ResearchPad - mixtures https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate cancer in perlecan-modified 3D cancer-stroma-macrophage triculture models]]> https://www.researchpad.co/article/elastic_article_14741 Bone marrow stroma influences metastatic prostate cancer (PCa) progression, latency, and recurrence. At sites of PCa bone metastasis, cancer-associated fibroblasts and tumor-associated macrophages interact to establish a perlecan-rich desmoplastic stroma. As a heparan sulfate proteoglycan, perlecan (HSPG2) stores and stabilizes growth factors, including heparin-binding Wnt3A, a positive regulator of PCa cell growth. Because PCa cells alone do not induce CAF production of perlecan in the desmoplastic stroma, we sought to discover the sources of perlecan and its growth factor-releasing modifiers SULF1, SULF2, and heparanase in PCa cells and xenografts, bone marrow fibroblasts, and macrophages. SULF1, produced primarily by bone marrow fibroblasts, was the main glycosaminoglycanase present, a finding validated with primary tissue specimens of PCa metastases with desmoplastic bone stroma. Expression of both HSPG2 and SULF1 was concentrated in αSMA-rich stroma near PCa tumor nests, where infiltrating pro-tumor TAMs also were present. To decipher SULF1’s role in the reactive bone stroma, we created a bone marrow biomimetic hydrogel incorporating perlecan, PCa cells, macrophages, and fibroblastic bone marrow stromal cells. Finding that M2-like macrophages increased levels of SULF1 and HSPG2 produced by fibroblasts, we examined SULF1 function in Wnt3A-mediated PCa tumoroid growth in tricultures. Comparing control or SULF1 knockout fibroblastic cells, we showed that SULF1 reduces Wnt3A-driven growth, cellularity, and cluster number of PCa cells in our 3D model. We conclude that SULF1 can suppress Wnt3A-driven growth signals in the desmoplastic stroma of PCa bone metastases, and SULF1 loss favors PCa progression, even in the presence of pro-tumorigenic TAMs.

]]>
<![CDATA[Mechanical characterization of PVA hydrogels’ rate-dependent response using multi-axial loading]]> https://www.researchpad.co/article/elastic_article_13820 The time-dependent properties of rubber-like synthesized and biological materials are crucial for their applications. Currently, this behavior is mainly measured using axial tensile test, compression test, or indentation. Limited studies performed on using multi-axial loading measurements of time-dependent material behavior exist in the literature. Therefore, the aim of this study is to investigate the viscoelastic response of rubber-like materials under multi-axial loading using cavity expansion and relaxation tests. The tests were performed on PVA hydrogel specimens. Three hyperelasitc models and one term Prony series were used to characterize the viscoelastic response of the hydrogels. Finite element (FE) simulations were performed to verify the validity of the calibrated material coefficients by reproducing the experimental results. The excellent agreement between the experimental, analytical and numerical data proves the capability of the cavity expansion technique to measure the time-dependent behavior of viscoelastic materials.

]]>
<![CDATA[Examination of the ocean as a source for atmospheric microplastics]]> https://www.researchpad.co/article/elastic_article_13804 Global plastic litter pollution has been increasing alongside demand since plastic products gained commercial popularity in the 1930’s. Current plastic pollutant research has generally assumed that once plastics enter the ocean they are there to stay, retained permanently within the ocean currents, biota or sediment until eventual deposition on the sea floor or become washed up onto the beach. In contrast to this, we suggest it appears that some plastic particles could be leaving the sea and entering the atmosphere along with sea salt, bacteria, virus’ and algae. This occurs via the process of bubble burst ejection and wave action, for example from strong wind or sea state turbulence. In this manuscript we review evidence from the existing literature which is relevant to this theory and follow this with a pilot study which analyses microplastics (MP) in sea spray. Here we show first evidence of MP particles, analysed by μRaman, in marine boundary layer air samples on the French Atlantic coast during both onshore (average of 2.9MP/m3) and offshore (average of 9.6MP/m3) winds. Notably, during sampling, the convergence of sea breeze meant our samples were dominated by sea spray, increasing our capacity to sample MPs if they were released from the sea. Our results indicate a potential for MPs to be released from the marine environment into the atmosphere by sea-spray giving a globally extrapolated figure of 136000 ton/yr blowing on shore.

]]>
<![CDATA[Analysis and modeling of coolants and coolers for specimen transportation]]> https://www.researchpad.co/article/N4e3aeb5c-7b13-42da-a06e-637c738940f8

Maintaining cold chain while transporting medical supplies and samples is difficult in remote settings. Failure to maintain temperature requirements can lead to degraded sample quality and inaccuracies in sample analysis. We performed a systematic analysis on different types of transport coolers (polystyrene foam, injection-molded, and rotational molded) and transport coolants (ice, cold packs, frozen water bottles) frequently in use in many countries. Polystyrene foam coolers stayed below our temperature threshold (6°C) longer than almost all other types of coolers, but were not durable. Injection-molded coolers were durable, but warmed to 6°C the quickest. Rotational molded coolers were able to keep temperatures below our threshold for 24 hours longer than injection molded coolers and were highly durable. Coolant systems were evaluated in terms of cost and their ability to maintain cold temperatures. Long lasting commercial cold packs were found to be less cost effective and were below freezing for the majority of the testing period. Frozen plastic water bottles were found to be a reusable and economical choice for coolant and were only below freezing briefly. Finally, we modeled the coolers performance at maintaining internal temperatures below 6°C and built a highly accurate linear model to predict how long a cooler will remain below 6°C. We believe this data may be useful in the planning and design of specimen transportation systems in the field, particularly in remote or resource limited settings.

]]>
<![CDATA[Ocular surface and tear film changes in workers exposed to organic solvents used in the dry-cleaning industry]]> https://www.researchpad.co/article/N6840e79e-1c57-49df-9829-1ba3fd26bb8e

Workers in the dry-cleaning industry are exposed to organic solvents that may cause eye irritation and tear film changes. Objective To quantify changes in the ocular surface and tear film in dry cleaners exposed to organic solvents and associate these changes with ocular irritation as reported in a symptom questionnaire for dry eye diagnosis. Methods This was a case and control study in which the characteristics and eye-irritation symptoms were compared between two groups of 62 participants that were either exposed or not exposed to organic solvents. A general optometric examination and the following test were performed: lipid interferometry, Lissamine Green Stain, tear breakup time, Schirmer I, conjunctival impression cytology and the Donate dry eye symptoms questionnaire. Results Sixty-five percent of exposed workers obtained a higher score than 13 on the Donate dry eye symptoms questionnaire which indicated the presence of more irritation symptoms than those in the non- exposed group. A Chi-square analysis indicated the exposed group reported significantly higher incidences (P <0.005) for eye irritation symptoms of sandy sensation; tearing eyes sensation; foreign body sensation; tearing; dry eye; dryness; eyestrain and heavy eyelids. A Mann Whitney-U indicated greater severity only for symptoms relating to dry eye; sandy sensation; foreign body sensation, tearing; tearing eyes and dryness. There was a statistically significant difference (P <0.05) for Schirmer I; tear break up time; and the ocular surface assessed with Lissamine green staining and conjunctival impression cytology between groups. A reduction in the thickness of the lipid layer in the exposed group compared to the non-exposed group was observed. Surprisingly, clinical test outcomes were not significantly correlated with dry eye symptoms nor years of exposure. Conclusion Workers in the dry-cleaning industry exposed to organic solvents are associated with changes in ocular surface and tear film generating irritation symptoms commonly present in evaporative dry eye.

]]>
<![CDATA[Characterization of an intratracheal aerosol challenge model of Brucella melitensis in guinea pigs]]> https://www.researchpad.co/article/5c8823ccd5eed0c48463903c

B. melitensis is considered the most virulent of the Brucella species, and a need exists for an improved laboratory animal model of infection that mimics natural transmission and disease. Guinea pigs are highly susceptible to infection with Brucella spp. and develop a disease syndrome that mimics natural disease after aerosol inoculation. Intratracheal inoculation is a targeted means of generating aerosols that offer advantages over aerosol chamber delivery. To establish this delivery method, female, Hartley guinea pigs were infected via intratracheal inoculation with PBS or 16M B. melitensis at low dose (101 to 103) or high dose (106 to 108) and monitored for 30 days for signs of disease. Guinea pigs in the high dose groups developed fever between 12–17 days post-inoculation. Bacteria were recovered from the spleen, liver, lymph nodes, lung, and uterus at 30-days post-inoculation and demonstrated dose dependent mean increases in colonization and pathologic changes consistent with human brucellosis. To study the kinetics of extrapulmonary dissemination, guinea pigs were inoculated with 107 CFU and euthanized at 2-hours post inoculation and at weekly intervals for 3 weeks. 5.8x105 to 4.2x106 CFU were recovered from the lung 2 hours post-inoculation indicating intratracheal inoculation is an efficient means of infecting guinea pigs. Starting at 1-week post inoculation bacteria were recovered from the aforementioned organs with time dependent mean increases in colonization. This data demonstrates that guinea pigs develop a disease syndrome that models the human manifestation of brucellosis, which makes the guinea pig a valuable model for pathogenesis studies.

]]>
<![CDATA[Molecular mechanisms of mesoporous silica formation from colloid solution: Ripening-reactions arrest hollow network structures]]> https://www.researchpad.co/article/5c9902e3d5eed0c484b9881a

The agglomeration of silica nanoparticles in aqueous solution is investigated from molecular simulations. Mimicking destabilization of colloidal solutions by full removal of protective moieties or surface charge, association of SiO2/Si(OH)4 core/shell particles leads to rapid proton transfer reactions that account for local silanole → silica ripening reactions. Yet, such virtually barrier-less binding is only observed within a limited contact zone. Agglomeration hence leads to the formation of oligomers of nanoparticles, whilst full merging into a compact precipitate is hampered by the need for extended structural reorganisation. Implementing sufficiently fast supply from colloidal solution, our simulations show the development of silica networks comprised of covalently bound, yet not fully merged nanoparticles. Within the oligomerized nanoparticle network, coordination numbers range from 2 to 5 –which is far below closest packing. Our simulations hence rationalize the formation of covalently bound network structures hosting extended pores. The resulting interfaces to the solvent show water immobilization only for the immediate contact layers, whilst the inner pores exhibit solvent mobility akin to bulk water.

]]>
<![CDATA[A general dose-response relationship for chronic chemical and other health stressors and mixtures based on an emergent illness severity model]]> https://www.researchpad.co/article/5c706744d5eed0c4847c6cf4

Current efforts to assess human health response to chemicals based on high-throughput in vitro assay data on intra-cellular changes have been hindered for some illnesses by lack of information on higher-level extracellular, inter-organ, and organism-level interactions. However, a dose-response function (DRF), informed by various levels of information including apical health response, can represent a template for convergent top-down, bottom-up analysis. In this paper, a general DRF for chronic chemical and other health stressors and mixtures is derived based on a general first-order model previously derived and demonstrated for illness progression. The derivation accounts for essential autocorrelation among initiating event magnitudes along a toxicological mode of action, typical of complex processes in general, and reveals the inverse relationship between the minimum illness-inducing dose, and the illness severity per unit dose (both variable across a population). The resulting emergent DRF is theoretically scale-inclusive and amenable to low-dose extrapolation. The two-parameter single-toxicant version can be monotonic or sigmoidal, and is demonstrated preferable to traditional models (multistage, lognormal, generalized linear) for the published cancer and non-cancer datasets analyzed: chloroform (induced liver necrosis in female mice); bromate (induced dysplastic focia in male inbred rats); and 2-acetylaminofluorene (induced liver neoplasms and bladder carcinomas in 20,328 female mice). Common- and dissimilar-mode mixture models are demonstrated versus orthogonal data on toluene/benzene mixtures (mortality in Japanese medaka, Oryzias latipes, following embryonic exposure). Findings support previous empirical demonstration, and also reveal how a chemical with a typical monotonically-increasing DRF can display a J-shaped DRF when a second, antagonistic common-mode chemical is present. Overall, the general DRF derived here based on an autocorrelated first-order model appears to provide both a strong theoretical/biological basis for, as well as an accurate statistical description of, a diverse, albeit small, sample of observed dose-response data. The further generalizability of this conclusion can be tested in future analyses comparing with traditional modeling approaches across a broader range of datasets.

]]>
<![CDATA[Identifying developmental trajectories of worldwide road traffic accident death rates using a latent growth mixture modeling approach]]> https://www.researchpad.co/article/5c76fe61d5eed0c484e5b9a7

Road Traffic Accidents (RTA) are a major worldwide public health problem. The aim of this study was to use the growth mixture model for clustering countries on the basis of the mortality rate patterns of RTAs from 2007 to 2013. We obtained the data on RTA death rates from World Health Organization reports and Human Development Index (HDI) of United Nations Development Programme reports for the years 2007, 2010 and 2013. Simple Latent Growth Models (LGM) in 181 countries were applied to estimate overall RTA mortality rate growth trajectories and the latent growth mixture modeling utilized to cluster them. According to non-linear LGM, the overall mortality rate of RTAs showed a decrease from 2007 to 2010 followed by an increase from 2010 to 2013. The HDI covariate had a significant negative and positive effect on intercept and slope of the LGM, respectively. The extracted mixture model appeared to have seven classes with different trends in RTA mortality rates. The worldwide countries were clustered into seven classes. Further studies on each of the seven classes are suggested to provide recommendations for reducing the mortality rate of the RTAs. Additionally, increasing HDI in some countries could have a significant effect on reducing the RTA death rates.

]]>
<![CDATA[The optical and biological properties of glacial meltwater in an Antarctic fjord]]> https://www.researchpad.co/article/5c648cc0d5eed0c484c816dd

As the Western Antarctic Peninsula (WAP) region responds to a warmer climate, the impacts of glacial meltwater on the Southern Ocean are expected to intensify. The Antarctic Peninsula fjord system offers an ideal system to understand meltwater’s properties, providing an extreme in the meltwater’s spatial gradient from the glacio-marine boundary to the WAP continental shelf. Glacial meltwater discharge in Arctic and Greenland fjords is typically characterized as relatively lower temperature, fresh and with high turbidity. During two cruises conducted in December 2015 and April 2016 in Andvord Bay, we found a water lens of low salinity and low temperature along the glacio-marine interface. Oxygen isotope ratios identified this water lens as a mixture of glacial ice and deep water in Gerlache Strait suggesting this is glacial meltwater. Conventional hydrographic measurements were combined with optical properties to effectively quantify its spatial extent. Fine suspended sediments associated with meltwater (nanoparticles of ~ 5nm) had a significant impact on the underwater light field and enabled the detection of meltwater characteristics and spatial distribution. In this study, we illustrate that glacial meltwater in Andvord Bay alters the inherent and apparent optical properties of the water column, and develop statistical models to predict the meltwater content from hydrographic and optical measurements. The predicted meltwater fraction is in good agreement with in-situ values. These models offer a potential for remote sensing and high-resolution detection of glacial meltwater in Antarctic waters. Furthermore, the possible influence of meltwater on phytoplankton abundance in the surface is highlighted; a significant correlation is found between meltwater fraction and chlorophyll concentration.

]]>
<![CDATA[Aggregation and interfacial phenomenon of amphiphilic drug under the influence of pharmaceutical excipients (green/biocompatible gemini surfactant)]]> https://www.researchpad.co/article/5c648cbcd5eed0c484c81680

In the current study, we have examined the interaction amongst an antidepressant drug amitriptyline hydrochloride (AMH) and ethane-1, 2-diyl bis(N,N-dimethyl-N-cetylammoniumacetoxy) dichloride (16-E2-16, a green gemini surfactant) through tensiometric and fluorimetric techniques in aqueous/electrolyte/urea solutions. Significant variations are observed in the various evaluated parameters in the present study. Gemini 16-E2-16 has outstanding surface properties along with a much lower cmc value, demonstrating very little toxicity as well as considerable antimicrobial activity. The cmc values of mixtures decrease through increase in mole fraction (α1) of 16-E2-16, which specifies the nonideality of the solution mixtures, along with demonstrating the occurrence of mixed micellization too. Negative βRub values signify on the whole attractive force of interaction between constituents of mixed micelles. Owing to the incidence of electrolyte NaCl (50 mmol.kg–1), lowering of the micelles’ surface charge happens, resulting in aggregation taking place at lower concentration while the presence of urea (NH2CONH2) halts micellization taking place, which means the cmc value increases in the attendance of urea. The ΔGmo values for all systems were negative along with the presence of electrolyte/urea. The excess free energy (Gex) of studied mixed systems was also estimated and found to be negative for all the systems. Using the fluorescence quenching method, the micelle aggregation number (Nagg) was evaluated and it was found that the contribution of gemini surfactant was always more than that of the AMH and their value enhances in the existence of electrolyte while decreasing in the attendance of NH2CONH2 in the system. In addition, other fluorescence parameters such as micropolarity (I1/I3), dielectric constant (Dexp) as well as Stern–Volmer binding constants (Ksv) of mixed systems were evaluated and the results showed the synergistic performance of the AMH + 16-E2-16 mixtures. Along with tensiometric and fluorimetric techniques, FT-IR spectroscopy was also engaged to reveal the interaction among constituents.

]]>
<![CDATA[Flow cytometry, a powerful novel tool to rapidly assess bacterial viability in metal working fluids: Proof-of-principle]]> https://www.researchpad.co/article/5c5df33bd5eed0c484580f75

Metalworking fluids (MWF) are water- or oil-based liquids to cool and lubricate tools, work pieces and machines, inhibit corrosion and remove swarf. One of the major problems in the MWF industry is bacterial growth as bacterial enzymes can cause MWF degradation. In addition, bacteria can form biofilms which hamper the functioning of machines. Last but not least, some bacterial by-products are toxic (e.g. endotoxins) and present potential health risks for metalworking machine operators via the formation of aerosols. Therefore, a novel fast yet accurate analytical method to evaluate and predict the antibacterial capacity of MWF would be an important asset. As such a tool is currently lacking, the present study aimed to develop a protocol based on flow cytometry (FCM) to assess the antibacterial potential of newly developed MWF independent of bacterial growth. Results of this novel method were compared to a biochallenge test currently used in MWF industry and also to traditional plate counts. Our results represent a proof-of-principle that FCM can reliably predict the antibacterial capacity of MWF already within one day of incubation with Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Proteus mirabilis, being substantially faster than the current growth-based methods.

]]>
<![CDATA[A comparison of emulsion stability for different OSA-modified waxy maize emulsifiers: Granules, dissolved starch, and non-solvent precipitates]]> https://www.researchpad.co/article/5c648d0bd5eed0c484c81df8

This work investigates the stability of emulsions prepared by using octenyl succinic anhydride (OSA)-modified waxy maize starch in the form of granules, dissolved starch, and non-solvent precipitated starch as Pickering emulsion stabilisers. The aim of this study was to investigate the effects of different forms of starches on the stability of emulsion using light microscopy, light scattering, and static multiple light scattering. All starch samples were hydrophobically modified with 3% (w/w) n-octenyl succinyl anhydride (OSA). Starch polymer solutions were prepared by dissolving OSA- modified starch in water in an autoclave at 140°C. Non-solvent precipitates were obtained through ethanol precipitation of dissolved waxy maize. The stability of the oil/water emulsions were different for the three forms of starches used. The granule-based emulsions were unstable, with only a small proportion of the granules adsorbed onto oil droplets, as viewed under a light microscope. The emulsions were observed to cream after 2 hours. The dissolved starch and non-solvent precipitate-based emulsions were stable towards creaming for months, and they had almost 100% emulsifying index (EI = 1) by visual observation and EI ~ 0.9 by multiple light scattering measurements. The results from light microscopy and multiple light scattering measurements indicated the occurrence of coalescence for all three types of emulsions. The coalescence was fastest within days for the granule stabilised system while it was slower both for the dissolved starch and non-solvent precipitate-based emulsions. The latter demonstrated the least degree of coalescence over time. Thus, it was concluded that differences in starch particle size and molecular structure influenced the emulsion droplet size and stability. A decreased particle size correlates to a decrease in droplet size, thus increasing stabilisation against creaming. However, stability towards coalescence was low for the large granules but was best for the non-solvent precipitate starch indicating that there is a window of optimal particle size for stability. Thus, best emulsifying properties were obtained with the non-solvent precipitates (~ 120 nm particle size) where the emulsions remained stable after one year of storage. In conclusion, this study illustrated the potentiality of non-solvent precipitated starch as emulsion stabilizers.

]]>
<![CDATA[Prevention of tooth extraction-triggered bisphosphonate-related osteonecrosis of the jaws with basic fibroblast growth factor: An experimental study in rats]]> https://www.researchpad.co/article/5c67306cd5eed0c484f37ad3

Osteonecrosis of the jaw induced by administration of bisphosphonates (BPs), BP-related osteonecrosis (BRONJ), typically develops after tooth extraction and is medically challenging. As BPs inhibit oral mucosal cell growth, we hypothesized that suppression of the wound healing-inhibiting effects could prevent BRONJ onset after tooth extraction. Since basic fibroblast growth factor (bFGF) promotes wound healing, but has a short half-life, we examined whether the initiation of BRONJ could be prevented by applying a bFGF-containing gelatin hydrogel over the extraction sockets of BRONJ model rats. Forty-three rats, received two intravenous injections of zoledronic acid 60 μg/kg, once per week for a period of 2 weeks, underwent extraction of a unilateral lower first molar. The rats here were randomly assigned to the bFGF group (n = 15 rats, gelatin hydrogel sheets with incorporated bFGF applied over the sockets); the phosphate-buffered saline (PBS) group (n = 14 rats, gelatin hydrogel sheets without bFGF applied over the sockets); or the control group (n = 14 rats, nothing applied over the sockets). One rat in the bFGF group was sacrificed immediately after tooth extraction. Twenty-one rats were sacrificed at 3 weeks, and the remaining 21 rats were sacrificed at 8 weeks after tooth extractions. The harvested mandibles were analyzed using micro-computed tomography and sections were evaluated qualitatively for mucosal disruption and osteonecrosis. The incidence of osteonecrosis at 8 weeks after tooth extraction was 0% in the bFGF group, 100% in the PBS group, and 85.7% in the control group. The frequency of complete coverage of the extraction socket by mucosal tissue was significantly greater in the bFGF group than in the other groups. These results suggest that application of bFGF in the extraction socket promoted socket healing, which prevented BRONJ development. The growth-stimulating effects of bFGF may have offset the inhibition of wound healing by BP.

]]>
<![CDATA[Correlating exhaled aerosol images to small airway obstructive diseases: A study with dynamic mode decomposition and machine learning]]> https://www.researchpad.co/article/5c5ca307d5eed0c48441f020

Background

Exhaled aerosols from lungs have unique patterns, and their variation can be correlated to the underlying lung structure and associated abnormities. However, it is challenging to characterize such aerosol patterns and differentiate their difference because of their complexity. This challenge is even greater for small airway diseases, where the disturbance signals are weak.

Objectives and methods

The objective of this study is exploiting different feature extraction algorithms to develop a practical classifier to diagnose obstructive lung diseases using exhaled aerosol images. These include proper orthogonal decomposition (POD), principal component analysis (PCA), dynamic mode decomposition (DMD), and DMD with control (DMDC). Aerosol images were generated via physiology-based simulations in one normal and four diseased airway models in G7-9 bronchioles. The image data were classified using both the support vector machine (SVM) and random forest (RF) algorithms. The effectiveness of different features was evaluated by classification accuracy and misclassification rate.

Findings

Results show a significantly higher performance using dynamic feature extractions (DMD and DMDC) than static algorithms (POD and PCA). Adding the control variables to DMD further improved classification accuracy. Comparing the classification methods, RF persistently outperformed SVM for all types of features considered. While the performance of RF constantly increased with the number of features retained, the performance of SVM peaked at 50 and decreased thereafter. The 5-class classification accuracy was 94.8% using the DMDC-RF model and 93.0% using the DMD-RF model, both of which were higher than 87.0% in the previous study that used fractal dimension features.

Conclusion

Considering that disease progression is inherently a dynamic process, DMD(C)-based feature extraction preserves temporal information and is preferred over POD and PCA. Compared with hand-crafted features like fractals, feature extraction by DMD and DMDC is automatic and more accurate.

]]>
<![CDATA[Spores of puffball fungus Lycoperdon pyriforme as a reference standard of stable monodisperse aerosol for calibration of optical instruments]]> https://www.researchpad.co/article/5c5b528ad5eed0c4842bcb24

Advanced air quality control requires real-time monitoring of particulate matter size and concentration, which can only be done using optical instruments. However, such techniques need regular calibration with reference samples. In this study, we suggest that puffball fungus (Lycoperdon pyriforme) spores can be utilized as a reference standard having a monodisperse size distribution. We compare the Lycoperdon pyriforme spores with the other commonly used reference samples, such as Al2O3 powder and polystyrene latex (PSL) microspheres. Here we demonstrate that the puffball spores do not coagulate and, thus, maintain the same particle size in the aerosol state for at least 15 minutes, which is enough for instrument calibration. Moreover, the puffball mushrooms can be stored for several years and no agglomeration of the spores occurs. They are also much cheaper than other calibration samples and no additional devices are needed for aerosol generation since the fungal fruiting body acts as an atomizer itself. The aforementioned features make the fungal spores a highly promising substance for calibration and validation of particle size analyzers, which outperforms the existing, artificially produced particles for aerosol sampling. Furthermore, the L. pyriforme spores are convenient for basic research and development of new optical measurement techniques, taking into account their uniform particle size and absent coagulation in the aerosol.

]]>
<![CDATA[Preparation and characterization of size-controlled glioma spheroids using agarose hydrogel microwells]]> https://www.researchpad.co/article/5c536990d5eed0c484a45f62

Treatment of glioblastoma, the most common and aggressive type of primary brain tumors, is a major medical challenge and the development of new alternatives requires simple yet realistic models for these tumors. In vitro spheroid models offer attractive platforms to mimic the tumor behavior in vivo and have thus, been increasingly applied for assessment of drug efficacy in various tumors. The aim of this study was to produce and characterize size-controlled U251 glioma spheroids towards application in glioma drug evaluation studies. To this end, we fabricated agarose hydrogel microwells with cylindrical shape and diameters of 70–700 μm and applied these wells without any surface modification for glioma spheroid formation. The resultant spheroids were homogeneous in size and shape, exhibited high cell viability (> 90%), and had a similar growth rate to that of natural brain tumors. The final size of spheroids depended on cell seeding density and microwell size. The spheroids’ volume increased linearly with the cell seeding density and the rate of this change increased with the well size. Lastly, we tested the therapeutic effect of an anti-cancer drug, Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) on the resultant glioma spheroids and demonstrated the applicability of this spheroid model for drug efficacy studies.

]]>
<![CDATA[Injectable polypeptide hydrogel/inorganic nanoparticle composites for bone tissue engineering]]> https://www.researchpad.co/article/5c40f7a7d5eed0c48438653b

The general concept of tissue engineering is to restore biological function by replacing defective tissues with implantable, biocompatible, and easily handleable cell-laden scaffolds. In this study, osteoinductive and osteoconductive super paramagnetic Fe3O4 nanoparticles (MNP) and hydroxyapatite (HAP) nanoparticles were incorporated into a di-block copolymer based thermo-responsive hydrogel, methoxy(polyethylene glycol)-polyalanine (mPA), at various concentrations to afford composite, injectable hydrogels. Incorporating nanoparticles into the thermo-responsive hydrogel increased the complex viscosity and decreased the gelation temperature of the starting hydrogel. Functionally, the integration of inorganic nanoparticles modulated bio-markers of bone differentiation and enhanced bone mineralization. Moreover, this study adopted the emerging method of using either a supplementary static magnetic field (SMF) or a moving magnetic field to elicit biological response. These results demonstrate that combining external (magnet) and internal (scaffold) magnetisms is a promising approach for bone regeneration.

]]>
<![CDATA[Diagnosis of bacterial meningitis in Ghana: Polymerase chain reaction versus latex agglutination methods]]> https://www.researchpad.co/article/5c6059efd5eed0c4847cc4c7

Bacterial meningitis is a public health crisis in the northern part of Ghana, where it contributes to very high mortality and morbidity rates. Early detection of the causative organism will lead to better management and effective treatment. Our aim was to evaluate the diagnostic accuracy of Pastorex and Wellcogen latex agglutination tests for the detection of bacterial meningitis in a resource-limited setting. CSF samples from 330 suspected meningitis patients within the northern zone of Ghana were analysed for bacterial agents at the zonal Public Health Reference Laboratory in Tamale using polymerase chain reaction (PCR) and two latex agglutination test kits; Pastorex and Wellcogen. The overall positivity rate of samples tested for bacterial meningitis was 46.4%. Streptococcus pneumoniae was the most common cause of bacterial meningitis within the sub-region, with positivity rate of 25.2%, 28.2% and 28.8% when diagnosed using Wellcogen, Pastorex and PCR respectively. The Pastorex method was 97.4% sensitive while the Wellcogen technique was 87.6% sensitive. Both techniques however produced the same specificity of 99.4%. Our study revealed that the Pastorex method has a better diagnostic value for bacterial meningitis than the Wellcogen method and should be the method of choice in the absence of PCR.

]]>
<![CDATA[Measurement of micronutrient deficiency associated biomarkers in dried blood spots using a multiplexed immunoarray]]> https://www.researchpad.co/article/5c3e5046d5eed0c484d7faf6

Simplifying blood collection is often critical when collecting specimens in remote and/or austere settings. The use of dried blood spots (DBS) offers a practical collection method suitable for a wide variety of analytes. A small volume of whole blood can be obtained rapidly through a minimally invasive heel- or finger-stick using a disposable safety lancet. Once dried, the samples require no further processing, are stable for months or longer, pose minimal risk of disease transmission, and are easy to ship. DBS are often used in demographic health surveys to assess infectious disease status in vulnerable populations. These samples can be used to screen biomarkers of micronutrient deficiency (MND) and inflammation. We recently described a multiplexed immunoarray, the Q-plex human micronutrient array, which can simultaneously quantify seven biomarkers related to MND, inflammation and malarial antigenemia using plasma (alpha-1-acid glycoprotein, C-reactive protein, ferritin, histidine-rich protein 2, retinol binding protein, soluble transferrin receptor, and thyroglobulin). In this work, we present a protocol for preparing eluates from DBS samples and their measurement using a modified protocol for this new tool. We evaluated the concordance of analyte concentrations (excluding ferritin) from a panel ninety samples of DBS prepared from anticoagulated venous blood and paired K2-EDTA plasma. The results show high correlation between DBS eluates and wet plasma for five of the six analytes screened, suggesting the Q-plex human micronutrient array can be used with DBS samples, but also highlighting that anticoagulants can have a negative effects on some test components.

]]>