ResearchPad - motor-reactions https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Is postural dysfunction related to sarcopenia? A population-based study]]> https://www.researchpad.co/article/elastic_article_7695 Postural dysfunction is one of the most common community health symptoms and frequent chief complaints in hospitals. Sarcopenia is a syndrome characterized by degenerative loss of skeletal muscle mass, muscle quality, and muscle strength, and is the main contributor to musculoskeletal impairment in the elderly. Previous studies reported that loss of muscle mass is associated with a loss of diverse functional abilities. Meanwhile, there have been limited studies concerning postural dysfunction among older adults with sarcopenia. Although sarcopenia is primarily a disease of the elderly, its development may be associated with conditions that are not exclusively seen in older persons. Also, recent studies recognize that sarcopenia may begin to develop earlier in life. The objective of this paper was to investigate the association between the prevalence of sarcopenia and postural dysfunction in a wide age range of adults using data from a nationally representative cohort study in Korea. Korean National Health & Nutrition Exhibition Survey V (KNHANES V, 2010–2012) data from the fifth cross-sectional survey of the South Korean population performed by the Korean Ministry of Health and Welfare were used. Appendicular skeletal muscle mass (ASM)/height (ht)2 was used to define sarcopenia, and the Modified Romberg test using a foam pad (“foam balance test”) was performed to evaluate postural dysfunction. ASM/ht2 was lower in women and significantly decreased with age in men. Subjects with sarcopenia were significantly more likely to fail the foam balance test, regardless of sex and age. Regression analysis showed a significant relationship between sarcopenia and postural dysfunction (OR: 2.544, 95% CI: 1.683–3.846, p<0.001). Multivariate regression analysis revealed that sarcopenia (OR: 1.747, 95% CI: 1.120–2.720, p = 0.014) and age (OR: 1.131, 95% CI: 1.105–1.158, p<0.001) are independent risk factors for postural instability. In middle age subjects, the adjusted OR for sarcopenia was 3.344 (95% CI: 1.350–8.285) (p = 0.009). The prevalence of postural dysfunction is higher in sarcopenia patients, independent of sex and age.

]]>
<![CDATA[Postural control of a musculoskeletal model against multidirectional support surface translations]]> https://www.researchpad.co/article/5c897754d5eed0c4847d2a0a

The human body is a complex system driven by hundreds of muscles, and its control mechanisms are not sufficiently understood. To understand the mechanisms of human postural control, neural controller models have been proposed by different research groups, including our feed-forward and feedback control model. However, these models have been evaluated under forward and backward perturbations, at most. Because a human body experiences perturbations from many different directions in daily life, neural controller models should be evaluated in response to multidirectional perturbations, including in the forward/backward, lateral, and diagonal directions. The objective of this study was to investigate the validity of an NC model with FF and FB control under multidirectional perturbations. We developed a musculoskeletal model with 70 muscles and 15 degrees of freedom of joints, positioned it in a standing posture by using the neural controller model, and translated its support surface in multiple directions as perturbations. We successfully determined the parameters of the neural controller model required to maintain the stance of the musculoskeletal model for each perturbation direction. The trends in muscle response magnitudes and the magnitude of passive ankle stiffness were consistent with the results of experimental studies. We conclude that the neural controller model can adapt to multidirectional perturbations by generating suitable muscle activations. We anticipate that the neural controller model could be applied to the study of the control mechanisms of patients with torso tilt and diagnosis of the change in control mechanisms from patients’ behaviors.

]]>
<![CDATA[The effect of contact sport expertise on postural control]]> https://www.researchpad.co/article/5c6f14f5d5eed0c48467abb2

It has been demonstrated that expertise in sport influences standing balance ability. However, little is known concerning how physical contact in sport affects balance ability. The aim of this study was to examine whether differences between contact and limited-contact sport experiences results in differences in postural control. Twenty male collegiate athletes (10 soccer/contact, 10 baseball/limited contact) and ten male untrained students stood quietly on a force plate under various bipedal and unipedal conditions, with and without vision. Significant differences for sway area and COP speed were found between the soccer players and the other two groups for unipedal stances without vision. Soccer players were found to have superior postural control compared with participants involved in limited contact sport or no sport at all. Contact sports may lead to increased postural control through enhanced use of proprioceptive and vestibular information.

]]>
<![CDATA[Impulsivity across reactive, proactive and cognitive domains in Parkinson's disease on dopaminergic medication: Evidence for multiple domain impairment]]> https://www.researchpad.co/article/5c6dc9fad5eed0c48452a639

Impulse control disorders (ICD) may occur in Parkinson’s disease (PD) although it remains to be understood if such deficits may occur even in the absence of a formal ICD diagnosis. Moreover, studies addressing simultaneously distinct neurobehavioral domains, such as cognitive, proactive and reactive motor impulsivity, are still lacking. Here, we aimed to investigate if reactive, proactive and cognitive impulsivity involving risk taking are concomitantly affected in medicated PD patients, and whether deficits were dependent on response strategies, such as speed accuracy tradeoffs, or the proportion of omission vs. commission errors. We assessed three different impulsivity domains in a sample of 21 PD patients and 13 matched controls. We found impaired impulsivity in both reactive (p = 0.042) and cognitive domains (p = 0.015) for the PD patients, irrespective of response strategy. For the latter, effect sizes were larger for the actions related with reward processing (p = 0.017, dCohen = 0.9). In the proactive impulsivity task, PD patients showed significantly increased number of omissions (p = 0.041), a response strategy which was associated with preserved number of commission errors. Moreover, the number of premature and proactive response errors were correlated with disease stage. Our findings suggest that PD ON medication is characterized compared to healthy controls by impairment across several impulsivity domains, which is moderated in the proactive domain by the response strategy.

]]>
<![CDATA[Balance control during stance - A comparison between horseback riding athletes and non-athletes]]> https://www.researchpad.co/article/5c63395dd5eed0c484ae6555

Horseback riding requires the ability to adapt to changes in balance conditions, to maintain equilibrium on the horse and to prevent falls. Postural adaptation involves specific sensorimotor processes integrating visual information and somesthesic information. The objective of this study was to examine this multisensorial integration on postural control, especially the use of visual and plantar information in static (stable) and dynamic (unstable) postures, among a group of expert horse rider women (n = 10) and a group of non-athlete women (n = 12). Postural control was evaluated through the center of pressure measured with a force platform on stable and unstable supports, with the eyes open and the eyes closed, and with the presence of foam on the support or not. Results showed that expert horse rider women had a better postural stability with unstable support in the mediolateral axis compared to non-athletes. Moreover, on the anteroposterior axis, expert horse riders were less visual dependent and more stable in the presence of foam. Results suggested that horseback riding could help developing particular proprioceptive abilities on standing posture as well as better postural muscle tone during particular bipodal dynamic perturbations. These outcomes provide new insights into horseback riding assets and methodological clues to assess the impact of sport practice.

]]>
<![CDATA[Postural control in healthy adults: Determinants of trunk sway assessed with a chest-worn accelerometer in 12 quiet standing tasks]]> https://www.researchpad.co/article/5c521837d5eed0c4847977f3

Many diseases and conditions decrease the ability to control balance. In clinical settings, there is therefore a major interest in the assessment of postural control. Trunk accelerometry is an easy, low-cost method used for balance testing and constitutes an alternative method to the posturography using force platforms. The objective was to assess the responsiveness of accelerometry in a battery of 12 quiet standing tasks. We evaluated the balance of 100 healthy adults with an accelerometer fixed onto the sternum. We used the average amplitude of acceleration as an indirect measure of postural sways. The tasks of increased difficulty were realized with or without vision. The battery of tasks was repeated four times on two different days to assess reliability. We analyzed the extent to which the task difficulty and the absence of vision affected the trunk sway. The influence of individual characteristics (age, height, mass, sex, and physical activity level) was also assessed. The reliability analysis revealed that four repetitions of the battery of tasks are needed to reach a high accuracy level (mean ICC = 0.85). The results showed that task difficulty had a very large effect on trunk sways and that the removal of vision further increased sways. Concerning the effects of individual characteristics, we observed that women tended to oscillate more than men did in tasks of low difficulty. Age and physical activity level also had significant effects, whereas height and mass did not. In conclusion, age, sex, and physical fitness are confounders that should be considered when assessing patients’ balance. A battery of simple postural tasks measured by upper-trunk accelerometry can be a useful method for simple balance evaluation in clinical settings.

]]>
<![CDATA[Antagonist muscle activity during reactive balance responses is elevated in Parkinson’s disease and in balance impairment]]> https://www.researchpad.co/article/5c57e6c8d5eed0c484ef3d8a

Background

Abnormal antagonist leg muscle activity could indicate increased muscle co-contraction and clarify mechanisms of balance impairments in Parkinson’s disease (PD). Prior studies in carefully selected patients showed PD patients demonstrate earlier, longer, and larger antagonist muscle activation during reactive balance responses to perturbations.

Research question

Here, we tested whether antagonist leg muscle activity was abnormal in a group of PD patients who were not selected for phenotype and most of whom had volunteered for exercise-based rehabilitation.

Methods

We compared antagonist activation during reactive balance responses to multidirectional support-surface translation perturbations in 31 patients with mild-moderate PD (age 68±9; H&Y 1–3; UPDRS-III 32±10) and 13 matched individuals (age 65±9). We quantified modulation of muscle activity (i.e., the ability to activate and inhibit muscles appropriately according to the perturbation direction) using modulation indices (MI) derived from minimum and maximum EMG activation levels observed across perturbation directions.

Results

Antagonist leg muscle activity was abnormal in unselected PD patients compared to controls. Linear mixed models identified significant associations between impaired modulation and PD (P<0.05) and PD severity (P<0.01); models assessing the entire sample without referencing PD status identified associations with balance ability (P<0.05), but not age (P = 0.10).

Significance

Antagonist activity is increased during reactive balance responses in PD patients who are not selected on phenotype and are candidates for exercise-based rehabilitation. This activity may be a mechanism of balance impairment in PD and a potential rehabilitation target or outcome measure.

]]>
<![CDATA[Postural stability and visual impairment: Assessing balance in children with strabismus and amblyopia]]> https://www.researchpad.co/article/5bd2324c40307c60de5e9971

Background

Vision plays an important role in controlling posture and balance in children. Reduced postural control has been reported in children with strabismus, but little has been reported specifically in amblyopia.

Objective

To investigate whether children with amblyopia have reduced balance compared to both children with strabismus without amblyopia and healthy controls.

Study design and methods

In this cross-sectional study, a total of 56 patients and healthy controls were recruited from the Ophthalmology and Otolaryngology Clinics at The Hospital for Sick Children, Toronto. Participants were divided into three groups: (1) 18 with unilateral amblyopia (strabismic amblyopia or mixed mechanism); (2) 16 with strabismus only without amblyopia; and (3) 22 visually-normal controls. The primary outcome was the balance performance as measured by the balance subtest of the Bruininks-Oseretsky Test of Motor Proficiency 2 [BOT2].

Results

The age and gender-adjusted BOT2 balance scores were significantly reduced in the amblyopia group (mean score 9.0 ± 3.1 SD) and the strabismus without amblyopia group (mean score 8.6 ± 2.4 SD) compared to visually normal controls (mean score 18.9 ± 4.2) (p<0.0001), but no statistical difference was demonstrated between the two patient groups (p = 0.907). Further subgroup analysis of the strabismus only group did not reveal a statistically significant difference in performance on BOT2 balance score between strabismus only patients with good stereopsis 60 sec or better (BOT2 mean score 9.8±3.0 SD) to patients with 3000 sec or no stereopsis (BOT2 mean score 7.9±1.7) (p = 0.144).

Conclusion

Our findings suggest that normal vision plays an important role in the development and maintenance of balance control. When normal binocular vision is disrupted in childhood in strabismus and/or amblyopia, not only is the vision affected, but balance is also reduced. Our results indicate that the presence of even mild binocular discordance/dysfunction (patients with intermittent strabismus and good stereopsis) may lead to postural instability.

]]>
<![CDATA[Bimodal ankle-foot prosthesis for enhanced standing stability]]> https://www.researchpad.co/article/5bb530cf40307c24312bb0af

Previous work suggests that to restore postural stability for individuals with lower-limb amputation, ankle-foot prostheses should be designed with a flat effective rocker shape for standing. However, most commercially available ankle-foot prostheses are designed with a curved effective rocker shape for walking. To address the demands of both standing and walking, we designed a novel bimodal ankle-foot prosthesis that can accommodate both functional modes using a rigid foot plate and an ankle that can lock and unlock. The primary objective of this study was to determine if the bimodal ankle-foot system could improve various aspects of standing balance (static, dynamic, and functional) and mobility in a group of Veterans with lower-limb amputation (n = 18). Standing balance was assessed while subjects completed a series of tests on a NeuroCom Clinical Research System (NeuroCom, a Division of Natus, Clackamas, OR), including a Sensory Organization Test, a Limits of Stability Test, and a modified Motor Control Test. Few statistically significant differences were observed between the locked and unlocked ankle conditions while subjects completed these tests. However, in the absence of visual feedback, the locked bimodal ankle appeared to improve static balance in a group of experienced lower-limb prosthesis users whose PLUS-M mobility rating was higher than approximately 73% of the sample population used to develop the PLUS-M survey. Given the statistically significant increase in mean equilibrium scores between the unlocked and locked conditions (p = 0.004), future testing of this system should focus on new amputees and lower mobility users (e.g., Medicare Functional Classification Level K1 and K2 prosthesis users). Furthermore, commercial implementation of the bimodal ankle-foot system should include a robust control system that can automatically switch between modes based on the user’s activity.

]]>
<![CDATA[Beta-Adrenergic Modulation of Tremor and Corticomuscular Coherence in Humans]]> https://www.researchpad.co/article/5989dab8ab0ee8fa60bada45

Coherence between the bioelectric activity of sensorimotor cortex and contralateral muscles can be observed around 20 Hz. By contrast, physiological tremor has a dominant frequency around 10 Hz. Although tremor has multiple sources, it is partly central in origin, reflecting a component of motoneuron discharge at this frequency. The motoneuron response to ∼20 Hz descending input could be altered by non-linear interactions with ∼10 Hz motoneuron firing. We investigated this further in eight healthy human subjects by testing the effects of the beta-adrenergic agents propranolol (non-selective β-antagonist) and salbutamol (β2-agonist), which are known to alter the size of physiological tremor. Corticomuscular coherence was assessed during an auxotonic precision grip task; tremor was quantified using accelerometry during index finger extension. Experiments with propranolol used a double-blind, placebo-controlled crossover design. A single oral dose of propranolol (40 mg) significantly increased beta band (15.3–32.2 Hz) corticomuscular coherence compared with placebo, but reduced tremor in the 6.2–11.9 Hz range. Salbutamol (2.5 mg) was administered by inhalation. Whilst salbutamol significantly increased tremor amplitude as expected, it did not change corticomuscular coherence. The opposite direction of the effects of propranolol on corticomuscular coherence and tremor, and the fact that salbutamol enhances tremor but does not affect coherence, implies that the magnitude of corticomuscular coherence is little influenced by non-linear interactions with 10 Hz oscillations in motoneurons or the periphery. Instead, we suggest that propranolol and salbutamol may affect both tremor and corticomuscular coherence partly via a central site of action.

]]>
<![CDATA[Preparing to Grasp Emotionally Laden Stimuli]]> https://www.researchpad.co/article/5989d9efab0ee8fa60b6df9f

Background

Contemporary theories of motor control propose that motor planning involves the prediction of the consequences of actions. These predictions include the associated costs as well as the rewarding nature of movements’ outcomes. Within the estimation of these costs and rewards would lie the valence, that is, the pleasantness or unpleasantness of a given stimulus with which one is about to interact. The aim of this study was to test if motor preparation encompasses valence.

Methodology/Principal Findings

The readiness potential, an electrophysiological marker of motor preparation, was recorded before the grasping of pleasant, neutral and unpleasant stimuli. Items used were balanced in weight and placed inside transparent cylinders to prompt a similar grip among trials. Compared with neutral stimuli, the grasping of pleasant stimuli was preceded by a readiness potential of lower amplitude, whereas that of unpleasant stimuli was associated with a readiness potential of higher amplitude.

Conclusions/Significance

We show for the first time that the sensorimotor cortex activity preceding the grasping of a stimulus is affected by its valence. Smaller readiness potential amplitudes found for pleasant stimuli could imply in the recruitment of pre-set motor repertoires, whereas higher amplitudes found for unpleasant stimuli would emerge from a discrepancy between the required action and their aversiveness. Our results indicate that the prediction of action outcomes encompasses an estimate of the valence of a stimulus with which one is about to interact.

]]>
<![CDATA[Brainstem response patterns in deeply-sedated critically-ill patients predict 28-day mortality]]> https://www.researchpad.co/article/5989db59ab0ee8fa60bdf0ab

Background and purpose

Deep sedation is associated with acute brain dysfunction and increased mortality. We had previously shown that early-assessed brainstem reflexes may predict outcome in deeply sedated patients. The primary objective was to determine whether patterns of brainstem reflexes might predict mortality in deeply sedated patients. The secondary objective was to generate a score predicting mortality in these patients.

Methods

Observational prospective multicenter cohort study of 148 non-brain injured deeply sedated patients, defined by a Richmond Assessment sedation Scale (RASS) <-3. Brainstem reflexes and Glasgow Coma Scale were assessed within 24 hours of sedation and categorized using latent class analysis. The Full Outline Of Unresponsiveness score (FOUR) was also assessed. Primary outcome measure was 28-day mortality. A “Brainstem Responses Assessment Sedation Score” (BRASS) was generated.

Results

Two distinct sub-phenotypes referred as homogeneous and heterogeneous brainstem reactivity were identified (accounting for respectively 54.6% and 45.4% of patients). Homogeneous brainstem reactivity was characterized by preserved reactivity to nociceptive stimuli and a partial and topographically homogenous depression of brainstem reflexes. Heterogeneous brainstem reactivity was characterized by a loss of reactivity to nociceptive stimuli associated with heterogeneous brainstem reflexes depression. Heterogeneous sub-phenotype was a predictor of increased risk of 28-day mortality after adjustment to Simplified Acute Physiology Score-II (SAPS-II) and RASS (Odds Ratio [95% confidence interval] = 6.44 [2.63–15.8]; p<0.0001) or Sequential Organ Failure Assessment (SOFA) and RASS (OR [95%CI] = 5.02 [2.01–12.5]; p = 0.0005). The BRASS (and marginally the FOUR) predicted 28-day mortality (c-index [95%CI] = 0.69 [0.54–0.84] and 0.65 [0.49–0.80] respectively).

Conclusion

In this prospective cohort study, around half of all deeply sedated critically ill patients displayed an early particular neurological sub-phenotype predicting 28-day mortality, which may reflect a dysfunction of the brainstem.

]]>
<![CDATA[Stance Postural Strategies in Patients with Chronic Inflammatory Demyelinating Polyradiculoneuropathy]]> https://www.researchpad.co/article/5989db39ab0ee8fa60bd4117

Introduction

Polyneuropathy leads to postural instability and an increased risk of falling. We investigated how impaired motor impairment and proprioceptive input due to neuropathy influences postural strategies.

Methods

Platformless bisegmental posturography data were recorded in healthy subjects and patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Each subject stood on the floor, wore a head and a hip electromagnetic tracker. Sway amplitude and velocity were recorded and the mean direction difference (MDD) in the velocity vector between trackers was calculated as a flexibility index.

Results

Head and hip postural sway increased more in patients with CIDP than in healthy controls. MDD values reflecting hip strategies also increased more in patients than in controls. In the eyes closed condition MDD values in healthy subjects decreased but in patients remained unchanged.

Discussion

Sensori-motor impairment changes the balance between postural strategies that patients adopt to maintain upright quiet stance. Motor impairment leads to hip postural strategy overweight (eyes open), and prevents strategy re-balancing when the sensory context predominantly relies on proprioceptive input (eyes closed).

]]>
<![CDATA[Static and Dynamic Postural Changes after a Mountain Ultra-Marathon of 80 km and 5500 D+]]> https://www.researchpad.co/article/5989db07ab0ee8fa60bc89e8

The study aimed to investigate the effect of fatigue on static and dynamic postural stability after completing a mountain ultra-marathon. Twelve male athletes participated in the study. Postural stability was assessed before and immediately after the race. Static postural stability was evaluated on a dynamometric platform with eyes opened (OE) and closed (CE). Dynamic postural stability was assessed with OE on an instrumented plate which allowed medio-lateral oscillations. Stabilometric data were affected by fatigue in the OE condition, concerning sway path velocity (p = 0.0006), sway area velocity (p = 0.0006), area of the confidence ellipse (p = 0.0016), maximal anterior-posterior (AP) (p = 0.0017) and medio-lateral (ML) (p = 0.0039) oscillations. In the CE condition the sway path velocity (p = 0.0334), the maximal ML oscillations (p = 0.0161) and the area of the confident ellipse (p = 0.0180) were also negatively influenced. Stabilogram diffusion analysis showed in the OE condition an increase of short-term diffusion coefficients considering the anterior-posterior direction (Dfys; p = 0.0023) and the combination of the two (Dfr2s; p = 0.0032). Equally, long term diffusion coefficients increased considering the anterior-posterior direction (Dfyl; p = 0.0093) and the combination of the two (Dfr2l; p = 0.0086). In CE condition greater values were detected for medio-lateral direction (Dfxl; p = 0.033), anterior-posterior direction (Dfyl; p = 0.0459) and the combination of the two (Dfr2l; p = 0.0048). The dynamic postural stability test showed an increase of the time spent with the edges of the plate on the floor (p = 0.0152). Our results showed that mountain ultra-marathon altered static stability more than dynamic stability. An involvement of cognitive resources to monitor postural stability after fatiguing could be the explanation of the worsening in the automatic task (quiet standing) and of the positive compensation in the less automatic task (dynamic standing on the instrumented plate).

]]>
<![CDATA[Effect of Acute Effort on Isometric Strength and Body Balance: Trained vs. Untrained Paradigm]]> https://www.researchpad.co/article/5989da4fab0ee8fa60b8d70d

Years of training in competitive sports leads to human body adaptation to a specific type of exercise. In judo bouts, maintaining hand grip on an opponent’s clothes and postural balance is essential for the effective technical and tactical actions. This study compares changes after maximal anaerobic exercise among judo athletes and untrained subjects regarding 1) maximum isometric handgrip strength (HGSmax) and accuracy at the perceived 50% maximum handgrip force (1/2HGSmax) and 2) the balance of 13 judo athletes at national (n = 8) and international (n = 5) competitive levels and 19 untrained university students. The groups did not differ in age, body height, and weight. Body mass index (BMI) and body composition (JAWON) were evaluated. The Wingate Anaerobic Test (WAnT, Monark 875E) measured recommended anaerobic capacity indices. Hand grip strength (Takei dynamometer) and balance (biplate balance platform) were measured before warm-up (T1), before the WAnT test (T2), and after (T3). Parametric or non-parametric tests were performed after verifying the variable distribution assumption. Judoists had higher BMI and fat-free mass index (FFMI) than the students. The athletes also showed higher relative total work and relative peak power and lower levels of lactic acid. The difference in judoists between HGSmax at T1 and HGSmax at T3 was statistically significant. Before warm-up (T1), athletes showed higher strength (more divergent from the calculated ½HGSmax value) compared to students. Substantial fatigue after the WAnT test significantly deteriorated the body stability indices, which were significantly better in judo athletes at all time points. The findings suggest specific body adaptations in judoists, especially for body composition, anaerobic energy system efficiency, and postural balance. These characteristics could be trained for specifically by judo athletes to meet the time-motion and anaerobic demands of contemporary bouts.

]]>
<![CDATA[Whole-Body Prepulse Inhibition Protocol to Test Sensorymotor Gating Mechanisms in Monkeys]]> https://www.researchpad.co/article/5989db00ab0ee8fa60bc644a

Prepulse inhibition (PPI) is the decrease of startle reflex amplitude when a slight stimulus is previously generated. This paradigm may provide valuable information about sensorimotor gating functionality. Here we aimed at determining the inhibited and uninhibited startle response of capuchin monkeys (Sapajus spp.), and to evaluate the role of the superior colliculus in PPI. Capuchin monkeys were tested in a whole-body protocol, to determine the best startle amplitude and interstimuli interval. Additionally we tested two subjects with bilateral superior colliculus damage in this protocol. Results show that 115 dB auditory pulse has induced the best startle response. In contrast to reports in other species, no habituation to the auditory stimuli was observed here in capuchins. Also, startle reflex inhibition was optimal after 120 msec interstimuli interval. Finally, there was a downward tendency of percentage inhibition in superior colliculus-lesioned monkeys. Our data provides the possibility of further studies with whole-body protocol in capuchin monkeys and reinforces the importance of the superior colliculus in PPI.

]]>
<![CDATA[Similar Cerebral Motor Plans for Real and Virtual Actions]]> https://www.researchpad.co/article/5989da8cab0ee8fa60b9e4b5

A simple movement, such as pressing a button, can acquire different meanings by producing different consequences, such as starting an elevator or switching a TV channel. We evaluated whether the brain activity preceding a simple action is modulated by the expected consequences of the action itself. To further this aim, the motor-related cortical potentials were compared during two key-press actions that were identical from the kinematics point of view but different in both meaning and consequences. In one case (virtual grasp), the key-press started a video clip showing a hand moving toward a cup and grasping it; in the other case, the key-press did not produce any consequence (key-press). A third condition (real grasp) was also compared, in which subjects actually grasped the cup, producing the same action presented in the video clip. Data were collected from fifteen subjects. The results showed that motor preparation for virtual grasp (starting 3 s before the movement onset) was different from that of the key-press and similar to the real grasp preparation–as if subjects had to grasp the cup in person. In particular, both virtual and real grasp presented a posterior parietal negativity preceding activity in motor and pre-motor areas. In summary, this finding supports the hypothesis that motor preparation is affected by the meaning of the action, even when the action is only virtual.

]]>
<![CDATA[Premotor-Motor Interhemispheric Inhibition Is Released during Movement Initiation in Older but Not Young Adults]]> https://www.researchpad.co/article/5989da33ab0ee8fa60b8529e

Neural interactions between contralateral motor regions are thought to be instrumental in the successful preparation, and execution, of volitional movements. Here we investigated whether healthy ageing is associated with a change in functional connectivity, as indicated by the ability to modulate interhemispheric interactions during movement preparation in a manner that assists rapid movement responses. Thirteen young (mean age 22.2 years) and thirteen older (68.5 years) adults rapidly abducted their left index finger as soon as possible in response to a visual imperative signal, presented 500 ms after a visual warning signal.

Interactions between left dorsal premotor cortex (LPMd) and right primary motor cortex (RM1) and between left primary motor cortex (LM1) and RM1 were investigated at six time points between the warning signal and the volitional response using paired-pulse transcranial magnetic stimulation. Relative to the inhibitory interactions measured at rest, both young and older adults released LM1-RM1 inhibition beginning 250 ms after the warning signal, with no significant differences between groups. LPMd-RM1 interactions became facilitatory (from the onset of the imperative signal onwards) in the older, but not the young, group. Regression analyses revealed that for the older adults, modulation of LPMd-RM1 interactions early in the preparation period was associated with faster responses, suggesting that specifically timed modulation of these pathways may be a compensatory mechanism to offset, at least in part, slowing of motor responses. The results suggest a greater reliance on premotor regions during the preparation of simple motor actions with advancing age.

]]>
<![CDATA[Postural Responses to a Suddenly Released Pulling Force in Older Adults with Chronic Low Back Pain: An Experimental Study]]> https://www.researchpad.co/article/5989dad2ab0ee8fa60bb6c14

Chronic low back pain (CLBP), one of the most common musculoskeletal conditions in older adults, might affect balance and functional independence. The purpose of this study was to investigate the postural responses to a suddenly released pulling force in older adults with and without CLBP. Thirty community-dwelling older adults with CLBP and 26 voluntary controls without CLBP were enrolled. Participants were required to stand on a force platform while, with one hand, they pulled a string that was fastened at the other end to a 2-kg or to a 4-kg force in the opposite direction at a random order. The number of times the participants lost their balance and motions of center of pressure (COP) when the string was suddenly released were recorded. The results demonstrated that although the loss of balance rates for each pulling force condition did not differ between groups, older adults with CLBP had poorer postural responses: delayed reaction, larger displacement, higher velocity, longer path length, and greater COP sway area compared to the older controls. Furthermore, both groups showed larger postural responses in the 4-kg pulling force condition. Although aging is generally believed to be associated with declining balance and postural control, these findings highlight the effect of CLBP on reactive balance when responding to an externally generated force in an older population. This study also suggests that, for older adults with CLBP, in addition to treating them for pain and disability, reactive balance evaluation and training, such as reaction and movement strategy training should be included in their interventions. Clinicians and older patients with CLBP need to be made aware of the significance of impaired reactive balance and the increased risk of falls when encountering unexpected perturbations.

]]>
<![CDATA[Neural Correlates of Task Cost for Stance Control with an Additional Motor Task: Phase-Locked Electroencephalogram Responses]]> https://www.researchpad.co/article/5989da5eab0ee8fa60b908d0

With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task.

]]>