ResearchPad - microbiology-and-infectious-disease https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[HIV efficiently infects T cells from the endometrium and remodels them to promote systemic viral spread]]> https://www.researchpad.co/article/elastic_article_12744 The female reproductive tract (FRT) is the most common site of infection during HIV transmission to women, but viral remodeling complicates characterization of cells targeted for infection. Here, we report extensive phenotypic analyses of HIV-infected endometrial cells by CyTOF, and use a ‘nearest neighbor’ bioinformatics approach to trace cells to their original pre-infection phenotypes. Like in blood, HIV preferentially targets memory CD4+ T cells in the endometrium, but these cells exhibit unique phenotypes and sustain much higher levels of infection. Genital cell remodeling by HIV includes downregulating TCR complex components and modulating chemokine receptor expression to promote dissemination of infected cells to lymphoid follicles. HIV also upregulates the anti-apoptotic protein BIRC5, which when blocked promotes death of infected endometrial cells. These results suggest that HIV remodels genital T cells to prolong viability and promote viral dissemination and that interfering with these processes might reduce the likelihood of systemic viral spread.

]]>
<![CDATA[How HIV exploits T cells in the endometrium]]> https://www.researchpad.co/article/elastic_article_12718 Immune cells in the endometrium are targeted by HIV and re-programmed to allow them to survive and spread the virus throughout the body.

]]>
<![CDATA[SKAP2 is required for defense against <i>K. pneumoniae</i> infection and neutrophil respiratory burst]]> https://www.researchpad.co/article/elastic_article_12711 Klebsiella pneumoniae is a type of bacteria that can cause life-threatening infections – including pneumonia, blood stream infections, and urinary tract infections – in hospitalized patients. These infections can be difficult to treat because some K. pneumoniae are resistant to antibiotics. The bacteria are normally found in the human intestine, and they do not usually cause infections in healthy people. This implies that healthy people’s immune systems are better able to fend off K. pneumoniae infections; learning how could help scientists develop new ways to treat or prevent infections in hospitalized patients.

In healthy people, a type of immune cell called neutrophils are the first line of defense against bacterial infections. Several different proteins are needed to activate neutrophils, including a protein called SKAP2. But the role of this protein in fighting K. pneumoniae infections is not clear.

To find out what role SKAP2 plays in the defense against pneumonia caused by K. pneumoniae, Nguyen et al. compared infections in mice with and without the protein. Mice lacking SKAP2 in their white blood cells had more bacteria in their lungs than normal mice. The experiments showed that neutrophils from mice with SKAP2 produce a burst of chemicals called “reactive oxygen species”, which can kill bacteria. But neutrophils without the protein do not. Without SKAP2, several proteins that help produce reactive oxygen species do not work.

Understanding the role of SKAP2 in fighting infections may help scientists better understand the immune system. This could help clinicians to treat conditions that cause it to be hyperactive or ineffective. More studies are needed to determine if SKAP2 works the same way in human neutrophils and if it works against all types of K. pneumoniae. If it does, then scientists might be able use this information to develop therapies that help the immune system fight infections.

]]>
<![CDATA[Local emergence in Amazonia of <i>Plasmodium falciparum k13</i> C580Y mutants associated with <i>in vitro</i> artemisinin resistance]]> https://www.researchpad.co/article/elastic_article_7263 All recommended treatments against malaria include a drug called artemisinin or some of its derivatives. However, there are concerns that Plasmodium falciparum, the parasite that causes most cases of malaria, will eventually develop widespread resistance to the drug. A strain of P. falciparum partially resistant to artemisinin was seen in Cambodia in 2008, and it has since spread across Southeast Asia. The resistance appears to be frequently linked to a mutation known as pfk13 C580Y.

Southeast Asia and Amazonia are considered to be hotspots for antimalarial drug resistance, and the pfk13 C580Y mutation was detected in the South American country of Guyana in 2010. To examine whether the mutation was still circulating in this part of the world, Mathieu et al. collected and analyzed 854 samples across Guyana between 2016 and 2017. Overall, 1.6% of the samples had the pfk13 C580Y mutation, but this number was as high as 8.8% in one region. Further analyses revealed that the mutation in Guyana had not spread from Southeast Asia, but that it had occurred in Amazonia independently.

To better understand the impact of the pfk13 C580Y mutation, Mathieu et al. introduced this genetic change into non-resistant parasites from a country neighbouring Guyana. As expected, the mutation made P. falciparum highly resistant to artemisinin, but it also slowed the growth rate of the parasite. This disadvantage may explain why the mutation has not spread more rapidly through Guyana in recent years.

Artemisinin and its derivatives are always associated with other antimalarial drugs to slow the development of resistance; there are concerns that reduced susceptibility to artemisinin leads to the parasites becoming resistant to the partner drugs. Further research is needed to evaluate how the pfk13 C580Y mutation affects the parasite’s response to the typical combination of drugs that are given to patients.

]]>
<![CDATA[The antibiotic bedaquiline activates host macrophage innate immune resistance to bacterial infection]]> https://www.researchpad.co/article/Na65247c6-547f-43ed-8b5c-75d754c4f79a The discovery of antibiotic drugs, which treat diseases caused by bacteria, has been a hugely valuable advance in modern medicine. They work by targeting specific cellular processes in bacteria, ultimately stopping them from multiplying or killing them outright. Antibiotics sometimes also affect their human hosts and can cause side-effects, such as gut problems or skin reactions.

Recent evidence suggests that antibiotics also have an impact on the human immune system. This may happen either indirectly, by affecting ‘friendly’ bacteria normally present in the body, or through direct effects on immune cells. In turn, this could change the effectiveness of drug treatments. For example, if an antibiotic weakens immune cells, the body could have difficulty fighting off the existing infection – or become more vulnerable to new ones.

However, even though new drugs are being introduced to combat the worldwide rise of antibiotic-resistant bacteria, their effects on immunity are still not well understood. For example, bedaquiline is an antibiotic recently developed to treat tuberculosis infections that are resistant to several drugs. Giraud-Gatineau et al. wanted to determine if bedaquiline altered the human immune response to bacterial infection independently from its direct anti-microbial effects.

Macrophages engulf foreign particles like bacteria and break them down using enzymes stored within small internal compartments, or ‘lysosomes’. Initial experiments using human macrophages, grown both with and without bedaquiline, showed that the drug did not harm the cells and that they grew normally. A combination of microscope imaging and genetic analysis revealed that exposure to bedaquiline not only increased the number of lysosomes within macrophage cells, but also the activity of genes and proteins that increase lysosomes’ ability to break down foreign particles.

These results suggested that bedaquiline treatment might make macrophages better at fighting infection, even if the drug itself had no direct effect on bacterial cells. Further studies, where macrophages were first treated with bedaquiline and then exposed to different types of bacteria known to be resistant to the drug, confirmed this hypothesis: in every case, the treated macrophages became efficient bacterial killers. In contrast, older anti-tuberculosis drugs did not have any such potentiating effect on the macrophages.

This work sheds new light on our how antibiotic drugs can interact with the cells of the human immune system, and can sometimes even boost our innate defences. Such immune-boosting effects could one day be exploited to make more effective treatments against bacterial infections.

]]>
<![CDATA[Synergistic and antagonistic drug interactions in the treatment of systemic fungal infections]]> https://www.researchpad.co/article/N2ce62c7b-3e6b-482e-8634-b53ac2b4f021 Individuals with weakened immune systems – such as recipients of organ transplants – can fall prey to illnesses caused by fungi that are harmless to most people. These infections are difficult to manage because few treatments exist to fight fungi, and many have severe side effects. Antifungal drugs usually slow the growth of fungi cells rather than kill them, which means that patients must remain under treatment for a long time, or even for life.

One way to boost efficiency and combat resistant infections is to combine antifungal treatments with drugs that work in complementary ways: the drugs strengthen each other’s actions, and together they can potentially kill the fungus rather than slow its progression. However, not all drug combinations are helpful. In fact, certain drugs may interact in ways that make treatment less effective. This is particularly concerning because people with weakened immune systems often take many types of medications.

Here, Wambaugh et al. harnessed a new high-throughput system to screen how 2,000 drugs (many of which already approved to treat other conditions) affected the efficiency of a common antifungal called fluconazole. This highlighted 19 drugs that made fluconazole less effective, some being antibiotics routinely used to treat patients with weakened immune systems.

On the other hand, 40 drugs boosted the efficiency of fluconazole, including dicyclomine, a compound currently used to treat inflammatory bowel syndrome. In fact, pairing dicyclomine and fluconazole more than doubled the survival rate of mice with severe fungal infections. The combined treatment could target many species of harmful fungi, even those that had become resistant to fluconazole alone.

The results by Wambaugh et al. point towards better treatments for individuals with serious fungal infections. Drugs already in circulation for other conditions could be used to boost the efficiency of fluconazole, while antibiotics that do not decrease the efficiency of this medication should be selected to treat at-risk patients.

]]>
<![CDATA[Driving polar growth]]> https://www.researchpad.co/article/Nb5f2fb1c-910a-4289-9d7a-1266ceac5116 Profiling the phenotype of 200,000 mutants revealed a new cofactor that may help a group of rod-shaped bacteria elongate and grow.

]]>
<![CDATA[Global phenotypic profiling identifies a conserved actinobacterial cofactor for a bifunctional PBP-type cell wall synthase]]> https://www.researchpad.co/article/Nefdb3229-e9b1-4d1b-9ce4-a316915871d7 Members of the Corynebacterineae suborder of Actinobacteria have a unique cell surface architecture and, unlike most well-studied bacteria, grow by tip-extension. To investigate the distinct morphogenic mechanisms shared by these organisms, we performed a genome-wide phenotypic profiling analysis using Corynebacterium glutamicum as a model. A high-density transposon mutagenized library was challenged with a panel of antibiotics and other stresses. The fitness of mutants in each gene under each condition was then assessed by transposon-sequencing. Clustering of the resulting phenotypic fingerprints revealed a role for several genes of previously unknown function in surface biogenesis. Further analysis identified CofA (Cgp_0016) as an interaction partner of the peptidoglycan synthase PBP1a that promotes its stable accumulation at sites of polar growth. The related Mycobacterium tuberculosis proteins were also found to interact, highlighting the utility of our dataset for uncovering conserved principles of morphogenesis for this clinically relevant bacterial suborder.

]]>
<![CDATA[Quantifying antibiotic impact on within-patient dynamics of extended-spectrum beta-lactamase resistance]]> https://www.researchpad.co/article/N7ecc8fa1-20b8-4271-9018-7ac9004c16bc Bacteria that are resistant to antibiotics are a growing global health crisis. One type of antibiotic resistance arises when certain bacteria that can produce enzymes called extended-spectrum beta-lactamases (or ESBLs for short) become more common in the gut. These enzymes stop important antibiotics, like penicillin, from working. However, exactly which antibiotics and treatment durations contribute to the emergence of this antibiotic resistance remain unknown.

Now, Niehus et al. find certain antibiotics that are associated with an increase in the number of gut bacteria carrying antibiotic resistance genes for ESBL enzymes. First, rectal swabs collected from 133 patients from three European hospitals were analysed to measure the total gut bacteria and the number of genes for ESBL enzymes. These samples had been collected at several time points including when the patient was first admitted to hospital, then every two to three days during their stay, and finally when they were discharged.

Combining the analysis of the samples with details of the patients’ charts showed that treatment with two antibiotics: cefuroxime and ceftriaxone, was linked to an increase in ESBL genes in the gut bacteria. Other antibiotics – namely, meropenem, piperacillin-tazobactam and oral ciprofloxacin – were associated with a decrease in the number of bacteria with ESBL genes. Niehus et al. then performed further analysis to see if different treatment regimens affected how long patients were carrying gut bacteria with ESBL genes. This predicted that a longer course of meropenem, 14 days rather than 5 days, would shorten the length of time patients carried ESBL-resistant bacteria in their guts by 70%, although this effect will likely depend on the location of the hospital and the local prevalence of other types of antibiotic resistance.

This analysis reveals new details about how antibiotic treatment can affect ESBL resistance genes. More studies are needed to understand how antibiotics affect other antibiotic resistance genes and how resistant bacteria spread. This will help scientists understand how much specific antibiotic regimens contribute to antibiotic resistance. It may also help scientists develop new antibiotic treatment strategies that reduce antibiotic resistance.

]]>
<![CDATA[Implementation of FilmArray Respiratory Viral Panel in a Core Laboratory Improves Testing Turnaround Time and Patient Care]]> https://www.researchpad.co/article/Nfb059a79-9669-4685-8efa-aab9276a48c2

Abstract

The FilmArray respiratory virus panel detects 15 viral agents in respiratory specimens using polymerase chain reaction. We performed FilmArray respiratory viral testing in a core laboratory at a regional children’s hospital that provides service 24 hours a day 7 days a week. The average and median turnaround time were 1.6 and 1.4 hours, respectively, in contrast to 7 and 6.5 hours documented 1 year previously at an on-site reference laboratory using a direct fluorescence assay (DFA) that detected 8 viral agents. During the study period, rhinovirus was detected in 20% and coronavirus in 6% of samples using FilmArray; these viruses would not have been detected with DFA. We followed 97 patients with influenza A or influenza B who received care at the emergency department (ED). Overall, 79 patients (81%) were given oseltamivir in a timely manner defined as receiving the drug in the ED, a prescription in the ED, or a prescription within 3 hours of ED discharge. Our results demonstrate that molecular technology can be successfully deployed in a nonspecialty, high-volume, multidisciplinary core laboratory.

]]>
<![CDATA[Impact of community piped water coverage on re-infection with urogenital schistosomiasis in rural South Africa]]> https://www.researchpad.co/article/Na9993ddb-20e8-4c4c-b531-5728d4ec080d

Previously, we demonstrated that coverage of piped water in the seven years preceding a parasitological survey was strongly predictive of Schistosomiasis haematobium infection in a nested cohort of 1976 primary school children (Tanser, 2018). Here, we report on the prospective follow up of infected members of this nested cohort (N = 333) for two successive rounds following treatment. Using a negative binomial regression fitted to egg count data, we found that every percentage point increase in piped water coverage was associated with 4.4% decline in intensity of re-infection (incidence rate ratio = 0.96, 95% CI: 0.93–0.98, p=0.004) among the treated children. We therefore provide further compelling evidence in support of the scaleup of piped water as an effective control strategy against Schistosoma haematobium transmission.

]]>
<![CDATA[CCR4, a RNA decay factor, is hijacked by a plant cytorhabdovirus phosphoprotein to facilitate virus replication]]> https://www.researchpad.co/article/N6f443eb1-6e21-40aa-8065-dc479414bd12

Carbon catabolite repression 4 (CCR4) is a conserved mRNA deadenylase regulating posttranscriptional gene expression. However, regulation of CCR4 in virus infections is less understood. Here, we characterized a pro-viral role of CCR4 in replication of a plant cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV). The barley (Hordeum vulgare) CCR4 protein (HvCCR4) was identified to interact with the BYSMV phosphoprotein (P). The BYSMV P protein recruited HvCCR4 from processing bodies (PBs) into viroplasm-like bodies. Overexpression of HvCCR4 promoted BYSMV replication in plants. Conversely, knockdown of the small brown planthopper CCR4 inhibited viral accumulation in the insect vector. Biochemistry experiments revealed that HvCCR4 was recruited into N–RNA complexes by the BYSMV P protein and triggered turnover of N-bound cellular mRNAs, thereby releasing RNA-free N protein to bind viral genomic RNA for optimal viral replication. Our results demonstrate that the co-opted CCR4-mediated RNA decay facilitates cytorhabdovirus replication in plants and insects.

]]>
<![CDATA[Co-evolution within structured bacterial communities results in multiple expansion of CRISPR loci and enhanced immunity]]> https://www.researchpad.co/article/N92832fb6-925a-452d-ba72-682bcd859718

Type II CRISPR-Cas systems provide immunity against phages and plasmids that infect bacteria through the insertion of a short sequence from the invader’s genome, known as the ‘spacer’, into the CRISPR locus. Spacers are transcribed into guide RNAs that direct the Cas9 nuclease to its target on the invader. In liquid cultures, most bacteria acquire a single spacer. Multiple spacer integration is a rare event which significance for immunity is poorly understood. Here, we found that when phage infections occur on solid media, a high proportion of the surviving colonies display complex morphologies that contain cells with multiple spacers. This is the result of the viral-host co-evolution, in which the immunity provided by the initial acquired spacer is easily overcome by escaper phages. Our results reveal the versatility of CRISPR-Cas immunity, which can respond with both single or multiple spacer acquisition schemes to solve challenges presented by different environments.

]]>
<![CDATA[An adaptable defense]]> https://www.researchpad.co/article/Ncf24e325-dced-47b7-a6c8-7133e3262303

The response of bacteria to the threat posed by phages depends on their local environment.

]]>
<![CDATA[The transpeptidase PBP2 governs initial localization and activity of the major cell-wall synthesis machinery in E. coli]]> https://www.researchpad.co/article/N4dc58d6a-8962-4005-80c8-ecf8d81c99f8

Bacterial shape is physically determined by the peptidoglycan cell wall. The cell-wall-synthesis machinery responsible for rod shape in Escherichia coli is the processive 'Rod complex'. Previously, cytoplasmic MreB filaments were thought to govern formation and localization of Rod complexes based on local cell-envelope curvature. Using single-particle tracking of the transpeptidase and Rod-complex component PBP2, we found that PBP2 binds to a substrate different from MreB. Depletion and localization experiments of other putative Rod-complex components provide evidence that none of those provide the sole rate-limiting substrate for PBP2 binding. Consistently, we found only weak correlations between MreB and envelope curvature in the cylindrical part of cells. Residual correlations do not require curvature-based Rod-complex initiation but can be attributed to persistent rotational motion. We therefore speculate that the local cell-wall architecture provides the cue for Rod-complex initiation, either through direct binding by PBP2 or through an unknown intermediate.

]]>
<![CDATA[An asymmetric sheath controls flagellar supercoiling and motility in the leptospira spirochete]]> https://www.researchpad.co/article/N0d9031a7-c6e8-445d-83ab-2755592426c8

Spirochete bacteria, including important pathogens, exhibit a distinctive means of swimming via undulations of the entire cell. Motility is powered by the rotation of supercoiled 'endoflagella' that wrap around the cell body, confined within the periplasmic space. To investigate the structural basis of flagellar supercoiling, which is critical for motility, we determined the structure of native flagellar filaments from the spirochete Leptospira by integrating high-resolution cryo-electron tomography and X-ray crystallography. We show that these filaments are coated by a highly asymmetric, multi-component sheath layer, contrasting with flagellin-only homopolymers previously observed in exoflagellated bacteria. Distinct sheath proteins localize to the filament inner and outer curvatures to define the supercoiling geometry, explaining a key functional attribute of this spirochete flagellum.

]]>
<![CDATA[Mannose receptor is an HIV restriction factor counteracted by Vpr in macrophages]]> https://www.researchpad.co/article/N434c6f20-9b8f-4bef-bec4-f63fb4023aaa

HIV-1 Vpr is necessary for maximal HIV infection and spread in macrophages. Evolutionary conservation of Vpr suggests an important yet poorly understood role for macrophages in HIV pathogenesis. Vpr counteracts a previously unknown macrophage-specific restriction factor that targets and reduces the expression of HIV Env. Here, we report that the macrophage mannose receptor (MR), is a restriction factor targeting Env in primary human monocyte-derived macrophages. Vpr acts synergistically with HIV Nef to target distinct stages of the MR biosynthetic pathway and dramatically reduce MR expression. Silencing MR or deleting mannose residues on Env rescues Env expression in HIV-1-infected macrophages lacking Vpr. However, we also show that disrupting interactions between Env and MR reduces initial infection of macrophages by cell-free virus. Together these results reveal a Vpr-Nef-Env axis that hijacks a host mannose-MR response system to facilitate infection while evading MR’s normal role, which is to trap and destroy mannose-expressing pathogens.

]]>
<![CDATA[RNA polymerase mutations cause cephalosporin resistance in clinical Neisseria gonorrhoeae isolates]]> https://www.researchpad.co/article/N67b8fe84-0438-403f-aeba-f226b910a302

Increasing Neisseria gonorrhoeae resistance to ceftriaxone, the last antibiotic recommended for empiric gonorrhea treatment, poses an urgent public health threat. However, the genetic basis of reduced susceptibility to ceftriaxone is not completely understood: while most ceftriaxone resistance in clinical isolates is caused by target site mutations in penA, some isolates lack these mutations. We show that penA-independent ceftriaxone resistance has evolved multiple times through distinct mutations in rpoB and rpoD. We identify five mutations in these genes that each increase resistance to ceftriaxone, including one mutation that arose independently in two lineages, and show that clinical isolates from multiple lineages are a single nucleotide change from ceftriaxone resistance. These RNA polymerase mutations cause large-scale transcriptional changes without altering susceptibility to other antibiotics, reducing growth rate, or deranging cell morphology. These results underscore the unexpected diversity of pathways to resistance and the importance of continued surveillance for novel resistance mutations.

]]>
<![CDATA[Class-A penicillin binding proteins do not contribute to cell shape but repair cell-wall defects]]> https://www.researchpad.co/article/N7027acf0-78aa-40be-96fa-82b2957a5167

Cell shape and cell-envelope integrity of bacteria are determined by the peptidoglycan cell wall. In rod-shaped Escherichia coli, two conserved sets of machinery are essential for cell-wall insertion in the cylindrical part of the cell: the Rod complex and the class-A penicillin-binding proteins (aPBPs). While the Rod complex governs rod-like cell shape, aPBP function is less well understood. aPBPs were previously hypothesized to either work in concert with the Rod complex or to independently repair cell-wall defects. First, we demonstrate through modulation of enzyme levels that aPBPs do not contribute to rod-like cell shape but are required for mechanical stability, supporting their independent activity. By combining measurements of cell-wall stiffness, cell-wall insertion, and PBP1b motion at the single-molecule level, we then present evidence that PBP1b, the major aPBP, contributes to cell-wall integrity by repairing cell wall defects.

]]>
<![CDATA[Discovery of several thousand highly diverse circular DNA viruses]]> https://www.researchpad.co/article/N00c207a4-d4d9-46cd-a1ad-30a9987962ff

Although millions of distinct virus species likely exist, only approximately 9000 are catalogued in GenBank's RefSeq database. We selectively enriched for the genomes of circular DNA viruses in over 70 animal samples, ranging from nematodes to human tissue specimens. A bioinformatics pipeline, Cenote-Taker, was developed to automatically annotate over 2500 complete genomes in a GenBank-compliant format. The new genomes belong to dozens of established and emerging viral families. Some appear to be the result of previously undescribed recombination events between ssDNA and ssRNA viruses. In addition, hundreds of circular DNA elements that do not encode any discernable similarities to previously characterized sequences were identified. To characterize these ‘dark matter’ sequences, we used an artificial neural network to identify candidate viral capsid proteins, several of which formed virus-like particles when expressed in culture. These data further the understanding of viral sequence diversity and allow for high throughput documentation of the virosphere.

]]>