ResearchPad - molecular-genetics https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Genome-wide association study of partial resistance to sclerotinia stem rot of cultivated soybean based on the detached leaf method]]> https://www.researchpad.co/article/elastic_article_15721 Sclerotinia stem rot (SSR) is a devastating fungal disease that causes severe yield losses of soybean worldwide. In the present study, a representative population of 185 soybean accessions was selected and utilized to identify the quantitative trait nucleotide (QTN) of partial resistance to soybean SSR via a genome-wide association study (GWAS). A total of 22,048 single-nucleotide polymorphisms (SNPs) with minor allele frequencies (MAF) > 5% and missing data < 3% were used to assess linkage disequilibrium (LD) levels. Association signals associated with SSR partial resistance were identified by two models, including compressed mixed linear model (CMLM) and multi-locus random-SNP-effect mixed linear model (mrMLM). Finally, seven QTNs with major effects (a known locus and six novel loci) via CMLM and nine novel QTNs with minor effects via mrMLM were detected in relation to partial resistance to SSR, respectively. One of all the novel loci (Gm05:14834789 on Chr.05), which was co-located by these two methods, might be a stable one that showed high significance in SSR partial resistance. Additionally, a total of 71 major and 85 minor candidate genes located in the 200-kb genomic region of each peak SNP detected by CMLM and mrMLM were found, respectively. By using a gene-based association, a total of six SNPs from three major effects genes and eight SNPs from four minor effects genes were identified. Of them, Glyma.18G012200 has been characterized as a significant element in controlling fungal disease in plants.

]]>
<![CDATA[Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models]]> https://www.researchpad.co/article/elastic_article_14653 This work addresses a recurring challenge in the analysis and interpretation of genetic association studies: which genetic variants can best predict and are independently associated with a given phenotype in the presence of population structure? Not controlling confounding due to geographic population structure, family and/or cryptic relatedness can lead to spurious associations. Much of the existing research has therefore focused on modeling the association between a phenotype and a single genetic variant in a linear mixed model with a random effect. However, this univariate approach may miss true associations due to the stringent significance thresholds required to reduce the number of false positives and also ignores the correlations between markers. We propose an alternative method for fitting high-dimensional multivariable models, which selects SNPs that are independently associated with the phenotype while also accounting for population structure. We provide an efficient implementation of our algorithm and show through simulation studies and real data examples that our method outperforms existing methods in terms of prediction accuracy and controlling the false discovery rate.

]]>
<![CDATA[An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies]]> https://www.researchpad.co/article/elastic_article_14581 Single nucleotide polymorphisms (SNPs) are highly abundant, amendable to high-throughput genotyping, and useful for a number of breeding and genetics applications in crops. SNP frequencies vary depending on the species and populations under study, and therefore target SNPs need to be carefully selected to be informative for each application. While multiple SNP genotyping systems are available for rice (Oryza sativa L. and its relatives), they vary in their informativeness, cost, marker density, speed, flexibility, and data quality. In this study, we report the development and performance of the Cornell-IR LD Rice Array (C7AIR), a second-generation SNP array containing 7,098 markers that improves upon the previously released C6AIR. The C7AIR is designed to detect genome-wide polymorphisms within and between subpopulations of O. sativa, as well as O. glaberrima, O. rufipogon and O. nivara. The C7AIR combines top-performing SNPs from several previous rice arrays, including 4,007 SNPs from the C6AIR, 2,056 SNPs from the High Density Rice Array (HDRA), 910 SNPs from the 384-SNP GoldenGate sets, 189 SNPs from the 44K array selected to add information content for elite U.S. tropical japonica rice varieties, and 8 trait-specific SNPs. To demonstrate its utility, we carried out a genome-wide association analysis for plant height, employing the C7AIR across a diversity panel of 189 rice accessions and identified 20 QTLs contributing to plant height. The C7AIR SNP chip has so far been used for genotyping >10,000 rice samples. It successfully differentiates the five subpopulations of Oryza sativa, identifies introgressions from wild and exotic relatives, and is useful for quantitative trait loci (QTL) and association mapping in diverse materials. Moreover, data from the C7AIR provides valuable information that can be used to select informative and reliable SNP markers for conversion to lower-cost genotyping platforms for genomic selection and other downstream applications in breeding.

]]>
<![CDATA[Interaction between host genes and <i>Mycobacterium tuberculosis</i> lineage can affect tuberculosis severity: Evidence for coevolution?]]> https://www.researchpad.co/article/elastic_article_13824 Susceptibility to tuberculosis (TB) is affected by genetic variation in both the human host and the causative bacterium, Mycobacterium tuberculosis. However, prior studies of the genetics of each species have not explained a large part of TB risk. The possibility exists that risk can be better estimated from patterns of variation in the two species as a unit, such that some combinations provide increased risk, or in the presence of TB, increased disease severity. We hypothesized that alleles in the two species that have co-existed for long periods are more likely to reduce disease severity so as to promote prolonged co-occurrence. We tested this by studying TB severity in two patient cohorts from Uganda for which paired MTB-human DNA were available. We examined severity, as measured by the Bandim TBscore, and assessed whether there was an interaction between MTB lineage and SNPs in the host with this metric. Our results indicate that the most recent TB lineage (L4.6/Uganda) when found together with an ancestral allele in SLC11A1 resulted in more severe disease. This finding is consistent with the conclusion that MTB and human have coevolved to modulate TB severity.

]]>
<![CDATA[SNP markers for low molecular glutenin subunits (LMW-GSs) at the <i>Glu-A3</i> and <i>Glu-B3</i> loci in bread wheat]]> https://www.researchpad.co/article/elastic_article_13817 The content and composition of seed storage proteins is largely responsible for wheat end-use quality. They mainly consist of polymeric glutenins and monomeric gliadins. According to their electrophoretic mobility, gliadins and glutenins are subdivided into several fractions. Glutenins are classified as high molecular weight or low molecular weight glutenin subunits (HMW-GSs and LMW-GSs, respectively). LMW-GSs are encoded by multigene families located at the orthologous Glu-3 loci. We designed a set of 16 single-nucleotide polymorphism (SNP) markers that are able to detect SDS-PAGE alleles at the Glu-A3 and Glu-B3 loci. The SNP markers captured the diversity of alleles in 88 international reference lines and 27 Mexican cultivars, when compared to SDS-PAGE and STS markers, however, showed a slightly larger percent of multiple alleles, mainly for Glu-B3. SNP markers were then used to determine the Glu-1 and Glu-3 allele composition in 54 CIMMYT historical lines and demonstrated to be useful tool for breeding programs to improve wheat end product properties.

]]>
<![CDATA[Overexpression of soybean <i>DREB1</i> enhances drought stress tolerance of transgenic wheat in the field]]> https://www.researchpad.co/article/elastic_article_10055 Drought-response-element binding (DREB)-like transcription factors can significantly enhance plant tolerance to water stress. However, most research on DREB-like proteins to date has been conducted in growth chambers or greenhouses, so there is very little evidence available to support their practical use in the field. In this study, we overexpressed GmDREB1 from soybean in two popular wheat varieties and conducted drought-tolerance experiments across a range of years, sites, and drought-stress regimes. We found that the transgenic plants consistently exhibited significant improvements in yield performance and a variety of physiological traits compared with wild-type plants when grown under limited water conditions in the field, for example showing grain yield increases between 4.79–18.43%. Specifically, we found that the transgenic plants had reduced membrane damage and enhanced osmotic adjustment and photosynthetic efficiency compared to the non-transgenic controls. Three enzymes from the biosynthetic pathway of the phytohormone melatonin were up-regulated in the transgenic plants, and external application of melatonin was found to improve drought tolerance. Together, our results demonstrate the utility of transgenic overexpression of GmDREB1 to improve the drought tolerance of wheat in the field.

]]>
<![CDATA[Restricted Genetic Variation in Populations of Achatina (Lissachatina) fulica outside of East Africa and the Indian Ocean Islands Points to the Indian Ocean Islands as the Earliest Known Common Source]]> https://www.researchpad.co/article/5989dac9ab0ee8fa60bb3aab

The Giant African Land Snail, Achatina ( = Lissachatina) fulica Bowdich, 1822, is a tropical crop pest species with a widespread distribution across East Africa, the Indian subcontinent, Southeast Asia, the Pacific, the Caribbean, and North and South America. Its current distribution is attributed primarily to the introduction of the snail to new areas by Man within the last 200 years. This study determined the extent of genetic diversity in global A. fulica populations using the mitochondrial 16S ribosomal RNA gene. A total of 560 individuals were evaluated from 39 global populations obtained from 26 territories. Results reveal 18 distinct A. fulica haplotypes; 14 are found in East Africa and the Indian Ocean islands, but only two haplotypes from the Indian Ocean islands emerged from this region, the C haplotype, now distributed across the tropics, and the D haplotype in Ecuador and Bolivia. Haplotype E from the Philippines, F from New Caledonia and Barbados, O from India and Q from Ecuador are variants of the emergent C haplotype. For the non-native populations, the lack of genetic variation points to founder effects due to the lack of multiple introductions from the native range. Our current data could only point with certainty to the Indian Ocean islands as the earliest known common source of A. fulica across the globe, which necessitates further sampling in East Africa to determine the source populations of the emergent haplotypes.

]]>
<![CDATA[SNP Identification by Transcriptome Sequencing and Candidate Gene-Based Association Analysis for Heat Tolerance in the Bay Scallop Argopecten irradians]]> https://www.researchpad.co/article/5989da90ab0ee8fa60b9fe9f

The northern bay scallop Argopecten irradians irradians (Lamarck) and the southern bay scallop Argopecten irradians concentricus (Say) were introduced into China in the 1980s and 1990s, and are now major aquaculture molluscs in China. Here, we report the transcriptome sequencing of the two subspecies and the subsequent association analysis on candidate gene on the trait of heat tolerance. In total, RNA from six tissues of 67 and 42 individuals of northern and southern bay scallops, respectively, were used and 55.5 and 34.9 million raw reads were generated, respectively. There were 82,267 unigenes produced in total, of which 32,595 were annotated. Altogether, 32,206 and 23,312 high-quality SNPs were identified for northern and southern bay scallops, respectively. For case-control analysis, two intercrossed populations were heat stress treated, and both heat-susceptible and heat-resistant individuals were collected. According to annotation and SNP allele frequency analysis, 476 unigenes were selected, and 399 pairs of primers were designed. Genotyping was conducted using the high-resolution melting method, and Fisher’s exact test was performed for allele frequency comparison between the heat-susceptible and heat-resistant groups. SNP all-53308-760 T/C showed a significant difference in allele frequency between the heat-susceptible and heat-resistant groups. Notably, considerable difference in allele frequency at this locus was also observed between the sequenced natural populations. These results suggest that SNP all-53308-760 T/C may be related to the heat tolerance of the bay scallop. Moreover, quantitative expression analysis revealed that the expression level of all-53308 was negatively correlated with heat tolerance of the bay scallop.

]]>
<![CDATA[The SET Domain Protein, Set3p, Promotes the Reliable Execution of Cytokinesis in Schizosaccharomyces pombe]]> https://www.researchpad.co/article/5989dadeab0ee8fa60bbafce

In response to perturbation of the cell division machinery fission yeast cells activate regulatory networks that ensure the faithful completion of cytokinesis. For instance, when cells are treated with drugs that impede constriction of the actomyosin ring (low doses of Latrunculin A, for example) these networks ensure that cytokinesis is complete before progression into the subsequent mitosis. Here, we identify three previously uncharacterized genes, hif2, set3, and snt1, whose deletion results in hyper-sensitivity to LatA treatment and in increased rates of cytokinesis failure. Interestingly, these genes are orthologous to TBL1X, MLL5, and NCOR2, human genes that encode components of a histone deacetylase complex with a known role in cytokinesis. Through co-immunoprecipitation experiments, localization studies, and phenotypic analysis of gene deletion mutants, we provide evidence for an orthologous complex in fission yeast. Furthermore, in light of the putative role of the complex in chromatin modification, together with our results demonstrating an increase in Set3p levels upon Latrunculin A treatment, global gene expression profiles were generated. While this analysis demonstrated that the expression of cytokinesis genes was not significantly affected in set3Δ backgrounds, it did reveal defects in the ability of the mutant to regulate genes with roles in the cellular response to stress. Taken together, these findings support the existence of a conserved, multi-protein complex with a role in promoting the successful completion of cytokinesis.

]]>
<![CDATA[Revision of the genus Hoplodrina Boursin, 1937 (Lepidoptera, Noctuidae, Xyleninae). I. Hoplodrina octogenaria (Goeze, 1781) and its sister species H. alsinides (Costantini, 1922) sp. rev. in Europe]]> https://www.researchpad.co/article/N0edc772b-3fac-452d-87a9-685bb59cfb30

Abstract

The taxonomic status of the European Hoplodrina octogenaria (Goeze, 1781) is discussed and its partly sympatric sister species, Hoplodrina alsinides (Costantini, 1922) sp. rev., is separated and re-described based on morphological and molecular taxonomic evidence. The adults and their genitalia are illustrated and DNA barcodes, as well as genome-wide single nucleotide polymorphism data collected by fractional genome sequencing (ddRAD), of the two species are provided.

]]>
<![CDATA[A framework for gene mapping in wheat demonstrated using the Yr7 yellow rust resistance gene]]> https://www.researchpad.co/article/N8aa5bdf2-6390-43c2-aef2-b7a76659179a

We used three approaches to map the yellow rust resistance gene Yr7 and identify associated SNPs in wheat. First, we used a traditional QTL mapping approach using a double haploid (DH) population and mapped Yr7 to a low-recombination region of chromosome 2B. To fine map the QTL, we then used an association mapping panel. Both populations were SNP array genotyped allowing alignment of QTL and genome-wide association scans based on common segregating SNPs. Analysis of the association panel spanning the QTL interval, narrowed the interval down to a single haplotype block. Finally, we used mapping-by-sequencing of resistant and susceptible DH bulks to identify a candidate gene in the interval showing high homology to a previously suggested Yr7 candidate and to populate the Yr7 interval with a higher density of polymorphisms. We highlight the power of combining mapping-by-sequencing, delivering a complete list of gene-based segregating polymorphisms in the interval with the high recombination, low LD precision of the association mapping panel. Our mapping-by-sequencing methodology is applicable to any trait and our results validate the approach in wheat, where with a near complete reference genome sequence, we are able to define a small interval containing the causative gene.

]]>
<![CDATA[F4-related mutation and expression analysis of the aminopeptidase N gene in pigs1]]> https://www.researchpad.co/article/N582c7b9b-f0fd-4cdc-adce-f5b77c7bd00a

ABSTRACT

Intestinal infections with F4 enterotoxigenic Escherichia coli (ETEC) are worldwide an important cause of diarrhea in neonatal and recently weaned pigs. Adherence of F4 ETEC to the small intestine by binding to specific receptors is mediated by F4 fimbriae. Porcine aminopeptidase N (ANPEP) was recently identified as a new F4 receptor. In this study, 7 coding mutations and 1 mutation in the 3′ untranslated region (3' UTR)were identified in ANPEP by reverse transcriptase (RT–) PCR and sequencing using 3 F4 receptor-positive (F4R+) and 2 F4 receptor-negative (F4R–) pigs, which were F4 phenotyped based on the MUC4 TaqMan, oral immunization, and the in vitro villous adhesion assay. Three potential differential mutations (g.2615C > T, g.8214A > G, and g.16875C > G) identified by comparative analysis between the 3 F4R+ and 2 F4R– pigs were genotyped in 41 additional F4 phenotyped pigs. However, none of these 3 mutations could be associated with F4 ETEC susceptibility. In addition, the RT-PCR experiments did not reveal any differential expression or alternative splicing in the small intestine of F4R+ and F4R– pigs. In conclusion, we hypothesize that the difference in F4 binding to ANPEP is due to modifications in its carbohydrate moieties.

]]>
<![CDATA[Genetic diversity and population structure of Terapon jarbua (Forskål, 1775) (Teleostei, Terapontidae) in Malaysian waters]]> https://www.researchpad.co/article/N2dd3ec41-119f-400b-a562-4f899bb6e7a2
Abstract

A background study is important for the conservation and stock management of a species. Terapon jarbua is a coastal Indo-Pacific species, sourced for human consumption. This study examined 134 samples from the central west and east coasts of Peninsular (West) Malaysia and East Malaysia. A 1446-bp concatenated dataset of mtDNA COI and Cyt b sequences was used in this study and 83 haplotypes were identified, of which 79 are unique haplotypes and four are shared haplotypes. Populations of T. jarbua in Malaysia are genetically heterogenous as shown by the high level of haplotype diversity ranging from 0.9167–0.9952, low nucleotide diversity ranging from 0.0288–0.3434, and high FST values (within population genetic variation). Population genetic structuring is not distinct as shown by the shared haplotypes between geographic populations and mixtures of haplotypes from different populations within the same genetic cluster. The gene flow patterns and population structuring observed among these regions are likely attributed to geographical distance, past historical events, allopatric speciation, dispersal ability and water currents. For instance, the mixture of haplotypes revealed an extraordinary migration ability of T. jarbua (>1200 km) via ancient river connectivity. The negative overall value of the neutrality test and a non-significant mismatch distribution are consistent with demographic expansion(s) in the past. The median-joining network concurred with the maximum likelihood haplotype tree with three major clades resolved. The scarcity of information on this species is an obstacle for future management and conservation purposes. Hence, this study aims to contribute information on the population structure, genetic diversity, and historical demography of T. jarbua in Malaysia.

]]>
<![CDATA[Mixed evidence for the relationship between periodontitis and Alzheimer’s disease: A bidirectional Mendelian randomization study]]> https://www.researchpad.co/article/N89b89fe7-2f39-423b-9f5f-6e2e7b2736b5

Recent experimental studies indicated that a periodontitis-causing bacterium might be a causal factor for Alzheimer’s disease (AD). We applied a two-sample Mendelian randomization (MR) approach to examine the potential causal relationship between chronic periodontitis and AD bidirectionally in the population of European ancestry. We used publicly available data of genome-wide association studies (GWAS) on periodontitis and AD. Five single-nucleotide polymorphisms (SNPs) were used as instrumental variables for periodontitis. For the MR analysis of periodontitis on risk of AD, the causal odds ratio (OR) and 95% confidence interval (CI) were derived from the GWAS of periodontitis (4,924 cases vs. 7,301 controls) and from the GWAS of AD (21,982 cases vs. 41,944 controls). Seven non-overlapping SNPs from another latest GWAS of periodontitis was used to validate the above association. Twenty SNPs were used as instrumental variables for AD. For the MR analysis of liability to AD on risk of periodontitis, the causal OR was derived from the GWAS of AD including 30,344 cases and 52,427 controls and from the GWAS of periodontitis consisted of 12,289 cases and 22,326 controls. We employed multiple methods of MR. Using the five SNPs as instruments of periodontitis, there was suggestive evidence of genetically predicted periodontitis being associated with a higher risk of AD (OR 1.10, 95% CI 1.02 to 1.19, P = 0.02). However, this association was not verified using the seven independent SNPs (OR 0.97, 95% CI 0.87 to 1.08, P = 0.59). There was no association of genetically predicted AD with the risk of periodontitis (OR 1.00, 95% CI 0.96 to 1.04, P = 0.85). In summary, we did not find convincing evidence to support periodontitis being a causal factor for the development of AD. There was also limited evidence to suggest genetic liability to AD being associated with the risk of periodontitis.

]]>
<![CDATA[How “simple” methodological decisions affect interpretation of population structure based on reduced representation library DNA sequencing: A case study using the lake whitefish]]> https://www.researchpad.co/article/N3bb2bc39-24d6-4fe3-98ed-f97dea058c57

Reduced representation (RRL) sequencing approaches (e.g., RADSeq, genotyping by sequencing) require decisions about how much to invest in genome coverage and sequencing depth, as well as choices of values for adjustable bioinformatics parameters. To empirically explore the importance of these “simple” methodological decisions, we generated two independent sequencing libraries for the same 142 individual lake whitefish (Coregonus clupeaformis) using a nextRAD RRL approach: (1) a larger number of loci at low sequencing depth based on a 9mer (library A); and (2) fewer loci at higher sequencing depth based on a 10mer (library B). The fish were selected from populations with different levels of expected genetic subdivision. Each library was analyzed using the STACKS pipeline followed by three types of population structure assessment (FST, DAPC and ADMIXTURE) with iterative increases in the stringency of sequencing depth and missing data requirements, as well as more specific a priori population maps. Library B was always able to resolve strong population differentiation in all three types of assessment regardless of the selected parameters, largely due to retention of more loci in analyses. In contrast, library A produced more variable results; increasing the minimum sequencing depth threshold (-m) resulted in a reduced number of retained loci, and therefore lost resolution at high -m values for FST and ADMIXTURE, but not DAPC. When detecting fine population differentiation, the population map influenced the number of loci and missing data, which generated artefacts in all downstream analyses tested. Similarly, when examining fine scale population subdivision, library B was robust to changing parameters but library A lost resolution depending on the parameter set. We used library B to examine actual subdivision in our study populations. All three types of analysis found complete subdivision among populations in Lake Huron, ON and Dore Lake, SK, Canada using 10,640 SNP loci. Weak population subdivision was detected in Lake Huron with fish from sites in the north-west, Search Bay, North Point and Hammond Bay, showing slight differentiation. Overall, we show that apparently simple decisions about library construction and bioinformatics parameters can have important impacts on the interpretation of population subdivision. Although potentially more costly on a per-locus basis, early investment in striking a balance between the number of loci and sequencing effort is well worth the reduced genomic coverage for population genetics studies. More conservative stringency settings on STACKS parameters lead to a final dataset that was more consistent and robust when examining both weak and strong population differentiation. Overall, we recommend that researchers approach “simple” methodological decisions with caution, especially when working on non-model species for the first time.

]]>
<![CDATA[Generation of targeted homozygosity in the genome of human induced pluripotent stem cells]]> https://www.researchpad.co/article/Nc0b5af8d-f419-410c-9036-89fcaed1eba6

When loss of heterozygosity (LOH) is correlated with loss or gain of a disease phenotype, it is often necessary to identify which gene or genes are involved. Here, we developed a region-specific LOH-inducing system based on mitotic crossover in human induced pluripotent stem cells (hiPSCs). We first tested our system on chromosome 19. To detect homozygous clones generated by LOH, a positive selection cassette was inserted at the AASV1 locus of chromosome 19. LOHs were generated by the combination of allele-specific double-stranded DNA breaks introduced by CRISPR/Cas9 and suppression of Bloom syndrome (BLM) gene expression by the Tet-Off system. The BLM protein inhibitor ML216 exhibited a similar crossover efficiency and distribution of crossover sites. We next applied this system to the short arm of chromosome 6, where human leukocyte antigen (HLA) loci are located. Genotyping and flow cytometric analysis demonstrated that LOHs associated with chromosomal crossover occurred at the expected positions. Although careful examination of HLA-homozygous hiPSCs generated from parental cells is needed for cancer predisposition and effectiveness of differentiation, they may help to mitigate the current shortcoming of hiPSC-based transplantation related to the immunological differences between the donor and host.

]]>
<![CDATA[Genome-wide haplotype-based association analysis of key traits of plant lodging and architecture of maize identifies major determinants for leaf angle: hapLA4]]> https://www.researchpad.co/article/5c89773ed5eed0c4847d27e7

Traits related to plant lodging and architecture are important determinants of plant productivity in intensive maize cultivation systems. Motivated by the identification of genomic associations with the leaf angle, plant height (PH), ear height (EH) and the EH/PH ratio, we characterized approximately 7,800 haplotypes from a set of high-quality single nucleotide polymorphisms (SNPs), in an association panel consisting of tropical maize inbred lines. The proportion of the phenotypic variations explained by the individual SNPs varied between 7%, for the SNP S1_285330124 (located on chromosome 9 and associated with the EH/PH ratio), and 22%, for the SNP S1_317085830 (located on chromosome 6 and associated with the leaf angle). A total of 40 haplotype blocks were significantly associated with the traits of interest, explaining up to 29% of the phenotypic variation for the leaf angle, corresponding to the haplotype hapLA4.04, which was stable over two growing seasons. Overall, the associations for PH, EH and the EH/PH ratio were environment-specific, which was confirmed by performing a model comparison analysis using the information criteria of Akaike and Schwarz. In addition, five stable haplotypes (83%) and 15 SNPs (75%) were identified for the leaf angle. Finally, approximately 62% of the associated haplotypes (25/40) did not contain SNPs detected in the association study using individual SNP markers. This result confirms the advantage of haplotype-based genome-wide association studies for examining genomic regions that control the determining traits for architecture and lodging in maize plants.

]]>
<![CDATA[Ser96Ala genetic variant of the human histidine-rich calcium-binding protein is a genetic predictor of recurrence after catheter ablation in patients with paroxysmal atrial fibrillation]]> https://www.researchpad.co/article/5c897742d5eed0c4847d2858

Background

Atrial fibrillation (AF) recurrence after radiofrequency catheter ablation (RFCA) still remains a serious issue. Ca2+ handling has a considerable effect on AF recurrence. The histidine-rich calcium-binding protein (HRC) genetic single nucleotide polymorphism (SNP), rs3745297 (T>G, Ser96Ala), is known to cause a sarcoplasmic reticulum Ca2+ leak. We investigated the association between HRC Ser96Ala and AF recurrence after RFCA in paroxysmal AF (PAF) patients.

Methods and results

We enrolled PAF patients who underwent RFCA (N = 334 for screening and N = 245 for replication) and were genotyped for HRC SNP (rs3745297). The patient age was younger and rate of diabetes and hypertension lower in the PAF patients with Ser96Ala than in those without (TT/TG/GG, 179/120/35; 64±10/60±12/59±13 y, P = 0.001; 18.5/ 9.2/8.6%, P = 0.04 and 66.1/50.0/37.1%, P = 0.001, respectively). During a mean 19 month follow-up, 57 (17.1%) patients suffered from AF recurrences. The rate of an Ser96Ala was significantly higher in patients with AF recurrence than in those without in the screening set (allele frequency model: odds ratio [OR], 1.80; P = 0.006). We also confirmed this significant association in the replication set (OR 1.74; P = 0.03) and combination (P = 0.0008). A multivariate analysis revealed that the AF duration, sinus node dysfunction, and HRC Ser96Ala were independent predictors of an AF recurrence (hazard ratio [HR], 1.04, P = 0.037; HR 2.42, P = 0.018; and HR 2.66, P = 0.007, respectively).

Conclusion

HRC SNP Ser96Ala is important as a new genetic marker of AF recurrence after RFCA.

]]>
<![CDATA[Intraspecific variation and phylogeography of the millipede model organism, the Black Pill Millipede Glomerismarginata (Villers, 1789) (Diplopoda, Glomerida, Glomeridae)]]> https://www.researchpad.co/article/5c96bf32d5eed0c4848b5f2a
Abstract

The Black Pill Millipede, Glomerismarginata, is the best studied millipede species and a model organism for Diplopoda. Glomerismarginata is widespread, with numerous colour morphs occurring across its range, especially in the south. This study investigates whether colour morphs might represent cryptic species as well as the haplotype diversity and biogeography of G.marginata. The results of the COI barcoding fragment analysis include 97 G.marginata, as well as 21 specimens from seven potentially related species: G.intermedia Latzel, 1884, G.klugii Brandt, 1833 (G.undulata C.L. Koch, 1844), G.connexa Koch, 1847, G.hexasticha Brandt, 1833, G.maerens Attems, 1927, G.annulata Brandt, 1833 and G.apuana Verhoeff, 1911. The majority of the barcoding data was obtained through the German Barcode of Life project (GBOL). Interspecifically, G.marginata is separated from its congeners by a minimum uncorrected genetic distance of 12.9 %, confirming its monophyly. Uncorrected intraspecific distances of G.marginata are comparable to those of other widespread Glomeris species, varying between 0–4.7%, with the largest genetic distances (>2.5 %) found at the Mediterranean coast. 97 sampled specimens of G.marginata yielded 47 different haplotypes, with identical haplotypes occurring at large distances from one another, and different haplotypes being present in populations occurring in close proximity. The highest number of haplotypes was found in the best-sampled area, western Germany. The English haplotype is identical to northern Spain; specimens from southern Spain are closer to French Mediterranean specimens. Analyses (CHAO1) show that approximately 400 different haplotypes can be expected in G.marginata. To cover all haplotypes, it is projected that up to 6,000 specimens would need to be sequenced, highlighting the impossibility of covering the whole genetic diversity in barcoding attempts of immobile soil arthropod species.

]]>
<![CDATA[IL-10 polymorphisms +434T/C, +504G/T, and -2849C/T may predispose to tubulointersititial nephritis and uveitis in pediatric population]]> https://www.researchpad.co/article/5c75ac83d5eed0c484d08944

Background

Tubulointerstitial nephritis (TIN) and uveitis syndrome (TINU) are likely to be autoimmune diseases. Based on previous studies, adults with isolated idiopathic uveitis have polymorphisms in interleukin 10 (IL-10) and tumor necrosis factor α (TNF-α) genes. We aimed to evaluate the presence of IL-10 and TNF-α polymorphisms in a nationwide cohort of pediatric TIN/TINU patients.

Methods

Single nucleotide polymorphisms in IL-10 (+434T/C, +504G/T, -1082G/A, -2849C/T) and in TNFα (-308G/A, -238G/A, -857C/T) genes were genotyped in 30 well-defined pediatric patients with idiopathic TIN/TINU syndrome. Control group frequencies for these SNPs were obtained from 393 independent Finnish subjects.

Results

The homozygous minor allele in IL-10 +434T (rs2222202) and IL-10+504G (rs3024490) was found in all patients with TIN or TINU syndrome while the frequency of these minor alleles in the control population was 44% and 23%, respectively (p <0.001). In IL-10 SNP -2849 (rs6703630) a significant difference was found with genotype TT in all patients (p = 0.004) and in subgroups with TINU syndrome (p = 0.017) and TINU syndrome with chronic uveitis (p = 0.01) compared to reference population. There were no statistical differences in any of the studied TNF-α genotypes between TIN/TINU patients and control population.

Conclusions

A significant difference in the frequency of IL-10+434T and +504G alleles was found between TIN/TINU patients and control population. Genotype -2849TT was more frequently present in patients with TINU syndrome than in the reference subjects. Genetic variation in the inflammatory mediators may predispose to autoimmune nephritis and uveitis.

]]>