory features of bread]]> https://www.researchpad.co/article/5c5df30cd5eed0c484580bee

In the present study, inclusion of mealworm (Tenebrio molitor L.) powder into bread doughs at 5 and 10% substitution level of soft wheat (Triticum aestivum L.) flour was tested to produce protein fortified breads. The addition of mealworm powder (MP) did not negatively affect the technological features of either doughs or breads. All the tested doughs showed the same leavening ability, whereas breads containing 5% MP showed the highest specific volume and the lowest firmness. An enrichment in protein content was observed in experimental breads where the highest values for this parameter were recorded in breads containing 10% MP. Breads fortified with 10% MP also exhibited a significant increase in the content of free amino acids, and especially in the following essential amino acids: tyrosine, methionine, isoleucine, and leucine. By contrast, no differences in nutritional quality of lipids were seen between fortified and control breads. Results of sensory analyses revealed that protein fortification of bread with MP significantly affected bread texture and overall liking, as well as crust colour, depending on the substitution level. Overall, proof of concept was provided for the inclusion of MP into bread doughs started with different leavening agents (sourdough and/or baker’s yeast), at 5 or 10% substitution level of soft wheat flour. Based on the Technology Readiness Level (TRL) scale, the proposed bread making technology can be situated at level 4 (validation in laboratory environment), thus suggesting that the production of breads with MP might easily be scaled up at industrial level. However, potential spoilage and safety issues that need to be further considered were highlighted.

]]>
<![CDATA[Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027]]> https://www.researchpad.co/article/5c5b52e7d5eed0c4842bd237

Toxin synthesis and endospore formation are two of the most critical factors that determine the outcome of infection by Clostridioides difficile. The two major toxins, TcdA and TcdB, are the principal factors causing damage to the host. Spores are the infectious form of C. difficile, permit survival of the bacterium during antibiotic treatment and are the predominant cell form that leads to recurrent infection. Toxin production and sporulation have their own specific mechanisms of regulation, but they share negative regulation by the global regulatory protein CodY. Determining the extent of such regulation and its detailed mechanism is important for understanding the linkage between two apparently independent biological phenomena and raises the possibility of creating new ways of limiting infection. The work described here shows that a codY null mutant of a hypervirulent (ribotype 027) strain is even more virulent than its parent in a mouse model of infection and that the mutant expresses most sporulation genes prematurely during exponential growth phase. Moreover, examining the expression patterns of mutants producing CodY proteins with different levels of residual activity revealed that expression of the toxin genes is dependent on total CodY inactivation, whereas most sporulation genes are turned on when CodY activity is only partially diminished. These results suggest that, in wild-type cells undergoing nutrient limitation, sporulation genes can be turned on before the toxin genes.

]]>
<![CDATA[Integrated transcriptomic and proteomic analysis of pathogenic mycobacteria and their esx-1 mutants reveal secretion-dependent regulation of ESX-1 substrates and WhiB6 as a transcriptional regulator]]> https://www.researchpad.co/article/5c521834d5eed0c484797785

The mycobacterial type VII secretion system ESX-1 is responsible for the secretion of a number of proteins that play important roles during host infection. The regulation of the expression of secreted proteins is often essential to establish successful infection. Using transcriptome sequencing, we found that the abrogation of ESX-1 function in Mycobacterium marinum leads to a pronounced increase in gene expression levels of the espA operon during the infection of macrophages. In addition, the disruption of ESX-1-mediated protein secretion also leads to a specific down-regulation of the ESX-1 substrates, but not of the structural components of this system, during growth in culture medium. This effect is observed in both M. marinum and M. tuberculosis. We established that down-regulation of ESX-1 substrates is the result of a regulatory process that is influenced by the putative transcriptional regulator whib6, which is located adjacent to the esx-1 locus. In addition, the overexpression of the ESX-1-associated PE35/PPE68 protein pair resulted in a significantly increased secretion of the ESX-1 substrate EsxA, demonstrating a functional link between these proteins. Taken together, these data show that WhiB6 is required for the secretion-dependent regulation of ESX-1 substrates and that ESX-1 substrates are regulated independently from the structural components, both during infection and as a result of active secretion.

]]>
<![CDATA[Cultivation-success of rare soil bacteria is not influenced by incubation time and growth medium]]> https://www.researchpad.co/article/5c40f793d5eed0c484386402

Rare bacterial species have recently attracted interest due to their many potential beneficial functions. However, only little is known about their cultivability. In this study we test the hypotheses that the use of flow cell-sorting for cultivation results in a high proportion of rare soil bacterial isolates relative to bacterial taxa that are abundant in soil. Moreover, we investigate whether different oligotrophic cultivation media and a prolonged incubation time increase the number of cultivated rare species. In a cultivation study we used flow cell sorting to select for small cells and to separate single cells, and grew bacteria on different oligotrophic media with prolonged incubation times. The abundance of the isolates in the field was assessed by comparing them to a 454-sequencing dataset from the same soil. Consequentially, all bacterial isolates were classified as either rare (<0.01% relative abundance) or abundant (>0.01% relative abundance) in the field soil. We found more bacterial taxa among the isolates that were abundant in soil than would be expected by the proportion of abundant species in the field. Neither incubation time nor growth medium had an influence on the recovery of rare species. However, we did find differences in time until visible growth on the plate between different phylogenetic classes of the isolates. These results indicate that rare cultivable species are active and not more likely to be dormant than abundant species, as has been suggested as a reason for their rarity. Moreover, future studies should be aware of the influence incubation time might have on the phylogenetic composition of the isolate collection.

]]>
<![CDATA[Colonization factors among enterotoxigenic Escherichia coli isolates from children with moderate-to-severe diarrhea and from matched controls in the Global Enteric Multicenter Study (GEMS)]]> https://www.researchpad.co/article/5c390b87d5eed0c48491d133

Background

Enterotoxigenic Escherichia coli (ETEC) encoding heat-stable enterotoxin (ST) alone or with heat-labile enterotoxin (LT) cause moderate-to-severe diarrhea (MSD) in developing country children. The Global Enteric Multicenter Study (GEMS) identified ETEC encoding ST among the top four enteropathogens. Since the GEMS objective was to provide evidence to guide development and implementation of enteric vaccines and other interventions to diminish diarrheal disease morbidity and mortality, we examined colonization factor (CF) prevalence among ETEC isolates from children age <5 years with MSD and from matched controls in four African and three Asian sites. We also assessed strength of association of specific CFs with MSD.

Methodology/Principal findings

MSD cases enrolled at healthcare facilities over three years and matched controls were tested in a standardized manner for many enteropathogens. To identify ETEC, three E. coli colonies per child were tested by polymerase chain reaction (PCR) to detect genes encoding LT, ST; confirmed ETEC were examined by PCR for major CFs (Colonization Factor Antigen I [CFA/I] or Coli Surface [CS] antigens CS1-CS6) and minor CFs (CS7, CS12, CS13, CS14, CS17, CS18, CS19, CS20, CS21, CS30). ETEC from 806 cases had a single toxin/CF profile in three tested strains per child. Major CFs, components of multiple ETEC vaccine candidates, were detected in 66.0% of LT/ST and ST-only cases and were associated with MSD versus matched controls by conditional logistic regression (p≤0.006); major CFs detected in only 25.0% of LT-only cases weren’t associated with MSD. ETEC encoding exclusively CS14, identified among 19.9% of 291 ST-only and 1.5% of 259 LT/ST strains, were associated with MSD (p = 0.0011). No other minor CF exhibited prevalence ≥5% and significant association with MSD.

Conclusions/Significance

Major CF-based efficacious ETEC vaccines could potentially prevent up to 66% of pediatric MSD cases due to ST-encoding ETEC in developing countries; adding CS14 extends coverage to ~77%.

]]>
<![CDATA[High throughput cultivation-based screening on porous aluminum oxide chips allows targeted isolation of antibiotic resistant human gut bacteria]]> https://www.researchpad.co/article/5c605a07d5eed0c4847cc7d2

The emergence of bacterial pathogens that are resistant to clinical antibiotics poses an increasing risk to human health. An important reservoir from which bacterial pathogens can acquire resistance is the human gut microbiota. However, thus far, a substantial fraction of the gut microbiota remains uncultivated and has been little-studied with respect to its resistance reservoir-function. Here, we aimed to isolate yet uncultivated resistant gut bacteria by a targeted approach. Therefore, faecal samples from 20 intensive care patients who had received the prophylactic antibiotic treatment selective digestive decontamination (SDD), i.e. tobramycin, polymyxin E, amphotericin B and cefotaxime, were inoculated anaerobically on porous aluminium oxide chips placed on top of poor and rich agar media, including media supplemented with the SDD antibiotics. Biomass growing on the chips was analysed by 16S rRNA gene amplicon sequencing, showing large inter-individual differences in bacterial cultivability, and enrichment of a range of taxonomically diverse operational taxonomic units (OTUs). Furthermore, growth of Ruminococcaceae (2 OTUs), Enterobacteriaceae (6 OTUs) and Lachnospiraceae (4 OTUs) was significantly inhibited by the SDD antibiotics. Strains belonging to 16 OTUs were candidates for cultivation to pure culture as they shared ≤95% sequence identity with the closest type strain and had a relative abundance of ≥2%. Six of these OTUs were detected on media containing SDD antibiotics, and as such were prime candidates to be studied regarding antibiotic resistance. One of these six OTUs was obtained in pure culture using targeted isolation. This novel strain was resistant to the antibiotics metrodinazole and imipenem. It was initially classified as member of the Ruminococcaceae, though later it was found to share 99% nucleotide identity with the recently published Sellimonas intestinalis BR72T. In conclusion, we show that high-throughput cultivation-based screening of microbial communities can guide targeted isolation of bacteria that serve as reservoirs of antibiotic resistance.

]]>
<![CDATA[EspL is essential for virulence and stabilizes EspE, EspF and EspH levels in Mycobacterium tuberculosis]]> https://www.researchpad.co/article/5c25450fd5eed0c48442bdc9

The ESX-1, type VII, secretion system represents the major virulence determinant of Mycobacterium tuberculosis, one of the most successful intracellular pathogens. Here, by combining genetic and high-throughput approaches, we show that EspL, a protein of 115 amino acids, is essential for mediating ESX-1-dependent virulence and for stabilization of EspE, EspF and EspH protein levels. Indeed, an espL knock-out mutant was unable to replicate intracellularly, secrete ESX-1 substrates or stimulate innate cytokine production. Moreover, proteomic studies detected greatly reduced amounts of EspE, EspF and EspH in the espL mutant as compared to the wild type strain, suggesting a role for EspL as a chaperone. The latter conclusion was further supported by discovering that EspL interacts with EspD, which was previously demonstrated to stabilize the ESX-1 substrates and effector proteins, EspA and EspC. Loss of EspL also leads to downregulation in M. tuberculosis of WhiB6, a redox-sensitive transcriptional activator of ESX-1 genes. Overall, our data highlight the importance of a so-far overlooked, though conserved, component of the ESX-1 secretion system and begin to delineate the role played by EspE, EspF and EspH in virulence and host-pathogen interaction.

]]>
<![CDATA[Experimental studies addressing the longevity of Bacillus subtilis spores – The first data from a 500-year experiment]]> https://www.researchpad.co/article/5c1028ebd5eed0c4842487a5

The ability to form endospores allows certain Gram-positive bacteria (e.g. Bacillus subtilis) to challenge the limits of microbial resistance and survival. Thus, B. subtilis is able to tolerate many environmental extremes by transitioning into a dormant state as spores, allowing survival under otherwise unfavorable conditions. Despite thorough study of spore resistance to external stresses, precisely how long B. subtilis spores can lie dormant while remaining viable, a period that potentially far exceeds the human lifespan; is not known although convincing examples of long term spore survival have been recorded. In this study, we report the first data from a 500-year microbial experiment, which started in 2014 and will finish in 2514. A set of vials containing a defined concentration of desiccated B. subtilis spores is opened and tested for viability every two years for the first 24 years and then every 25 years until experiment completion. Desiccated baseline spore samples were also exposed to environmental stresses, including X-rays, 254 nm UV-C, 10% H2O2, dry heat (120°C) and wet heat (100°C) to investigate how desiccated spores respond to harsh environmental conditions after long periods of storage. Data from the first 2 years of storage show no significant decrease in spore viability. Additionally, spores of B. subtilis were subjected to various short-term storage experiments, revealing that space-like vacuum and high NaCl concentration negatively affected spore viability.

]]>
<![CDATA[Spatio-temporal epidemiology of anthrax in Hippopotamus amphibious in Queen Elizabeth Protected Area, Uganda]]> https://www.researchpad.co/article/5c0841a3d5eed0c484fca4e8

Background

Anthrax is a zoonotic disease primarily of herbivores, caused by Bacillus anthracis, a bacterium with diverse geographical and global distribution. Globally, livestock outbreaks have declined but in Africa significant outbreaks continue to occur with most countries still categorized as enzootic, hyper endemic or sporadic. Uganda experiences sporadic human and livestock cases. Severe large-scale outbreaks occur periodically in hippos (Hippopotamus amphibious) at Queen Elizabeth Protected Area, where in 2004/2005 and 2010 anthrax killed 437 hippos. Ecological drivers of these outbreaks and potential of hippos to maintain anthrax in the ecosystem remain unknown. This study aimed to describe spatio-temporal patterns of anthrax among hippos; examine significant trends associated with case distributions; and generate hypotheses for investigation of ecological drivers of anthrax.

Methods

Spatio-temporal patterns of 317 hippo cases in 2004/5 and 137 in 2010 were analyzed. QGIS was used to examine case distributions; Spearman’s nonparametric tests to determine correlations between cases and at-risk hippo populations; permutation models of the spatial scan statistics to examine spatio-temporal clustering of cases; directional tests to determine directionality in epidemic movements; and standard epidemic curves to determine patterns of epidemic propagation.

Key findings

Results showed hippopotamus cases extensively distributed along water shorelines with strong positive correlations (p<0.01) between cases and at-risk populations. Significant (p<0.001) spatio-temporal clustering of cases occurred throughout the epidemics, pointing towards a defined source. Significant directional epidemic spread was detected along water flow gradient (206.6°) in 2004/5 and against flow gradient (20.4°) in 2010. Temporal distributions showed clustered pulsed epidemic waves.

Conclusion

These findings suggest mixed point-source propagated pattern of epidemic spread amongst hippos and points to likelihood of indirect spread of anthrax spores between hippos mediated by their social behaviour, forces of water flow, and persistent presence of infectious carcasses amidst schools. This information sheds light on the epidemiology of anthrax in highly social wildlife, can help drive insight into disease control, wildlife conservation, and tourism management, but highlights the need for analytical and longitudinal studies aimed at clarifying the hypotheses.

]]>
<![CDATA[Impact of Bacillus spp. spores and gentamicin on the gastrointestinal microbiota of suckling and newly weaned piglets]]> https://www.researchpad.co/article/5c06f027d5eed0c484c6d20c

Administrating antibiotics to young piglets may have short- and long-term consequences on the gut microbiota. We hypothesised that these consequences may be alleviated by concurrent probiotic administration. The study objective was to investigate the effect of administrating gentamicin and a mixture of Bacillus (B.) licheniformis, B. subtilis and B. amyloliquefaeceans spores on the gut microbiota of piglets pre- and post-weaning. Twenty-four sows and their litters were randomly allocated to four treatment groups receiving; a) Bacillus spore mixture (six B. subtilis, two B. amyloliquefaeceans, and one B. licheniformis) fed to sows and piglets (PRO); b) gentamicin (5 mg per day) administered to piglets on day 4, 5, and 6 of age (AB); c) Bacillus spore mixture fed to sows and piglets, and gentamicin to piglets (PRO+AB); or d) no administration of probiotics or antibiotics (CTRL). Faecal and digesta samples were collected repeatedly during the study. Selected samples were subjected to 16S rRNA gene sequencing, culture counts, and organic acid, biogenic amine and tissue gene expression analysis. Treatment had a significant effect on the faecal microbial community composition on day 28 and 42, and colonic community on day 28. Faecal species richness (observed and estimated) and Shannon index, and colonic species richness, were higher in AB compared to PRO piglets on day 28, and were not significantly different from day 42. PRO piglets had the highest faecal concentration of iso-butyric acid on day 7 and a higher butyric acid concentration compared to CTRL piglets. We conclude that gentamicin and Bacillus spores influence the gut microbial diversity of piglets, although administration of gentamicin did not result in dysbiosis as hypothesised.

]]>
<![CDATA[The positioning of the asymmetric septum during sporulation in Bacillus subtilis]]> https://www.researchpad.co/article/5c0c04e4d5eed0c48481ced8

Probably one of the most controversial questions about the cell division of Bacillus subtilis, a rod-shaped bacterium, concerns the mechanism that ensures correct division septum placement–at mid-cell during vegetative growth but closer to one end during sporulation. In general, bacteria multiply by binary fission, in which the division septum forms almost exactly at the cell centre. How the division machinery achieves such accuracy is a question of continuing interest. We understand in some detail how this is achieved during vegetative growth in Escherichia coli and B. subtilis, where two main negative regulators, nucleoid occlusion and the Min system, help to determine the division site, but we still do not know exactly how the asymmetric septation site is determined during sporulation in B. subtilis. Clearly, the inhibitory effects of the nucleoid occlusion and Min system on polar division have to be overcome. We evaluated the positioning of the asymmetric septum and its accuracy by statistical analysis of the site of septation. We also clarified the role of SpoIIE, RefZ and MinCD on the accuracy of this process. We determined that the sporulation septum forms approximately 1/6 of a cell length from one of the cell poles with high precision and that SpoIIE, RefZ and MinCD have a crucial role in precisely localizing the sporulation septum. Our results strongly support the idea that asymmetric septum formation is a very precise and highly controlled process regulated by a still unknown mechanism.

]]>
<![CDATA[Fusion between Leishmania amazonensis and Leishmania major Parasitophorous Vacuoles: Live Imaging of Coinfected Macrophages]]> https://www.researchpad.co/article/5989da92ab0ee8fa60ba0820

Protozoan parasites of the genus Leishmania alternate between flagellated, elongated extracellular promastigotes found in insect vectors, and round-shaped amastigotes enclosed in phagolysosome-like Parasitophorous Vacuoles (PVs) of infected mammalian host cells. Leishmania amazonensis amastigotes occupy large PVs which may contain many parasites; in contrast, single amastigotes of Leishmania major lodge in small, tight PVs, which undergo fission as parasites divide. To determine if PVs of these Leishmania species can fuse with each other, mouse macrophages in culture were infected with non-fluorescent L. amazonensis amastigotes and, 48 h later, superinfected with fluorescent L. major amastigotes or promastigotes. Fusion was investigated by time-lapse image acquisition of living cells and inferred from the colocalization of parasites of the two species in the same PVs. Survival, multiplication and differentiation of parasites that did or did not share the same vacuoles were also investigated. Fusion of PVs containing L. amazonensis and L. major amastigotes was not found. However, PVs containing L. major promastigotes did fuse with pre-established L. amazonensis PVs. In these chimeric vacuoles, L. major promastigotes remained motile and multiplied, but did not differentiate into amastigotes. In contrast, in doubly infected cells, within their own, unfused PVs metacyclic-enriched L. major promastigotes, but not log phase promastigotes - which were destroyed - differentiated into proliferating amastigotes. The results indicate that PVs, presumably customized by L. major amastigotes or promastigotes, differ in their ability to fuse with L. amazonensis PVs. Additionally, a species-specific PV was required for L. major destruction or differentiation – a requirement for which mechanisms remain unknown. The observations reported in this paper should be useful in further studies of the interactions between PVs to different species of Leishmania parasites, and of the mechanisms involved in the recognition and fusion of PVs.

]]>
<![CDATA[Metabolomics to Unveil and Understand Phenotypic Diversity between Pathogen Populations]]> https://www.researchpad.co/article/5989db43ab0ee8fa60bd7587

Leishmaniasis is a debilitating disease caused by the parasite Leishmania. There is extensive clinical polymorphism, including variable responsiveness to treatment. We study Leishmania donovani parasites isolated from visceral leishmaniasis patients in Nepal that responded differently to antimonial treatment due to differing intrinsic drug sensitivity of the parasites. Here, we present a proof-of-principle study in which we applied a metabolomics pipeline specifically developed for L. donovani to characterize the global metabolic differences between antimonial-sensitive and antimonial-resistant L. donovani isolates. Clones of drug-sensitive and drug-resistant parasite isolates from clinical samples were cultured in vitro and harvested for metabolomics analysis. The relative abundance of 340 metabolites was determined by ZIC-HILIC chromatography coupled to LTQ-Orbitrap mass spectrometry. Our measurements cover approximately 20% of the predicted core metabolome of Leishmania and additionally detected a large number of lipids. Drug-sensitive and drug-resistant parasites showed distinct metabolic profiles, and unsupervised clustering and principal component analysis clearly distinguished the two phenotypes. For 100 metabolites, the detected intensity differed more than three-fold between the 2 phenotypes. Many of these were in specific areas of lipid metabolism, suggesting that the membrane composition of the drug-resistant parasites is extensively modified. Untargeted metabolomics has been applied on clinical Leishmania isolates to uncover major metabolic differences between drug-sensitive and drug-resistant isolates. The identified major differences provide novel insights into the mechanisms involved in resistance to antimonial drugs, and facilitate investigations using targeted approaches to unravel the key changes mediating drug resistance.

]]>
<![CDATA[The Heme Biosynthetic Pathway of the Obligate Wolbachia Endosymbiont of Brugia malayi as a Potential Anti-filarial Drug Target]]> https://www.researchpad.co/article/5989daeaab0ee8fa60bbeff2

Background

Filarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti) are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole) can interrupt transmission predominantly by killing microfilariae (mf) larvae, but is less effective on adult worms, which can live for decades in the human host. All medically relevant human filarial parasites appear to contain an obligate endosymbiotic bacterium, Wolbachia. This alpha-proteobacterial mutualist has been recognized as a potential target for filarial nematode life cycle intervention, as antibiotic treatments of filarial worms harboring Wolbachia result in the loss of worm fertility and viability upon antibiotic treatments both in vitro and in vivo. Human trials have confirmed this approach, although the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs.

Methods and Findings

Genome sequence analysis indicated that enzymes involved in heme biosynthesis might constitute a potential anti-Wolbachia target set. We tested different heme biosynthetic pathway inhibitors in ex vivo B. malayi viability assays and report a specific effect of N-methyl mesoporphyrin (NMMP), which targets ferrochelatase (FC, the last step). Our phylogenetic analysis indicates evolutionarily significant divergence between Wolbachia heme genes and their human homologues. We therefore undertook the cloning, overexpression and analysis of several enzymes of this pathway alongside their human homologues, and prepared proteins for drug targeting. In vitro enzyme assays revealed a ∼600-fold difference in drug sensitivities to succinyl acetone (SA) between Wolbachia and human 5′-aminolevulinic acid dehydratase (ALAD, the second step). Similarly, Escherichia coli hemH (FC) deficient strains transformed with human and Wolbachia FC homologues showed significantly different sensitivities to NMMP. This approach enables functional complementation in E. coli heme deficient mutants as an alternative E. coli-based method for drug screening.

Conclusions

Our studies indicate that the heme biosynthetic genes in the Wolbachia of B. malayi (wBm) might be essential for the filarial host survival. In addition, the results suggest they are likely candidate drug targets based upon significant differences in phylogenetic distance, biochemical properties and sensitivities to heme biosynthesis inhibitors, as compared to their human homologues.

]]>