ResearchPad - moose https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Effects of scent lure on camera trap detections vary across mammalian predator and prey species]]> https://www.researchpad.co/article/elastic_article_7840 Camera traps are a unique survey tool used to monitor a wide variety of mammal species. Camera trap (CT) data can be used to estimate animal distribution, density, and behaviour. Attractants, such as scent lures, are often used in an effort to increase CT detections; however, the degree which the effects of attractants vary across species is not well understood. We investigated the effects of scent lure on mammal detections by comparing detection rates between 404 lured and 440 unlured CT stations sampled in Alberta, Canada over 120 day survey periods between February and August in 2015 and 2016. We used zero-inflated negative binomial generalized linear mixed models to test the effect of lure on detection rates for a) all mammals, b) six functional groups (all predator species, all prey, large carnivores, small carnivores, small mammals, ungulates), and c) four varied species of management interest (fisher, Pekania pennanti; gray wolf, Canis lupus; moose, Alces alces; and Richardson’s ground squirrel; Urocitellus richardsonii). Mammals were detected at 800 of the 844 CTs, with nearly equal numbers of total detections at CTs with (7110) and without (7530) lure, and variable effects of lure on groups and individual species. Scent lure significantly increased detections of predators as a group, including large and small carnivore sub-groups and fisher specifically, but not of gray wolf. There was no effect of scent lure on detections of prey species, including the small mammal and ungulate sub-groups and moose and Richardson’s ground squirrel specifically. We recommend that researchers explicitly consider the variable effects of scent lure on CT detections across species when designing, interpreting, or comparing multi-species surveys. Additional research is needed to further quantify variation in species responses to scent lures and other attractants, and to elucidate the effect of attractants on community-level inferences from camera trap surveys.

]]>
<![CDATA[Penumbra: A spatially distributed, mechanistic model for simulating ground-level incident solar energy across heterogeneous landscapes]]> https://www.researchpad.co/article/5c23f279d5eed0c484046db1

Landscape solar energy is a significant environmental driver, yet it remains complicated to model well. Several solar radiation models simplify the complexity of light by estimating it at discrete point locations or by averaging values over larger areas. These modeling approaches may be useful in certain cases, but they are unable to provide spatially distributed and temporally dynamic representations of solar energy across entire landscapes. We created a landscape-scale ground-level shade and solar energy model called Penumbra to address this deficiency. Penumbra simulates spatially distributed ground-level shade and incident solar energy at user-defined timescales by modeling local and distant topographic shading and vegetative shading. Spatially resolved inputs of a digital elevation model, a normalized digital surface model, and landscape object transmittance are used to estimate spatial variations in solar energy at user-defined temporal timesteps. The research goals for Penumbra included: 1) simulations of spatiotemporal variations of shade and solar energy caused by both objects and topographic features, 2) minimal user burden and parameterization, 3) flexible user defined temporal parameters, and 4) flexible external model coupling. We test Penumbra’s predictive skill by comparing the model’s predictions with monitored open and forested sites, and achieve calibrated mean errors ranging from -17.3 to 148.1 μmoles/m2/s. Penumbra is a dynamic model that can produce spatial and temporal representations of shade percentage and ground-level solar energy. Outputs from Penumbra can be used with other ecological models to better understand the health and resilience of aquatic, near stream terrestrial, and upland ecosystems.

]]>
<![CDATA[Novel Type of Chronic Wasting Disease Detected in Moose (Alces alces), Norway]]> https://www.researchpad.co/article/5c1686c0d5eed0c484444867

Chronic wasting disease (CWD) persists in cervid populations of North America and in 2016 was detected for the first time in Europe in a wild reindeer in Norway. We report the detection of CWD in 3 moose (Alces alces) in Norway, identified through a large scale surveillance program. The cases occurred in 13–14-year-old female moose, and we detected an abnormal form of prion protein (PrPSc) in the brain but not in lymphoid tissues. Immunohistochemistry revealed that the moose shared the same neuropathologic phenotype, characterized by mostly intraneuronal deposition of PrPSc. This pattern differed from that observed in reindeer and has not been previously reported in CWD-infected cervids. Moreover, Western blot revealed a PrPSc type distinguishable from previous CWD cases and from known ruminant prion diseases in Europe, with the possible exception of sheep CH1641. These findings suggest that these cases in moose represent a novel type of CWD.

]]>
<![CDATA[The Nutritional Balancing Act of a Large Herbivore: An Experiment with Captive Moose (Alces alces L)]]> https://www.researchpad.co/article/5989db06ab0ee8fa60bc86fc

The nutrient balancing hypothesis proposes that, when sufficient food is available, the primary goal of animal diet selection is to obtain a nutritionally balanced diet. This hypothesis can be tested using the Geometric Framework for nutrition (GF). The GF enables researchers to study patterns of nutrient intake (e.g. macronutrients; protein, carbohydrates, fat), interactions between the different nutrients, and how an animal resolves the potential conflict between over-eating one or more nutrients and under-eating others during periods of dietary imbalance. Using the moose (Alces alces L.), a model species in the development of herbivore foraging theory, we conducted a feeding experiment guided by the GF, combining continuous observations of six captive moose with analysis of the macronutritional composition of foods. We identified the moose’s self-selected macronutrient target by allowing them to compose a diet by mixing two nutritionally complementary pellet types plus limited access to Salix browse. Such periods of free choice were intermixed with periods when they were restricted to one of the two pellet types plus Salix browse. Our observations of food intake by moose given free choice lend support to the nutrient balancing hypothesis, as the moose combined the foods in specific proportions that provided a particular ratio and amount of macronutrients. When restricted to either of two diets comprising a single pellet type, the moose i) maintained a relatively stable intake of non-protein energy while allowing protein intakes to vary with food composition, and ii) increased their intake of the food item that most closely resembled the self-selected macronutrient intake from the free choice periods, namely Salix browse. We place our results in the context of the nutritional strategy of the moose, ruminant physiology and the categorization of food quality.

]]>
<![CDATA[Multiple Browsers Structure Tree Recruitment in Logged Temperate Forests]]> https://www.researchpad.co/article/5989dacdab0ee8fa60bb5006

Historical extirpations have resulted in depauperate large herbivore assemblages in many northern forests. In eastern North America, most forests are inhabited by a single wild ungulate species, white-tailed deer (Odocoileus virginianus), and relationships between deer densities and impacts on forest regeneration are correspondingly well documented. Recent recolonizations by moose (Alces americanus) in northeastern regions complicate established deer density thresholds and predictions of browsing impacts on forest dynamics because size and foraging differences between the two animals suggest a lack of functional redundancy. We asked to what extent low densities of deer + moose would structure forest communities differently from that of low densities of deer in recently logged patch cuts of Massachusetts, USA. In each site, a randomized block with three treatment levels of large herbivores–no-ungulates (full exclosure), deer (partial exclosure), and deer + moose (control) was established. After 6–7 years, deer + moose reduced stem densities and basal area by 2-3-fold, Prunus pensylvanica and Quercus spp. recruitment by 3–6 fold, and species richness by 1.7 species (19%). In contrast, in the partial exclosures, deer had non-significant effects on stem density, basal area, and species composition, but significantly reduced species richness by 2.5 species on average (28%). Deer browsing in the partial exclosure was more selective than deer + moose browsing together, perhaps contributing to the decline in species richness in the former treatment and the lack of additional decline in the latter. Moose used the control plots at roughly the same frequency as deer (as determined by remote camera traps), suggesting that the much larger moose was the dominant browser species in terms of animal biomass in these cuts. A lack of functional redundancy with respect to foraging behavior between sympatric large herbivores may explain combined browsing effects that were both large and complex.

]]>
<![CDATA[Quantifying Migration Behaviour Using Net Squared Displacement Approach: Clarifications and Caveats]]> https://www.researchpad.co/article/5989da2fab0ee8fa60b83d72

Estimating migration parameters of individuals and populations is vital for their conservation and management. Studies on animal movements and migration often depend upon location data from tracked animals and it is important that such data are appropriately analyzed for reliable estimates of migration and effective management of moving animals. The Net Squared Displacement (NSD) approach for modelling animal movement is being increasingly used as it can objectively quantify migration characteristics and separate different types of movements from migration. However, the ability of NSD to properly classify the movement patterns of individuals has been criticized and issues related to study design arise with respect to starting locations of the data/animals, data sampling regime and extent of movement of species. We address the issues raised over NSD using tracking data from 319 moose (Alces alces) in Sweden. Moose is an ideal species to test this approach, as it can be sedentary, nomadic, dispersing or migratory and individuals vary in their extent, timing and duration of migration. We propose a two-step process of using the NSD approach by first classifying movement modes using mean squared displacement (MSD) instead of NSD and then estimating the extent, duration and timing of migration using NSD. We show that the NSD approach is robust to the choice of starting dates except when the start date occurs during the migratory phase. We also show that the starting location of the animal has a marginal influence on the correct quantification of migration characteristics. The number of locations per day (1–48) did not significantly affect the performance of non-linear mixed effects models, which correctly distinguished migration from other movement types, however, high-resolution data had a significant negative influence on estimates for the timing of migrations. The extent of movement, however, had an effect on the classification of movements, and individuals undertaking short- distance migrations can be misclassified as other movements such as sedentary or nomadic. Our study raises important considerations for designing, analysing and interpreting movement ecology studies, and how these should be determined by the biology of the species and the ecological and conservation questions in focus.

]]>
<![CDATA[Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat]]> https://www.researchpad.co/article/5989daf6ab0ee8fa60bc302a

Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas) extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni) and Eurasia (A. a. alces). Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

]]>
<![CDATA[Does Predation Influence the Seasonal and Diel Timing of Moose Calving in Central Ontario, Canada?]]> https://www.researchpad.co/article/5989da44ab0ee8fa60b8b44a

Birth synchrony is well documented among ungulates and is hypothesised to maximize neonate survival, either by minimizing the risk of predation through predator swamping or by synchronising birthing with increased seasonal food availability. We used encapsulated vaginal implant transmitters to locate and capture neonatal moose calves and document the seasonal and diel timing of parturition in two adjacent study areas with different predation pressure in central Ontario, Canada. We tested the hypothesis that predation promotes earlier and more synchronous birth of moose calves. Across both areas, proportionately more births occurred during the afternoon and fewer than expected occurred overnight. Mean date of calving averaged 1.5 days earlier and calving was also more synchronous in the study area with heavier predation pressure, despite average green-up date and peak Normalized Difference Vegetation Index date occurring 2 days later in this study area than in the area receiving lighter predation pressure. We encourage analysis of data on timing of parturition from additional study areas experiencing varying degrees of predation pressure to better clarify the influence of predation in driving seasonal and diel timing of parturition in temperate ungulates.

]]>
<![CDATA[Prey Selection of Scandinavian Wolves: Single Large or Several Small?]]> https://www.researchpad.co/article/5989dabbab0ee8fa60baed32

Research on large predator-prey interactions are often limited to the predators’ primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves’ choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population.

]]>