ResearchPad - microscopy https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Quantitative live imaging of Venus::BMAL1 in a mouse model reveals complex dynamics of the master circadian clock regulator]]> https://www.researchpad.co/article/elastic_article_13838 Cell-autonomous circadian clocks are transcriptional/translational feedback loops that co-ordinate almost all mammalian physiology and behaviour. Although their genetic basis is well understood, we are largely ignorant of the natural behaviour of clock proteins and how they work within these loops. This is particularly true for the essential transcriptional activator BMAL1. To address this, we created and validated a mouse carrying a fully functional knock-in allele that encodes a fluorescent fusion of BMAL1 (Venus::BMAL1). Quantitative live imaging in tissue explants and cells, including the central clock of the suprachiasmatic nucleus (SCN), revealed the circadian expression, nuclear-cytoplasmic mobility, fast kinetics and surprisingly low molecular abundance of endogenous BMAL1, providing significant quantitative insights into the intracellular mechanisms of circadian timing at single-cell resolution.

]]>
<![CDATA[<i>Ehrlichia chaffeensis</i> TRP120-mediated ubiquitination and proteasomal degradation of tumor suppressor FBW7 increases oncoprotein stability and promotes infection]]> https://www.researchpad.co/article/elastic_article_13827 E. chaffeensis is an obligately intracellular bacterium that replicates in mononuclear phagocytes by secreting effectors that manipulate host cell processes and exploit evolutionarily conserved pathways. This investigation reveals the complex and expanding role of the E. chaffeensis TRP120 moonlighting effector as a ubiquitin (Ub) ligase targeting host nuclear proteins. Herein, we demonstrate that E. chaffeensis TRP120 HECT Ub ligase targets the nuclear tumor suppressor Skp1-cullin-1-FBOX E3 ubiquitin (Ub) ligase complex substrate recognition subunit, F-BOX and WD domain repeating-containing 7 (FBW7) for degradation. FBW7 is a central regulator of broadly acting host cell oncoproteins involved in cell proliferation and survival. The reduction in FBW7 through TRP120-mediated ubiquitination increases cellular oncoprotein levels and promotes E. chaffeensis infection. This study illuminates novel bacterial effector-host interactions, the importance and interplay of both host and bacterial Ub ligases and the Ub-proteasome system for infection, and mechanisms whereby evolutionarily conserved signaling pathways are hijacked by obligately intracellular pathogens.

]]>
<![CDATA[Analyzing the super-resolution characteristics of focused-spot illumination approaches]]> https://www.researchpad.co/article/elastic_article_12566 Significance: It is commonly assumed that using the objective lens to create a tightly focused light spot for illumination provides a twofold resolution improvement over the Rayleigh resolution limit and that resolution improvement is independent of object properties. Nevertheless, such an assumption has not been carefully examined. We examine this assumption by analyzing the performance of two super-resolution methods, known as image scanning microscopy (ISM) and illumination-enhanced sparsity (IES).

Aim: We aim to identify the fundamental differences between the two methods, and to provide examples that help researchers determine which method to utilize for different imaging conditions.

Approach: We input the same image datasets into the two methods and analyze their restorations. In numerical simulations, we design objects of distinct brightness and sparsity levels for imaging. We use biological imaging experiments to verify the simulation results.

Results: The resolution of IES often exceeds twice the Rayleigh resolution limit when imaging sparse objects. A decrease in object sparsity negatively affects the resolution improvement in both methods.

Conclusions: The IES method is superior for imaging sparse objects with its main features being bright and small against a dark, large background. For objects that are largely bright with small dark features, the ISM method is favorable.

]]>
<![CDATA[Flavonoids and antioxidant activity of rare and endangered fern: <i>Isoetes sinensis</i>]]> https://www.researchpad.co/article/elastic_article_7844 Isoetes sinensis Palmer is a critically endangered, first-class protected plant in China. Until now, researchers have primarily focused on the ultrastructure, phylogeny, and transcriptomes of the plant. However, flavonoid profiles and bioactivity of I. sinensis have not been extensively investigated. To develop the endangered I. sinensis for edible and medicinal purposes, flavonoid content, chemical constitution, and antioxidant activities were investigated in this study. Results revealed the following. 1) The total flavonoid content was determined as 10.74 ± 0.25 mg/g., 2) Antioxidant activities were stronger than most ferns, especially ABTS free radical scavenging activities. 3) Four flavones, containing apigenin, apigenin-7-glucuronide, acacetin-7-O-glcopyranoside, and homoplantageninisoetin; four flavonols, namely, isoetin, kaempferol-3-O-glucoside, quercetin-3-O-[6”-O-(3-hydroxy-3-methylglutaryl)-β-D-glucopyranoside], and limocitrin-Neo; one prodelphinidin (procyanidins;) and one nothofagin (dihydrochalcone) were tentatively identified in the mass spectrometry-DAD (254nm) chromatograms. This study was the first to report on flavonoid content and antioxidant activities of I. sinensis. Stronger antioxidant activity and flavonoid content suggests that the endangered I. sinensis is an important and potentially edible and medicinal plant.

]]>
<![CDATA[Confocal Raman microscopy to identify bacteria in oral subgingival biofilm models]]> https://www.researchpad.co/article/elastic_article_7675 The study of oral disease progression, in relation to the accumulation of subgingival biofilm in gingivitis and periodontitis is limited, due to either the ability to monitor plaque in vitro. When compared, optical spectroscopic techniques offer advantages over traditional destructive or biofilm staining approaches, making it a suitable alternative for the analysis and continued development of three-dimensional structures. In this work, we have developed a confocal Raman spectroscopy analysis approach towards in vitro subgingival plaque models. The main objective of this study was to develop a method for differentiating multiple oral subgingival bacterial species in planktonic and biofilm conditions, using confocal Raman microscopy. Five common subgingival bacteria (Fusobacterium nucleatum, Streptococcus mutans, Veillonella dispar, Actinomyces naeslundii and Prevotella nigrescens) were used and differentiated using a 2-way orthogonal Partial Least Square with Discriminant Analysis (O2PLS-DA) for the collected spectral data. In addition to planktonic growth, mono-species biofilms cultured using the ‘Zürich Model’ were also analyzed. The developed method was successfully used to predict planktonic and mono-species biofilm species in a cross validation setup. The results show differences in the presence and absence of chemical bands within the Raman spectra. The O2PLS-DA model was able to successfully predict 100% of all tested planktonic samples and 90% of all mono-species biofilm samples. Using this approach we have shown that Confocal Raman microscopy can analyse and predict the identity of planktonic and mono-species biofilm species, thus enabling its potential as a technique to map oral multi-species biofilm models.

]]>
<![CDATA[Imaging dataset of fresh hydrous plants obtained by field-emission scanning electron microscopy conducted using a protective NanoSuit]]> https://www.researchpad.co/article/elastic_article_7644 Although scanning electron microscopy (SEM) can generate high-resolution images of nanosized objects, it requires a high vacuum to do so, which precludes direct observations of living organisms and often produces unwanted structural changes. It has previously been reported that a simple surface modification gives rise to a nanoscale layer, termed the “NanoSuit”, which can keep small animals alive under the high vacuum required for field-emission scanning electron microscopy (FE-SEM). We have previously applied this technique to plants, and successfully observed healthy petals in a fully hydrated state using SEM. The flower petals protected with the NanoSuit appeared intact, although we still lack a fundamental understanding of the images of other plants observed using FE-SEM. This report presents and evaluates a rich set of images, acquired using the NanoSuit, for a taxonomically diverse set of plant species. This dataset of images allows the surface features of various plants to be analyzed and thus provides a further complementary morphological profile. Image data can be accessed and viewed through Figshare (https://doi.org/10.6084/m9.figshare.c.4446026.v1).

]]>
<![CDATA[A case of recurrent lentigo maligna diagnosed with precise reflectance confocal microscopy–guided biopsy technique]]> https://www.researchpad.co/article/Nc9400d41-942d-4efc-8c8f-fd3f0a9c50e0 <![CDATA[Metabolic mapping of glioblastoma stem cells reveals NADH fluxes associated with glioblastoma phenotype and survival]]> https://www.researchpad.co/article/Nb7b363d0-f587-4b3c-8f10-cc5ef8af7a87

Abstract.

Significance: Glioblastoma multiforme (GBM) is the most frequently diagnosed adult primary brain malignancy with poor patient prognosis. GBM can recur despite aggressive treatment due to therapeutically resistant glioblastoma stem cells (GSCs) that may exhibit metabolic plasticity.

Aim: Intrinsic nicotinamide adenine dinucleotide (NADH) fluorescence can be acquired with fluorescence lifetime imaging microscopy (FLIM) to examine its bound and free metabolic states in GSC and GBM tissues.

Approach: We compared the mean NADH fluorescence lifetime in live human GSCs and normal neural stem cells and validated those results by measuring oxygen consumption rates (OCRs). We also examined the role that invasive versus less-invasive GSCs had on tumor metabolism by measuring the mean NADH lifetimes and the relative amount of the longer-lived component of NADH and correlated these results with survival in an orthotopic mouse xenograft model.

Results: Mean NADH lifetime, amount of bound NADH, and OCR were increased in GSCs. Compared with normal mouse brain, mean NADH lifetimes were longer for all GBM tissues. Invasive xenografts had higher relative amounts of the longer-lived NADH component, and this correlated with decreased survival.

Conclusions: FLIM offers cellular resolution quantification of metabolic flux in GBM phenotypes, potentially informing biomedical researchers on improved therapeutic approaches.

]]>
<![CDATA[Aspirin-triggered resolvin D1 attenuates PDGF-induced vascular smooth muscle cell migration via the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc0e7

Background and objectives

Resolvin D1 (RvD1) is a specialized pro-resolving lipid mediator that has been previously shown to attenuate vascular smooth muscle cell (VSMC) migration, a key process in the development of intimal hyperplasia. We sought to investigate the role of the cAMP/PKA pathway in mediating the effects of the aspirin-triggered epimer 17R-RvD1 (AT-RvD1) on VSMC migration.

Methods

VSMCs were harvested from human saphenous veins. VSMCs were analyzed for intracellular cAMP levels and PKA activity after exposure to AT-RvD1. Platelet-derived growth factor (PDGF)-induced migration and cytoskeletal changes in VSMCs were observed through scratch, Transwell, and cell shape assays in the presence or absence of a PKA inhibitor (Rp-8-Br-cAMP). Further investigation of the pathways involved in AT-RvD1 signaling was performed by measuring Rac1 activity, vasodilator stimulated phosphoprotein (VASP) phosphorylation and paxillin translocation. Finally, we examined the role of RvD1 receptors (GPR32 and ALX/FPR2) in AT-RvD1 induced effects on VSMC migration and PKA activity.

Results

Treatment with AT-RvD1 induced a significant increase in cAMP levels and PKA activity in VSMCs at 5 minutes and 30 minutes, respectively. AT-RvD1 attenuated PDGF-induced VSMC migration and cytoskeletal rearrangements. These effects were attenuated by the PKA inhibitor Rp-8-Br-cAMP, suggesting cAMP/PKA involvement. Treatment of VSMC with AT-RvD1 inhibited PDGF-stimulated Rac1 activity, increased VASP phosphorylation, and attenuated paxillin localization to focal adhesions; these effects were negated by the addition of Rp-8-Br-cAMP. The effects of AT-RvD1 on VSMC migration and PKA activity were attenuated by blocking ALX/FPR2, suggesting an important role of this G-protein coupled receptor.

Conclusions

Our results suggest that AT-RvD1 attenuates PDGF-induced VSMC migration via ALX/FPR2 and cAMP/PKA. Interference with Rac1, VASP and paxillin function appear to mediate the downstream effects of AT-RvD1 on VSMC migration.

]]>
<![CDATA[NAP (davunetide) preferential interaction with dynamic 3-repeat Tau explains differential protection in selected tauopathies]]> https://www.researchpad.co/article/5c92b379d5eed0c4843a4107

The microtubule (MT) associated protein Tau is instrumental for the regulation of MT assembly and dynamic instability, orchestrating MT-dependent cellular processes. Aberration in Tau post-translational modifications ratio deviation of spliced Tau isoforms 3 or 4 MT binding repeats (3R/4R) have been implicated in neurodegenerative tauopathies. Activity-dependent neuroprotective protein (ADNP) is vital for brain formation and cognitive function. ADNP deficiency in mice causes pathological Tau hyperphosphorylation and aggregation, correlated with impaired cognitive functions. It has been previously shown that the ADNP-derived peptide NAP protects against ADNP deficiency, exhibiting neuroprotection, MT interaction and memory protection. NAP prevents MT degradation by recruitment of Tau and end-binding proteins to MTs and expression of these proteins is required for NAP activity. Clinically, NAP (davunetide, CP201) exhibited efficacy in prodromal Alzheimer’s disease patients (Tau3R/4R tauopathy) but not in progressive supranuclear palsy (increased Tau4R tauopathy). Here, we examined the potential preferential interaction of NAP with 3R vs. 4R Tau, toward personalized treatment of tauopathies. Affinity-chromatography showed that NAP preferentially interacted with Tau3R protein from rat brain extracts and fluorescence recovery after photobleaching assay indicated that NAP induced increased recruitment of human Tau3R to MTs under zinc intoxication, in comparison to Tau4R. Furthermore, we showed that NAP interaction with tubulin (MTs) was inhibited by obstruction of Tau-binding sites on MTs, confirming the requirement of Tau-MT interaction for NAP activity. The preferential interaction of NAP with Tau3R may explain clinical efficacy in mixed vs. Tau4R pathologies, and suggest effectiveness in Tau3R neurodevelopmental disorders.

]]>
<![CDATA[Recapitulation of the accessible interface of biopsy-derived canine intestinal organoids to study epithelial-luminal interactions]]> https://www.researchpad.co/article/N24a1d01a-2f11-47b7-a628-8330af6f7455

Recent advances in canine intestinal organoids have expanded the option for building a better in vitro model to investigate translational science of intestinal physiology and pathology between humans and animals. However, the three-dimensional geometry and the enclosed lumen of canine intestinal organoids considerably hinder the access to the apical side of epithelium for investigating the nutrient and drug absorption, host-microbiome crosstalk, and pharmaceutical toxicity testing. Thus, the creation of a polarized epithelial interface accessible from apical or basolateral side is critical. Here, we demonstrated the generation of an intestinal epithelial monolayer using canine biopsy-derived colonic organoids (colonoids). We optimized the culture condition to form an intact monolayer of the canine colonic epithelium on a nanoporous membrane insert using the canine colonoids over 14 days. Transmission and scanning electron microscopy revealed a physiological brush border interface covered by the microvilli with glycocalyx, as well as the presence of mucin granules, tight junctions, and desmosomes. The population of stem cells as well as differentiated lineage-dependent epithelial cells were verified by immunofluorescence staining and RNA in situ hybridization. The polarized expression of P-glycoprotein efflux pump was confirmed at the apical membrane. Also, the epithelial monolayer formed tight- and adherence-junctional barrier within 4 days, where the transepithelial electrical resistance and apparent permeability were inversely correlated. Hence, we verified the stable creation, maintenance, differentiation, and physiological function of a canine intestinal epithelial barrier, which can be useful for pharmaceutical and biomedical researches.

]]>
<![CDATA[Basal cell carcinoma and balloon cell nevus collision mimicking a melanoma on reflectance confocal microscopy]]> https://www.researchpad.co/article/N44292095-0bc3-4a6b-a978-14c58a9db49a ]]> <![CDATA[Methamphetamine-induced apoptosis in glial cells examined under marker-free imaging modalities]]> https://www.researchpad.co/article/N3eba834f-e7e3-4b4e-b4ab-dad6d9b7fb8c

Abstract.

We used phase microscopy and Raman spectroscopic measurements to assess the response of in vitro rat C6 glial cells following methamphetamine treatment in real time. Digital holographic microscopy (DHM) and three-dimensional (3-D) tomographic nanoscopy allow measurements of live cell cultures, which yield information about cell volume changes. Tomographic phase imaging provides 3-D information about the refractive index distribution associated with the morphology of biological samples. DHM provides similar information, but for a larger population of cells. Morphological changes in cells are associated with alterations in cell cycle and initiation of cell death mechanisms. Raman spectroscopy measurements provide information about chemical changes within the cells. Our Raman data indicate that the chemical changes in proteins preceded morphological changes, which were seen with DHM. Our study also emphasizes that tomographic phase imaging, DHM, and Raman spectroscopy are imaging tools that can be utilized for noninvasive simultaneous monitoring of morphological and chemical changes in cells during apoptosis and can also be used to monitor other dynamic cell processes.

]]>
<![CDATA[Excitation parameters optimized for coherent anti-Stokes Raman scattering imaging of myelinated tissue]]> https://www.researchpad.co/article/Na2e35048-ac46-4db3-95b2-94eec1d5c5a8

Abstract.

Coherent anti-Stokes Raman scattering (CARS) generates a strong label-free signal in the long wavenumber CH stretching region. Lipid-rich myelinated tissues, such as brain and spinal cord, would appear to be ideal subjects for imaging with CARS laser-scanning microscopy. However, the highly ordered, biochemically complex, and highly scattering nature of such tissues complicate the use of the technique. A CARS microscopy approach is presented that overcomes the challenges of imaging myelinated tissue to achieve chemically and orientationally sensitive high-resolution images.

]]>
<![CDATA[Medulla loss of scalp hair in breast cancer patients determined by near-infrared microscopy]]> https://www.researchpad.co/article/Nccb773cf-ac8e-48c2-9e3c-a37489b7bf05

Abstract.

Inexpensive near-infrared microscopy (NIRM) was developed as a convenient technique to detect the medulla loss of scalp hair while reducing analytical time with easy sample preparation, leading to a field screening tool for breast cancer. NIRM has been evaluated as an alternative to synchrotron-based nanoscopy and to the relatively expensive method of conventional infrared microscopy to determine the degree and pattern of medulla loss of scalp hairs of patients with breast cancer and benign diseases, as well as normal healthy individuals. NIR imaging showed a strong, scattering-based hyperintense contrast of the medulla compared to the fully attenuated cortex in medullated healthy hair. Complete medulla loss (CML) per hair strand was more extensively (60.9±10.2%) (p<0.001) detected in the hair of all cancer patients than in the hair of either healthy individuals (less than 3.7±7.5%) or those with benign disease (30.6±5.9%), suggesting a potential biomarker for breast cancer diagnosis. The medulla structure was retained mostly in the hair of age-matched healthy individuals, but discontinuous medulla loss was observed concomitantly with less CML in fibroadenoma patients. Potentially, compact NIRM modules can be integrated into a mobile platform as point-of-care technology for breast cancer screening.

]]>
<![CDATA[Translation of two-photon microscopy to the clinic: multimodal multiphoton CARS tomography of in vivo human skin]]> https://www.researchpad.co/article/N886f41f1-80c1-4267-ab74-7e31f41f8cc6

Abstract.

Two-photon microscopes have been successfully translated into clinical imaging tools to obtain high-resolution optical biopsies for in vivo histology. We report on clinical multiphoton coherent anti-Stokes Raman spectroscopy (CARS) tomography based on two tunable ultrashort near-infrared laser beams for label-free in vivo multimodal skin imaging. The multiphoton biopsies were obtained with the compact tomograph “MPTflex-CARS” using a photonic crystal fiber, an optomechanical articulated arm, and a four-detector-360 deg measurement head. The multiphoton tomograph has been employed to patients in a hospital with diseased skin. The clinical study involved 16 subjects, 8 patients with atopic dermatitis, 4 patients with psoriasis vulgaris, and 4 volunteers served as control. Two-photon cellular autofluorescence lifetime, second harmonic generation (SHG) of collagen, and CARS of intratissue lipids/proteins have been detected with single-photon sensitivity, submicron spatial resolution, and picosecond temporal resolution. The most important signal was the autofluorescence from nicotinamide adenine dinucleotide [NAD(P)H]. The SHG signal from collagen was mainly used to detect the epidermal–dermal junction and to calculate the ratio elastin/collagen. The CARS/Raman signal provided add-on information. Based on this view on the disease-affected skin on a subcellular level, skin areas affected by dermatitis and by psoriasis could be clearly identified. Multimodal multiphoton tomographs may become important label-free clinical high-resolution imaging tools for in vivo skin histology to realize rapid early diagnosis as well as treatment control.

]]>
<![CDATA[Optical fiber-based dispersion for spectral discrimination in fluorescence lifetime imaging systems]]> https://www.researchpad.co/article/N6e7ad59b-0070-44dd-b331-2ee32a78a7e5

Abstract.

The excited state lifetime of a fluorophore together with its fluorescence emission spectrum provide information that can yield valuable insights into the nature of a fluorophore and its microenvironment. However, it is difficult to obtain both channels of information in a conventional scheme as detectors are typically configured either for spectral or lifetime detection. We present a fiber-based method to obtain spectral information from a multiphoton fluorescence lifetime imaging (FLIM) system. This is made possible using the time delay introduced in the fluorescence emission path by a dispersive optical fiber coupled to a detector operating in time-correlated single-photon counting mode. This add-on spectral implementation requires only a few simple modifications to any existing FLIM system and is considerably more cost-efficient compared to currently available spectral detectors.

]]>
<![CDATA[Evaluation of silicon photomultipliers for multiphoton and laser scanning microscopy]]> https://www.researchpad.co/article/N74dd4668-4400-4899-989b-f18fb402dd8a

Abstract.

The silicon photomultiplier (SIPM) is an emerging detector technology that enables both high sensitivity and high dynamic range detection of visible and near-infrared light at a fraction of the cost of conventional vacuum tube photomultiplier tubes (PMTs). A low-cost detection circuit is presented and the performance of a commercial SIPM is evaluated for high-speed laser scanning microscopy applications. For moderate-to-high-speed fluorescent imaging applications, the measurements and imaging results indicate that the SIPM exceeds the sensitivity of GaAsP PMTs, while providing higher dynamic range and better saturation behavior. For low speed or applications requiring large detector areas, the GaAsP PMT retains a sensitivity advantage due to large area and lower dark counts. The calculations presented show that, above a critical detection bandwidth, the SIPM sensitivity exceeds that of a GaAsP PMT.

]]>
<![CDATA[Portable bright-field, fluorescence, and cross-polarized microscope toward point-of-care imaging diagnostics]]> https://www.researchpad.co/article/N0ecee038-1776-49bb-99d1-6837f3dbfb73

Abstract.

Emerging technologies are enabling the feasibility of new types of point-of-care diagnostic devices. A portable, multimodal microscopy platform intended for use in remote diagnostic applications is presented. Use of such a system could bring high-quality microscopy to field use for diseases such as malaria, allowing better diagnostic and surveillance information to be gathered. The microscope was designed using off-the-shelf components and a manual filter selection to generate bright-field, fluorescent, and cross-polarized images of samples mounted to microscopy slides. Design parameters for the system are discussed, and characterization is performed using standardized imaging targets, multimodal phantoms, and blood smears simulating those used in malaria diagnosis. The microscope is shown to be able to image below element 9-3 of a 1951 U.S. Air Force target, indicating that the system is capable of resolving features <775  nm. Morphological indicators of Plasmodium falciparum can be visualized in images from each modality and combined into high-contrast composite images. To optimize parasitic feature contrast across all three imaging modes, several different staining techniques were compared, with results indicating that use of a single nucleic acid binding fluorophore is preferable.

]]>
<![CDATA[Determination of cell nucleus-to-cytoplasmic ratio using imaging flow cytometry and a combined ultrasound and photoacoustic technique: a comparison study]]> https://www.researchpad.co/article/N9685d28d-56b8-4b45-a0c3-ba2ecb6af975

Abstract.

While the nucleus-to-cytoplasmic (N:C) ratio has traditionally been used for assessing cell malignancy, most N:C measurement techniques are time-consuming and performed on thin histological sections, which prohibit assessment of three-dimensional cell structure. A combined ultrahigh frequency ultrasound (US) and photoacoustic (PA) technique was used to assess the size and N:C ratio of cultured cancer cells in three dimensions (3D). The diameters of the cells and their stained nuclei were obtained by fitting the power spectrum of backscattered US pulses and emitted PA waves, respectively, to well-established theoretical models. For comparison, an imaging flow cytometer (IFC) was also used to determine the two-dimensional cell and nucleus sizes from large cell populations using brightfield and fluorescence images, respectively. An N:C ratio was calculated for each cell using the quotient of the measured nucleus diameter and the total cell diameter. The mean N:C ratios calculated using the sound-based approach were 0.68, 0.66, and 0.54 for MCF-7, PC-3, and MDA-MB-231 cells, respectively, and were in good agreement with the corresponding values of 0.68, 0.67, and 0.68 obtained using the IFC. The combined US and PA technique, which assesses cellular N:C ratio in 3D, has potential applications in the detection of circulating tumor cells in liquid biopsies.

]]>