ResearchPad - modes-of-reproduction https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Differential migration in Chesapeake Bay striped bass]]> https://www.researchpad.co/article/elastic_article_14625 Differential migration—increased migration propensity with increasing individual size—is common in migratory species. Like other forms of partial migration, it provides spatial buffering against regional differences in habitat quality and sources of mortality. We investigated differential migration and its consequences to survival and reproductive patterns in striped bass, a species with well-known plasticity in migration behaviors. A size-stratified sample of Potomac River (Chesapeake Bay) Morone saxatilis striped bass was implanted with acoustic transmitters and their subsequent coastal shelf migrations recorded over a 4-yr period by telemetry receivers throughout the Mid-Atlantic Bight and Southern New England. A generalized linear mixed model predicted that ≥ 50% of both males and females depart the Chesapeake Bay at large sizes >80 cm total length. Egressing striped bass exited through both the Chesapeake Bay mouth and Delaware Bay (via the Chesapeake and Delaware Canal), favoring the former. All large fish migrated to Massachusetts shelf waters and in subsequent years repeatedly returned to regions within Massachusetts and Cape Cod Bays. Within this dominant behavior, minority behaviors included straying, skipped spawning, and residency by large individuals (those expected to migrate). Analysis of the last day of transmission indicated that small resident striped bass experienced nearly 2-fold higher loss rates (70% yr-1) than coastal shelf emigrants (37% yr-1). The study confirmed expectations for a threshold size at emigration and different mortality levels between Chesapeake Bay (resident) and ocean (migratory) population contingents; and supported the central premise of the current assessment and management framework of a two-contingent population: smaller Chesapeake Bay residents and a larger ocean contingent. An improved understanding of differential migration thus affords an opportunity to specify stock assessments according to different population sub-components, and tailor reference points and control rules between regions and fishing stakeholder groups.

]]>
<![CDATA[Reproductive life-history strategies in a species-rich assemblage of Amazonian electric fishes]]> https://www.researchpad.co/article/N810c6abb-a507-4d5b-89ae-f4ccddeb69e1

The reproductive biology of only a small fraction of Neotropical freshwater fishes has been described, and detailed comparative studies of reproductive life-history variation in the Neotropical ichthyofauna are lacking. Here we describe interspecific variation in reproductive life history for a multi-species assemblage of the electric knifefish genus Brachyhypopomus (Hypopomidae: Gymnotiformes: Ostariophysi) from Amazonian floodplain and terra firme stream systems. During a year-round quantitative sampling program, we collected and measured key life-history traits from 3,410 individuals. Based on oocyte size distributions, and on circannual variation in gonadosomatic indices, hepatosomatic indices, and capture-per-unit-effort abundance of reproductive adults, we concluded that all species exhibit a single protracted annual breeding season during which females spawn fractionally. We found small clusters of post-larval individuals in one floodplain species and one terra firme stream species, but no signs of parental care. From analyses of body size-frequency distributions and otolith growth increments, we concluded that five species in our study area have approximately one-year (annual) semelparous life history with a single reproductive period followed by death, while two species have a two-year iteroparous life history, with breeding in both year-groups. Despite predictions from life-history theory we found no salient correlations between life history strategy (semelparity or iteroparity) and habitat occupancy (floodplain or terra firme stream). In the iteroparous species B. beebei, we documented evidence for reproductive restraint in the first breeding season relative to the second breeding season and argue that this is consistent with age-regulated terminal investment.

]]>
<![CDATA[Population density and temperature correlate with long-term trends in somatic growth rates and maturation schedules of herring and sprat]]> https://www.researchpad.co/article/5c89775ed5eed0c4847d2b47

We examine long-term trends in the average growth rates and maturation schedules of herring and sprat populations using survey data collected from the North Sea and west of Scotland since the 1960s and 1980s respectively. Otolith age data and maturity data are used to calculate time series of mean lengths at age, von Bertalanffy growth parameters, and probabilistic maturation reaction norms. As the growth and maturation of fish is known to be influenced by temperature and stock abundances, we account for these variables using Generalised Additive Models. Each of the herring populations displayed either steady declines in mean length across multiple age groups, or declines in length followed years later by some recovery. Depending on region, lengths at age of sprat increased or decreased over time. Varying temporal trends in maturation propensity at age and length were observed across herring populations. Many of the trends in growth rate and maturation were correlated to population abundance and/or temperature. In general, abundance is shown to be negatively correlated to growth rates in herring and sprat, and positively correlated with maturation propensity in herring. Temperature is also shown to be correlated to growth and maturation, and although the effect is consistent within species, the temperature effects differ between herring and sprat. This study provides detailed information about long-term trends in growth and maturation, which is lacking for some of these pelagic stocks, especially in the west of Scotland.

]]>
<![CDATA[Breeding behavior in the blind Mexican cavefish and its river-dwelling conspecific]]> https://www.researchpad.co/article/5c76fe22d5eed0c484e5b593

Fish reproductive patterns are very diverse in terms of breeding frequency, mating system, sexual dimorphisms and selection, mate choice, spawning site choice, courtship patterns, spawning behaviors and parental care. Here we have compared the breeding behavior of the surface-dwelling and cave-dwelling morphs of the characiform A. mexicanus, with the goals of documenting the spawning behavior in this emerging model organism, its possible evolution after cave colonization, and the sensory modalities involved. Using infrared video recordings, we showed that cave and surface Astyanax spawning behavior is identical, occurs in the dark, and can be divided into 5 rapid phases repeated many times, about once per minute, during spawning sessions which last about one hour and involve one female and several males. Such features may constitute “pre-adaptive traits” which have facilitated fish survival after cave colonization, and may also explain how the two morphs can hybridize in the wild and in the laboratory. Accordingly, cross-breeding experiments involving females of one morphotype and males of the other morphotype showed the same behavior including the same five phases. However, breeding between cavefish females and surface fish males was more frequent than the reverse. Finally, cavefish female pheromonal solution was able to trigger strong behavioral responses in cavefish males–but not on surface fish males. Lastly, egg production seemed higher in surface fish females than in cavefish females. These results are discussed with regards to the sensory modalities involved in triggering reproductive behavior in the two morphs, as well as its possible ongoing evolution.

]]>
<![CDATA[High spatio-temporal variability in Acroporidae settlement to inshore reefs of the Great Barrier Reef]]> https://www.researchpad.co/article/5c5b52e4d5eed0c4842bd212

Recovery of coral reefs after disturbance relies heavily on replenishment through successful larval settlement and their subsequent survival. As part of an integrated study to determine the potential effects of water quality changes on the resilience of inshore coral communities, scleractinian coral settlement was monitored between 2006 and 2012 at 12 reefs within the inshore Great Barrier Reef. Settlement patterns were only analysed for the family Acroporidae, which represented the majority (84%) of settled larvae. Settlement of Acroporidae to terracotta tiles averaged 0.11 cm-2, representing 34 ± 31.01 (mean ± SD) spat per tile, indicating an abundant supply of competent larvae to the study reefs. Settlement was highly variable among reefs and between years. Differences in settlement among locations partly corresponded to the local cover of adult Acroporidae, while substantial reductions in Acroporidae cover caused by tropical cyclones and floods resulted in a clear reduction in settlement. Much of the observed variability remained unexplained, although likely included variability in both connectivity to, and the fecundity of, adult Acroporidae. The responsiveness of settlement patterns to the decline in Acroporidae cover across all four regions indicates the importance of supply and connectivity, and the vulnerability towards region-wide disturbance. High spatial and temporal variability, in addition to the resource-intensive nature of sampling with settlement tiles, highlights the logistical difficulty of determining coral settlement over large spatial and temporal scales.

]]>
<![CDATA[Role of freshwater floodplain-tidal slough complex in the persistence of the endangered delta smelt]]> https://www.researchpad.co/article/5c3667e8d5eed0c4841a68a4

Seasonal floodplain wetland is one of the most variable and diverse habitats found in coastal ecosystems, yet it is also one of the most highly altered by humans. The Yolo Bypass, the primary floodplain of the Sacramento River in California’s Central Valley, USA, has been shown to provide various benefits to native fishes when inundated. However, the Yolo Bypass exists as a tidal dead-end slough during dry periods and its value to native fishes has been less studied in this state. During the recent drought (2012–2016), we found higher abundance of the endangered Delta Smelt (Hypomesus transpacificus), than the previous 14 years of fish monitoring within the Yolo Bypass. Meanwhile, Delta Smelt abundance elsewhere in the estuary was at record lows during this time. To determine the value of the Yolo Bypass as a nursery habitat for Delta Smelt, we compared growth, hatch dates, and diets of juvenile Delta Smelt collected within the Yolo Bypass with fish collected among other putative nursery habitats in the San Francisco Estuary between 2010 and 2016. Our results indicated that when compared to other areas of the estuary, fish in the Yolo Bypass spawned earlier, and offspring experienced both higher quality feeding conditions and growth rates. The occurrence of healthy juvenile Delta Smelt in the Yolo Bypass suggested that the region may have acted as a refuge for the species during the drought years of 2012–2016. However, our results also demonstrated that no single region provided the best rearing habitat for juvenile Delta Smelt. It will likely require a mosaic of habitats that incorporates floodplain-tidal sloughs in order to promote the resilience of this declining estuarine fish species.

]]>
<![CDATA[Effect of larval swimming in the western North Pacific subtropical gyre on the recruitment success of the Japanese eel]]> https://www.researchpad.co/article/5c25451cd5eed0c48442bed3

The possible effect of directional larval swimming on the recruitment success of the Japanese eel, Anguilla japonica, was examined with a three-dimensional particle-tracking ocean circulation model using horizontal northwestward swimming and diel vertical migration (DVM). Four separate experiments included virtual larvae (v-larvae) movement from the spawning area over 290 days (total migration) and 160 days (stage A), from the STCC eddy region in 70 days (stage B), and from the origin of the Kuroshio in 60 days (stage C) to evaluate the effect of directional swimming and DVM compared to simple drifting. Passive or random swimming were not the most effective strategies for larvae dispersing from the spawning area because most v-larvae remained south of 20°N without entering the Kuroshio. Northwestward swimming resulted in wider dispersion and a better chance of successful recruitment, with v-larvae becoming widely distributed in the STCC eddy zone, arriving at the east coast of the Philippines (stage A), escaping the STCC eddy area and reaching the Kuroshio (stage B), and crossing the Kuroshio into the East China Sea shelf (stage C). DVM slightly shortened the migration period due to faster shallow layer ocean currents during nighttime. The NEC transported non-swimming v-larvae westward to the Kuroshio and occasionally northward into the Subtropical Countercurrent (STCC) area where eddies transported v-larvae westward into the Kuroshio, but less than with swimming. Directional swimming increased recruitment success, northwestward swimming was more effective than other directions, and a slower swimming speed was still better than no/random swimming in sensitivity tests. The present study demonstrated a first view of the possibility that Japanese eel larvae might be able to use a strategy of single-direction swimming to increase arrival at their recruitment areas.

]]>
<![CDATA[Assessing impact of exogenous features on biotic phenomena in the presence of strong spatial dependence: A lake sturgeon case study in natural stream settings]]> https://www.researchpad.co/article/5c117b3dd5eed0c4846985fd

Modeling spatially explicit data provides a powerful approach to identify the effects of exogenous features associated with biological processes, including recruitment of stream fishes. However, the complex spatial and temporal dynamics of the stream and the species’ reproductive and early life stage behaviors present challenges to drawing valid inference using traditional regression models. In these settings it is often difficult to ensure the spatial independence among model residuals—a key assumption that must be met to ensure valid inference. We present statistical models capable of capturing complex residual anisotropic patterns through the addition of spatial random effects within an inferential framework that acknowledges uncertainty in the data and parameters. Proposed models are used to explore the impact of environmental variables on Lake sturgeon (Acipenser fulvescens) reproduction, particularly questions about patterns in egg deposition. Our results demonstrate the need to apply valid statistical methods to identify relationships between response variables, e.g., egg counts, across locations, and environmental covariates in the presence of strong and anisotropic autocorrelation in stream systems. The models may be applied to other settings where gamete distribution or, more generally, other biotic phenomena may be associated with spatially dynamic and anisotropic processes.

]]>
<![CDATA[Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula)]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdc9d8

To overcome environmental stress, plants develop physiological responses that are triggered by genetic or epigenetic changes, some of which involve DNA methylation. It has been proposed that apomixis, the formation of asexual seeds without meiosis, occurs through the temporal or spatial deregulation of the sexual process mediated by genetic and epigenetic factors influenced by the environment. Here, we explored whether there was a link between the occurrence of apomixis and various factors that generate stress, including drought stress, in vitro culture, and intraspecific hybridization. For this purpose, we monitored the embryo sacs of different weeping lovegrass (Eragrostis curvula [Schrad.] Nees) genotypes after the plants were subjected to these stress conditions. Progeny tests based on molecular markers and genome methylation status were analyzed following the stress treatment. When grown in the greenhouse, the cultivar Tanganyika INTA generated less than 2% of its progeny by sexual reproduction. Plants of this cultivar subjected to different stresses showed an increase of sexual embryo sacs, demonstrating an increased expression of sexuality compared to control plants. Plants of the cv. Tanganyika USDA did not demonstrate the ability to generate sexual embryo sacs under any conditions and is therefore classified as a fully apomictic cultivar. We found that this change in the prevalence of sexuality was correlated with genetic and epigenetic changes analyzed by MSAP and AFLPs profiles. Our results demonstrate that different stress conditions can alter the expression of sexual reproduction in facultative tetraploid apomictic cultivars and when the stress stops the reproductive mode shift back to the apomixis original level. These data together with previous observations allow us to generate a hypothetical model of the regulation of apomixis in weeping lovegrass in which the genetic/s region/s that condition apomixis, is/are affected by ploidy, and is/are subjected to epigenetic control.

]]>
<![CDATA[Timing and locations of reef fish spawning off the southeastern United States]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbd75

Managed reef fish in the Atlantic Ocean of the southeastern United States (SEUS) support a multi-billion dollar industry. There is a broad interest in locating and protecting spawning fish from harvest, to enhance productivity and reduce the potential for overfishing. We assessed spatiotemporal cues for spawning for six species from four reef fish families, using data on individual spawning condition collected by over three decades of regional fishery-independent reef fish surveys, combined with a series of predictors derived from bathymetric features. We quantified the size of spawning areas used by reef fish across many years and identified several multispecies spawning locations. We quantitatively identified cues for peak spawning and generated predictive maps for Gray Triggerfish (Balistes capriscus), White Grunt (Haemulon plumierii), Red Snapper (Lutjanus campechanus), Vermilion Snapper (Rhomboplites aurorubens), Black Sea Bass (Centropristis striata), and Scamp (Mycteroperca phenax). For example, Red Snapper peak spawning was predicted in 24.7–29.0°C water prior to the new moon at locations with high curvature in the 24–30 m depth range off northeast Florida during June and July. External validation using scientific and fishery-dependent data collections strongly supported the predictive utility of our models. We identified locations where reconfiguration or expansion of existing marine protected areas would protect spawning reef fish. We recommend increased sampling off southern Florida (south of 27° N), during winter months, and in high-relief, high current habitats to improve our understanding of timing and location of reef fish spawning off the southeastern United States.

]]>
<![CDATA[Do the Brazilian sardine commercial landings respond to local ocean circulation?]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf6bd

It has been reported that sea surface temperature (SST) anomalies, flow intensity and mesoscale ocean processes, all affect sardine production, both in eastern and western boundary current systems. Here we tested the hypothesis whether extreme high and low commercial landings of the Brazilian sardine fisheries in the South Brazil Bight (SBB) are sensitive to different oceanic conditions. An ocean model (ROMS) and an individual based model (Ichthyop) were used to assess the relationship between oceanic conditions during the spawning season and commercial landings of the Brazilian sardine one year later. Model output was compared with remote sensing and analysis data showing good consistency. Simulations indicate that mortality of eggs and larvae by low temperature prior to maximum and minimum landings are significantly higher than mortality caused by offshore advection. However, when periods of maximum and minimum sardine landings are compared with respect to these causes of mortality no significant differences were detected. Results indicate that mortality caused by prevailing oceanic conditions at early life stages alone can not be invoked to explain the observed extreme commercial landings of the Brazilian sardine. Likely influencing factors include starvation and predation interacting with the strategy of spawning “at the right place and at the right time”.

]]>
<![CDATA[De novo sequencing and comparative analysis of testicular transcriptome from different reproductive phases in freshwater spotted snakehead Channa punctatus]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc63e

The spotted snakehead Channa punctatus is a seasonally breeding teleost widely distributed in the Indian subcontinent and economically important due to high nutritional value. The declining population of C. punctatus prompted us to focus on genetic regulation of its reproduction. The present study carried out de novo testicular transcriptome sequencing during the four reproductive phases and correlated differential expression of transcripts with various testicular events in C. punctatus. The Illumina paired-end sequencing of testicular transcriptome from resting, preparatory, spawning and postspawning phases generated 41.94, 47.51, 61.81 and 44.45 million reads, and 105526, 105169, 122964 and 106544 transcripts, respectively. Transcripts annotated using Rattus norvegicus reference protein sequences and classified under various subcategories of biological process, molecular function and cellular component showed that the majority of the subcategories had highest number of transcripts during spawning phase. In addition, analysis of transcripts exhibiting differential expression during the four phases revealed an appreciable increase in upregulated transcripts of biological processes such as cell proliferation and differentiation, cytoskeleton organization, response to vitamin A, transcription and translation, regulation of angiogenesis and response to hypoxia during spermatogenically active phases. The study also identified significant differential expression of transcripts relevant to spermatogenesis (mgat3, nqo1, hes2, rgs4, cxcl2, alcam, agmat), steroidogenesis (star, tkt, gipc3), cell proliferation (eef1a2, btg3, pif1, myo16, grik3, trim39, plbd1), cytoskeletal organization (espn, wipf3, cd276), sperm development (klhl10, mast1, hspa1a, slc6a1, ros1, foxj1, hipk1), and sperm transport and motility (hint1, muc13). Analysis of functional annotation and differential expression of testicular transcripts depending on reproductive phases of C. punctatus helped in developing a comprehensive understanding on genetic regulation of spermatogenic and steroidogenic events in seasonally breeding teleosts. Our findings provide the basis for future investigation on the precise role of testicular genes in regulation of seasonal reproduction in male teleosts.

]]>
<![CDATA[Early Life History of the ‘Irukandji’ Jellyfish Carukia barnesi]]> https://www.researchpad.co/article/5989dae8ab0ee8fa60bbe1af

Adult medusae of Carukia barnesi were collected near Double Island, North Queensland Australia. From 73 specimens, 8 males and 15 females spawned under laboratory conditions. These gametes were artificially mixed which resulted in fertilized eggs. Post fertilization, most eggs developed to an encapsulated planula stage and then paused for between six days and six months prior to hatching as ciliated planulae. The paused stage planulae were negatively buoyant and adhered to substrate. The first planula was produced six days post fertilization, lacked larval ocelli, remained stationary, or moved very slowly for two days prior to metamorphosis into primary polyps. Mature polyps reproduced through asexual reproduction via lateral budding producing ciliated swimming polyps, which in turn settled and developed into secondary polyps. Medusae production for this species was in the form of monodisc strobilation, which left behind polyps able to continue asexual reproduction.

]]>
<![CDATA[Temporal and spatial comparisons of the reproductive biology of northern Gulf of Mexico (USA) red snapper (Lutjanus campechanus) collected a decade apart]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc8d2

In studies done a decade apart, we provide evidence of a recent shift toward a slower progression to sexual maturity as well as reduced egg production, especially among young, small female red snapper, in the Gulf of Mexico (Gulf). Slower maturation rates (among fish ≤6 years old), lower GSI values and decreased spawning frequency were observed, and were especially pronounced in the northwestern Gulf. Furthermore, an Index of Reproductive Importance showed that young fish (ages 2–7) are contributing far less to the spawning stock in recent years, while older fish (>8 years) are contributing more, when compared to fish from the same age groups sampled in the previous decade. Coincident with these changes in reproductive output, fishing pressure has steadily declined gulf-wide, and spawning stock biomass and spawning potential ratio have increased. Thus, it is possible that the age structure of the red snapper stock is becoming less truncated, or that reproductive effort observed is due to the temporary influence of recent strong year classes produced in 2004 and 2006 as they begin to reach full reproductive potential. If the latter is true, careful documentation of the stock’s reproductive dynamics during a time of population growth provides new understanding at the meta-population spatial and decadal temporal scales. In contrast, if the former is true, a truncated age structure due to overharvest can limit the productivity of the Gulf red snapper stock. In addition, we have learned that red snapper females in the northwestern Gulf collected on natural reefs and banks have much higher reproductive output than those on artificial reefs in the form of standing and toppled oil and gas platforms, thus making the need to know the relative abundance of females found on these disparate habitats an important next step toward better-understanding factors impacting the reproductive dynamics of this species.

]]>
<![CDATA[Reproductive Allocation in Three Macrophyte Species from Different Lakes with Variable Eutrophic Conditions]]> https://www.researchpad.co/article/5989da01ab0ee8fa60b73fd3

Reproductive allocation is a key process in the plant life cycle and aquatic plants exhibit great diversity in their reproductive systems. In the present study, we conduct a field investigation of three aquatic macrophytes: Stuckenia pectinata, Myriophyllum spicatum, and Potamogeton perfoliatus. Our results showed that widespread species, including S. pectinata and M. spicatum had greater plasticity in their allocation patterns in the form of increased sexual and asexual reproduction, and greater potential to set seeds and increase fitness in more eutrophic environments. P. perfoliatus also exhibited a capacity to adopt varied sexual reproductive strategies such as setting more offspring for the future, although only in clear conditions with low nutrient levels. Our results establish strategies and mechanisms of some species for tolerating and surviving in varied eutrophic lake conditions.

]]>
<![CDATA[Hard clam walking: Active horizontal locomotion of adult Mercenaria mercenaria at the sediment surface and behavioral suppression after extensive sampling]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc5c1

Locomotion of infaunal bivalve mollusks primarily consists of vertical movements related to burrowing; horizontal movements have only been reported for a few species. Here, we characterize hard clam walking: active horizontal locomotion of adults (up to 118 mm shell length, SL) of the commercially important species, Mercenaria mercenaria, at the sediment surface—a behavior only briefly noted in the literature. We opportunistically observed walking over a 10-yr period, at 9 different sites in the Peconic Bays, New York, USA, and tested several hypotheses for the underlying cause of this behavior through quantitative field sampling and reproductive analyses. Hard clam walking was exhibited by males and females at equal frequency, predominantly during June/July and October, when clams were in peak spawning condition. Extensive walking behavior appears to be cued by a minimum population density; we suggest it may be mediated by unidentified pheromone(s), infaunal pressure waves and/or other unidentified factors. There was no directionality exhibited by walking clams, but individuals in an area of extensive walking were highly aggregated and walking clams were significantly more likely to move toward a member of the opposite sex. Thus, we conclude that hard clam walking serves to aggregate mature individuals prior to spawning, thereby facilitating greater fertilization success. In the process of investigating this behavior, however, we apparently oversampled one population and reduced clam densities below the estimated minimum threshold density and, in so doing, suppressed extensive walking for a period of >3 years running. This not only reinforces the importance of detailed field investigations of species biology and ecology, even for those that are considered to be well studied, but also highlights the need for greater awareness of the potential for research activities to affect focal species behavior.

]]>
<![CDATA[Spillover of the Atlantic bluefin tuna offspring from cages in the Adriatic Sea: A multidisciplinary approach and assessment]]> https://www.researchpad.co/article/5b468f9c463d7e6084131243

During routine monitoring of commercial purse seine catches in 2011, 87 fingerling specimens of scombrids were collected in the southern Adriatic Sea. Sequencing of the mitochondrial DNA control region locus inferred that specimens belonged to the Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758) (N = 29), bullet tuna, Auxis rochei (Risso, 1810) (N = 30) and little tunny, Euthynnus alletteratus, Rafinesque, 1810 (N = 28). According to previously published growth parameters, the age of the collected specimens was estimated at approximately 30–40 days, suggesting they might have been spawned in the Adriatic Sea, contrary to the current knowledge. A coupled modelling system with hydrodynamic (ROMS) and individual based model (IBM—Ichthyop) was set up to determine the location of the spawning event. Numerical simulations with the IBM model, both backward and forward in time, indicate commercial tuna cages in the middle Adriatic coastal area as possible spawning location. The two other non-commercial species likely opportunistically use the positive environmental (abiotic and biotic) conditions to spawn in the same area.

]]>
<![CDATA[Superclone Expansion, Long-Distance Clonal Dispersal and Local Genetic Structuring in the Coral Pocillopora damicornis Type β in Reunion Island, South Western Indian Ocean]]> https://www.researchpad.co/article/5989db35ab0ee8fa60bd2acd

The scleractinian coral Pocillopora damicornis type β is known to present a mixed reproduction mode: through sexual reproduction, new genotypes are created, while asexual reproduction insures their propagation. In order to investigate the relative proportion of each reproduction mode in P. damicornis type β populations from Reunion Island, Indian Ocean, clonal propagation along the west coast was assessed through four sampling sites with increasing geographical distance between sites. Coral colonies were sampled either exhaustively, randomly or haphazardly within each site, and genotypic diversity was assessed using 13 microsatellite loci over a total of 510 P. damicornis type β determined a posteriori from their mtDNA haplotype (a 840 bp sequenced fragment of the Open Reading Frame). Overall, 47% of all the sampled colonies presented the same multi-locus genotype (MLG), a superclone, suggesting that asexual propagation is extremely important in Reunion Island. Within each site, numerous MLGs were shared by several colonies, suggesting local clonal propagation through fragmentation. Moreover, some of these MLGs were found to be shared among several sites located 40 km apart. While asexual reproduction by fragmentation seems unlikely over long distances, our results suggest a production of parthenogenetic larvae. Despite shared MLGs, two differentiated clusters were enclosed among populations of the west coast of Reunion Island, revealing the necessity to set up appropriate managing strategies at a local scale.

]]>
<![CDATA[The role of density-dependent and –independent processes in spawning habitat selection by salmon in an Arctic riverscape]]> https://www.researchpad.co/article/5989db5cab0ee8fa60bdff5c

Density-dependent (DD) and density-independent (DI) habitat selection is strongly linked to a species’ evolutionary history. Determining the relative importance of each is necessary because declining populations are not always the result of altered DI mechanisms but can often be the result of DD via a reduced carrying capacity. We developed spatially and temporally explicit models throughout the Chena River, Alaska to predict important DI mechanisms that influence Chinook salmon spawning success. We used resource-selection functions to predict suitable spawning habitat based on geomorphic characteristics, a semi-distributed water-and-energy balance hydrologic model to generate stream flow metrics, and modeled stream temperature as a function of climatic variables. Spawner counts were predicted throughout the core and periphery spawning sections of the Chena River from escapement estimates (DD) and DI variables. Additionally, we used isodar analysis to identify whether spawners actively defend spawning habitat or follow an ideal free distribution along the riverscape. Aerial counts were best explained by escapement and reference to the core or periphery, while no models with DI variables were supported in the candidate set. Furthermore, isodar plots indicated habitat selection was best explained by ideal free distributions, although there was strong evidence for active defense of core spawning habitat. Our results are surprising, given salmon commonly defend spawning resources, and are likely due to competition occurring at finer spatial scales than addressed in this study.

]]>
<![CDATA[Calcineurin Targets Involved in Stress Survival and Fungal Virulence]]> https://www.researchpad.co/article/5989d9f9ab0ee8fa60b71559

Calcineurin governs stress survival, sexual differentiation, and virulence of the human fungal pathogen Cryptococcus neoformans. Calcineurin is activated by increased Ca2+ levels caused by stress, and transduces signals by dephosphorylating protein substrates. Herein, we identified and characterized calcineurin substrates in C. neoformans by employing phosphoproteomic TiO2 enrichment and quantitative mass spectrometry. The identified targets include the transactivator Crz1 as well as novel substrates whose functions are linked to P-bodies/stress granules (PBs/SGs) and mRNA translation and decay, such as Pbp1 and Puf4. We show that Crz1 is a bona fide calcineurin substrate, and Crz1 localization and transcriptional activity are controlled by calcineurin. We previously demonstrated that thermal and other stresses trigger calcineurin localization to PBs/SGs. Several calcineurin targets localized to PBs/SGs, including Puf4 and Pbp1, contribute to stress resistance and virulence individually or in conjunction with Crz1. Moreover, Pbp1 is also required for sexual development. Genetic epistasis analysis revealed that Crz1 and the novel targets Lhp1, Puf4, and Pbp1 function in a branched calcineurin pathway that orchestrates stress survival and virulence. These findings support a model whereby calcineurin controls stress and virulence, at the transcriptional level via Crz1, and post-transcriptionally by localizing to PBs/SGs and acting on targets involved in mRNA metabolism. The calcineurin targets identified in this study share little overlap with known calcineurin substrates, with the exception of Crz1. In particular, the mRNA binding proteins and PBs/SGs residents comprise a cohort of novel calcineurin targets that have not been previously linked to calcineurin in mammals or in Saccharomyces cerevisiae. This study suggests either extensive evolutionary rewiring of the calcineurin pathway, or alternatively that these novel calcineurin targets have yet to be characterized as calcineurin targets in other organisms. These findings further highlight C. neoformans as an outstanding model to define calcineurin-responsive virulence networks as targets for antifungal therapy.

]]>