ResearchPad - museum-collections https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[A tale of textiles: Genetic characterization of historical paper mulberry barkcloth from Oceania]]> https://www.researchpad.co/article/elastic_article_15748 Humans introduced paper mulberry (Broussonetia papyrifera) from Taiwan into the Pacific over 5000 years ago as a fiber source to make barkcloth textiles that were, and still are, important cultural artifacts throughout the Pacific. We have used B. papyrifera, a species closely associated to humans, as a proxy to understand the human settlement of the Pacific Islands. We report the first genetic analysis of paper mulberry textiles from historical and archaeological contexts (200 to 50 years before present) and compare our results with genetic data obtained from contemporary and herbarium paper mulberry samples. Following stringent ancient DNA protocols, we extracted DNA from 13 barkcloth textiles. We confirmed that the fiber source is paper mulberry in nine of the 13 textiles studied using the nuclear ITS-1 marker and by statistical estimates. We detected high genetic diversity in historical Pacific paper mulberry barkcloth with a set of ten microsatellites, showing new alleles and specific genetic patterns. These genetic signatures allow tracing connections to plants from the Asian homeland, Near and Remote Oceania, establishing links not observed previously (using the same genetic tools) in extant plants or herbaria samples. These results show that historic barkcloth textiles are cultural materials amenable to genetic analysis to reveal human history and that these artifacts may harbor evidence of greater genetic diversity in Pacific B. papyrifera in the past.

]]>
<![CDATA[Natural history museum collection and citizen science data show advancing phenology of Danish hoverflies (Insecta: Diptera, Syrphidae) with increasing annual temperature]]> https://www.researchpad.co/article/elastic_article_14485 We explore the phenological response by Danish hoverflies (Syrphidae) to continually rising annual temperatures by analysing >50.000 natural history collection and citizen science records for 37 species collected between 1900 and 2018, a period during which the annual average temperature in Denmark rose significantly (p << 0.01). We perform a simple linear regression analysis of the 10th percentile observation date for each species against year of observation. Fourteen of the species showed a statistically significant (p < 0.05) negative correlation between 10th percentile date and year of observation, indicating earlier emergence as a likely response to climatic warming. Eighteen species showed a non-significant (p ≥ 0.05) negative correlation between 10th percentile date and year of observation, while four species showed a non-significant (p ≥ 0.05) positive correlation, and one showed neither a positive nor a negative correlation. We explore the possible impact of the length of the data series on the regression analysis by dividing the species into four groups depending on how far back in time we have data: ultra-short series (with data from 2003–2018); short series (data from 1998–2018); medium series (data from 1980–2018); long series (data from 2018 to before 1980). The length of the series seems to have an effect on the results as 60% of the long series species (nine out of 15) showed a statistically significant negative correlation, while for the shorter series species less than 35% showed a statistically significant negative correlation. When we reduced the long series in length to short series, the proportion of statistically significant negative correlations fell to 33%, confirming this assumption. We conclude that northern temperate hoverflies generally react to the ongoing climatic warming by emerging earlier.

]]>
<![CDATA[The next generation of natural history collections]]> https://www.researchpad.co/article/5b60074f463d7e39c5526202

The last 50 years have witnessed rapid changes in the ways that natural history specimens are collected, preserved, analyzed, and documented. Those changes have produced unprecedented access to specimens, images, and data as well as impressive research results in organismal biology. The stage is now set for a new generation of collecting, preserving, analyzing, and integrating biological samples—a generation devoted to interdisciplinary research into complex biological interactions and processes. Next-generation collections may be essential for breakthrough research on the spread of infectious diseases, feeding Earth's growing population, adapting to climate change, and other grand research challenges. A decade-long investment in research collection infrastructure will be needed.

]]>
<![CDATA[Paedomorphosis as an Evolutionary Driving Force: Insights from Deep-Sea Brittle Stars]]> https://www.researchpad.co/article/5989d9e6ab0ee8fa60b6b56d

Heterochronic development has been proposed to have played an important role in the evolution of echinoderms. In the class Ophiuroidea, paedomorphosis (retention of juvenile characters into adulthood) has been documented in the families Ophiuridae and Ophiolepididae but not been investigated on a broader taxonomic scale. Historical errors, confusing juvenile stages with paedomorphic species, show the difficulties in correctly identifying the effects of heterochrony on development and evolution. This study presents a detailed analysis of 40 species with morphologies showing various degrees of juvenile appearance in late ontogeny. They are compared to a range of early ontogenetic stages from paedomorphic and non-paedomorphic species. Both quantitative and qualitative measurements are taken and analysed. The results suggest that strongly paedomorphic species are usually larger than other species at comparable developmental stage. The findings support recent notions of polyphyletic origin of the families Ophiuridae and Ophiolepididae. The importance of paedomorphosis and its correct recognition for the practice of taxonomy and phylogeny are emphasized.

]]>
<![CDATA[The bat community of Haiti and evidence for its long-term persistence at high elevations]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be02c4

Accurate accounts of both living and fossil mammal communities are critical for creating biodiversity inventories and understanding patterns of changing species diversity through time. We combined data from from14 new fossil localities with literature accounts and museum records to document the bat biodiversity of Haiti through time. We also report an assemblage of late-Holocene (1600–600 Cal BP) bat fossils from a montane cave (Trouing Jean Paul, ~1825m) in southern Haiti. The nearly 3000 chiropteran fossils from Trouing Jean Paul represent 15 species of bats including nine species endemic to the Caribbean islands. The fossil bat assemblage from Trouing Jean Paul is dominated by species still found on Hispaniola (15 of 15 species), much as with the fossil bird assemblage from the same locality (22 of 23 species). Thus, both groups of volant vertebrates demonstrate long-term resilience, at least at high elevations, to the past 16 centuries of human presence on the island.

]]>
<![CDATA[Epibiotic Diatoms Are Universally Present on All Sea Turtle Species]]> https://www.researchpad.co/article/5989dab5ab0ee8fa60bac6a7

The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals.

]]>
<![CDATA[Phylogenetic Reassessment of Antarctic Tetillidae (Demospongiae, Tetractinellida) Reveals New Genera and Genetic Similarity among Morphologically Distinct Species]]> https://www.researchpad.co/article/5989da66ab0ee8fa60b91f2a

Species of Tetillidae are distributed worldwide. However, some genera are unresolved and only a few genera and species of this family have been described from the Antarctic. The incorporation of 25 new COI and 18S sequences of Antarctic Tetillidae to those used recently for assessing the genera phylogeny, has allowed us to improve the resolution of some poorly resolved nodes and to confirm the monophyly of previously identified clades. Classical genera such as Craniella recovered their traditional diagnosis by moving the Antarctic Tetilla from Craniella, where they were placed in the previous family phylogeny, to Antarctotetilla gen. nov. The morphological re-examination of specimens used in the previous phylogeny and their comparison to the type material revealed misidentifications. The proposed monotypic new genus Levantinella had uncertain phylogenetic relationships depending on the gene partition used. Two more clades would require the inclusion of additional species to be formally established as new genera. The parsimony tree based on morphological characters and the secondary structure of the 18S (V4 region) almost completely matched the COI M1-M6 and the COI+18S concatenated phylogenies. Morphological synapomorphies have been identified for the genera proposed. New 15 28S (D3-D5) and 11 COI I3-M11 partitions were exclusively sequenced for the Antarctic species subset. Remarkably, species within the Antarctic genera Cinachyra (C. barbata and C. antarctica) and Antarctotetilla (A. leptoderma, A. grandis, and A. sagitta), which are clearly distinguishable morphologically, were not genetically differentiated with any of the markers assayed. Thus, as it has been reported for other Antarctic sponges, both the mitochondrial and nuclear partitions used did not differentiate species that were well characterized morphologically. Antarctic Tetillidae offers a rare example of genetically cryptic (with the traditional markers used for sponges), morphologically distinct species.

]]>
<![CDATA[Integration of Morphological Data into Molecular Phylogenetic Analysis: Toward the Identikit of the Stylasterid Ancestor]]> https://www.researchpad.co/article/5989dad8ab0ee8fa60bb8b98

Stylasteridae is a hydroid family including 29 worldwide-distributed genera, all provided with a calcareous skeleton. They are abundant in shallow and deep waters and represent an important component of marine communities. In the present paper, we studied the evolution of ten morphological characters, currently used in stylasterid taxonomy, using a phylogenetic approach. Our results indicate that stylasterid morphology is highly plastic and that many events of independent evolution and reversion have occurred. Our analysis also allows sketching a possible identikit of the stylasterid ancestor. It had calcareous skeleton, reticulate-granular coenosteal texture, polyps randomly arranged, gastrostyle, and dactylopore spines, while lacking a gastropore lip and dactylostyles. If the ancestor had single or double/multiple chambered gastropore tube is uncertain. These data suggest that the ancestor was similar to the extant genera Cyclohelia and Stellapora. Our investigation is the first attempt to integrate molecular and morphological information to clarify the stylasterid evolutionary scenario and represents the first step to infer the stylasterid ancestor morphology.

]]>
<![CDATA[Assessing DNA Barcodes for Species Identification in North American Reptiles and Amphibians in Natural History Collections]]> https://www.researchpad.co/article/5989db3eab0ee8fa60bd5ed6

Background

High rates of species discovery and loss have led to the urgent need for more rapid assessment of species diversity in the herpetofauna. DNA barcoding allows for the preliminary identification of species based on sequence divergence. Prior DNA barcoding work on reptiles and amphibians has revealed higher biodiversity counts than previously estimated due to cases of cryptic and undiscovered species. Past studies have provided DNA barcodes for just 14% of the North American herpetofauna, revealing the need for expanded coverage.

Methodology/Principal Findings

This study extends the DNA barcode reference library for North American herpetofauna, assesses the utility of this approach in aiding species delimitation, and examines the correspondence between current species boundaries and sequence clusters designated by the BIN system. Sequences were obtained from 730 specimens, representing 274 species (43%) from the North American herpetofauna. Mean intraspecific divergences were 1% and 3%, while average congeneric sequence divergences were 16% and 14% in amphibians and reptiles, respectively. BIN assignments corresponded with current species boundaries in 79% of amphibians, 100% of turtles, and 60% of squamates. Deep divergences (>2%) were noted in 35% of squamate and 16% of amphibian species, and low divergences (<2%) occurred in 12% of reptiles and 23% of amphibians, patterns reflected in BIN assignments. Sequence recovery declined with specimen age, and variation in recovery success was noted among collections. Within collections, barcodes effectively flagged seven mislabeled tissues, and barcode fragments were recovered from five formalin-fixed specimens.

Conclusions/Significance

This study demonstrates that DNA barcodes can effectively flag errors in museum collections, while BIN splits and merges reveal taxa belonging to deeply diverged or hybridizing lineages. This study is the first effort to compile a reference library of DNA barcodes for herpetofauna on a continental scale.

]]>
<![CDATA[A Basal Tapejarine (Pterosauria; Pterodactyloidea; Tapejaridae) from the Crato Formation, Early Cretaceous of Brazil]]> https://www.researchpad.co/article/5989da38ab0ee8fa60b86f17

A three-dimensional and almost complete pterosaur mandible from the Crato Formation (Early Cretaceous of Northeastern Brazil), Araripe Basin, is described as a new species of a tapejarine tapejarid. Tapejarines are a particular group of toothless pterosaurs, characterized by well-developed cranial crests, downturned rostra, and have been proposed to represent frugivorous flying reptiles. Though comparatively well represented and distributed, the evolutionary history of the group is still poorly known, and the internal relationships of its members are not well understood. The new species here reported, named Aymberedactylus cearensis gen. et sp. nov., adds new data concerning the evolution of the group, concerning their morphology and geographical origin. It differs from known tapejarids due to its unusually elongate retroarticular process and a shallow fossa on the splenial exhibiting distinctive rugose texture. Furthermore, it exhibits a suite of basal and derived conditions within the Tapejaridae, demonstrating how their morphological traits probably evolved and that these forms were even more diverse than already acknowledged. The discovery of Aymberedactylus cearensis sheds new light on the evolutionary history of the Tapejarinae.

]]>
<![CDATA[Sequence Capture and Phylogenetic Utility of Genomic Ultraconserved Elements Obtained from Pinned Insect Specimens]]> https://www.researchpad.co/article/5989da71ab0ee8fa60b94dde

Obtaining sequence data from historical museum specimens has been a growing research interest, invigorated by next-generation sequencing methods that allow inputs of highly degraded DNA. We applied a target enrichment and next-generation sequencing protocol to generate ultraconserved elements (UCEs) from 51 large carpenter bee specimens (genus Xylocopa), representing 25 species with specimen ages ranging from 2–121 years. We measured the correlation between specimen age and DNA yield (pre- and post-library preparation DNA concentration) and several UCE sequence capture statistics (raw read count, UCE reads on target, UCE mean contig length and UCE locus count) with linear regression models. We performed piecewise regression to test for specific breakpoints in the relationship of specimen age and DNA yield and sequence capture variables. Additionally, we compared UCE data from newer and older specimens of the same species and reconstructed their phylogeny in order to confirm the validity of our data. We recovered 6–972 UCE loci from samples with pre-library DNA concentrations ranging from 0.06–9.8 ng/μL. All investigated DNA yield and sequence capture variables were significantly but only moderately negatively correlated with specimen age. Specimens of age 20 years or less had significantly higher pre- and post-library concentrations, UCE contig lengths, and locus counts compared to specimens older than 20 years. We found breakpoints in our data indicating a decrease of the initial detrimental effect of specimen age on pre- and post-library DNA concentration and UCE contig length starting around 21–39 years after preservation. Our phylogenetic results confirmed the integrity of our data, giving preliminary insights into relationships within Xylocopa. We consider the effect of additional factors not measured in this study on our age-related sequence capture results, such as DNA fragmentation and preservation method, and discuss the promise of the UCE approach for large-scale projects in insect phylogenomics using museum specimens.

]]>
<![CDATA[Dramatic Declines of Montane Frogs in a Central African Biodiversity Hotspot]]> https://www.researchpad.co/article/5989db0eab0ee8fa60bcb19c

Amphibian populations are vanishing worldwide. Declines and extinctions of many populations have been attributed to chytridiomycosis, a disease induced by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). In Africa, however, changes in amphibian assemblages were typically attributed to habitat change. We conducted a retrospective study utilizing field surveys from 2004–2012 of the anuran faunas on two mountains in western Cameroon, a hotspot of African amphibian diversity. The number of species detected was negatively influenced by year, habitat degradation, and elevation, and we detected a decline of certain species. Because another study in this region revealed an emergence of Bd in 2008, we screened additional recent field-collected samples and also pre-decline preserved museum specimens for the presence of Bd supporting emergence before 2008. When comparing the years before and after Bd detection, we found significantly diminished frog species richness and abundance on both mountains after Bd emergence. Our analyses suggest that this may be the first disease-driven community-level decline in anuran biodiversity in Central Africa. The disappearance of several species known to tolerate habitat degradation, and a trend of stronger declines at higher elevations, are consistent with Bd-induced declines in other regions. Not all species decreased; populations of some species remained constant, and others increased after the emergence of Bd. This variation might be explained by species-specific differences in infection probability. Increased habitat protection and Bd-mitigation strategies are needed for sustaining diverse amphibian communities such as those on Mt. Manengouba, which contains nearly half of Cameroon’s frog diversity.

]]>
<![CDATA[A morphometric system to distinguish sheep and goat postcranial bones]]> https://www.researchpad.co/article/5989db5dab0ee8fa60be0492

Distinguishing between the bones of sheep and goat is a notorious challenge in zooarchaeology. Several methodological contributions have been published at different times and by various people to facilitate this task, largely relying on a macro-morphological approach. This is now routinely adopted by zooarchaeologists but, although it certainly has its value, has also been shown to have limitations. Morphological discriminant criteria can vary in different populations and correct identification is highly dependent upon a researcher’s experience, availability of appropriate reference collections, and many other factors that are difficult to quantify. There is therefore a need to establish a more objective system, susceptible to scrutiny. In order to fulfil such a requirement, this paper offers a comprehensive morphometric method for the identification of sheep and goat postcranial bones, using a sample of more than 150 modern skeletons as a basis, and building on previous pioneering work. The proposed method is based on measurements—some newly created, others previously published–and its use is recommended in combination with the more traditional morphological approach. Measurement ratios, used to translate morphological traits into biometrical attributes, are demonstrated to have substantial diagnostic potential, with the vast majority of specimens correctly assigned to species. The efficacy of the new method is also tested with Discriminant Analysis, which provides a successful verification of the biometrical indices, a statistical means to select the most promising measurements, and an additional line of analysis to be used in conjunction with the others.

]]>
<![CDATA[Diatoms on the carapace of common snapping turtles: Luticola spp. dominate despite spatial variation in assemblages]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdba97

Filamentous algae are often visible on the carapaces of freshwater turtles and these algae are dominated by a few species with varying geographic distributions. Compared to filamentous algae, little is known about the much more speciose microalgae on turtles. Our objectives were to compare the diatom flora on a single turtle species (the common snapping turtle, Chelydra serpentina) across part of its range to examine spatial patterns and determine whether specific diatom taxa were consistently associated with turtles (as occurs in the filamentous alga Basicladia spp.). Using preserved turtle specimens from museums, we systematically sampled diatoms on the carapaces of 25 snapping turtles across five states. The diverse diatom assemblages formed two groups–the southern Oklahoma group and the northern Illinois/Wisconsin/New York group, with Arkansas not differing from either group. Of the six diatom species found in all five states, four species are widespread, whereas Luticola cf. goeppertiana and L. cf. mutica are undescribed species, known only from turtles in our study. L. cf. goeppertiana comprised 83% of the diatom abundance on Oklahoma turtles and was relatively more abundant on southern turtles (Oklahoma and Arkansas) than on northern turtles (where mean abundance/state was > 10%). L. cf. mutica was the most abundant species (40%) on New York turtles. Some Luticola species are apparently turtle associates and results support a pattern of spatial variation in Luticola species, similar to that in Basicladia. Using museum specimens is an efficient and effective method to study the distribution of micro-epibionts.

]]>
<![CDATA[Zachsia zenkewitschi (Teredinidae), a Rare and Unusual Seagrass Boring Bivalve Revisited and Redescribed]]> https://www.researchpad.co/article/5989da70ab0ee8fa60b948ab

The sea-grass borer Zachsia zenkewitschi belongs to a group of economically and ecologically important bivalves, commonly referred to as shipworms. The sole recognized representative of the genus Zachsia, this species displays an unusual life history and reproductive strategy that is now understood to include: environmental sex determination of free swimming larvae, extreme sexual and size dimorphism between males and females, internal fertilization, maintenance of often large harems of male dwarfs within a specialized cavity of the female mantle, and complex maternal care of larvae in specialized brood pouches within the gill. It is also the only shipworm species known to burrow in sea grass rhizomes rather than terrestrial wood. Although Z. zenkewitschi is rare and little studied, understanding of its biology and anatomy has evolved substantially, rendering some aspects of its original description inaccurate. Moreover, no existing type specimens are known for this species. In light of these facts, we designate a neotype from among specimens recently collected at the type location, and undertake a re-description of this species, accounting for recent reinterpretation of its life history and functional anatomy.

]]>
<![CDATA[Integrated Taxonomy Reveals Hidden Diversity in Northern Australian Fishes: A New Species of Seamoth (Genus Pegasus)]]> https://www.researchpad.co/article/5989da39ab0ee8fa60b872b1

Fishes are one of the most intensively studied marine taxonomic groups yet cryptic species are still being discovered. An integrated taxonomic approach is used herein to delineate and describe a new cryptic seamoth (genus Pegasus) from what was previously a wide-ranging species. Preliminary mitochondrial DNA barcoding indicated possible speciation in Pegasus volitans specimens collected in surveys of the Torres Strait and Great Barrier Reef off Queensland in Australia. Morphological and meristic investigations found key differences in a number of characters between P. volitans and the new species, P. tetrabelos. Further mt DNA barcoding of both the COI and the slower mutating 16S genes of additional specimens provided strong support for two separate species. Pegasus tetrabelos and P. volitans are sympatric in northern Australia and were frequently caught together in trawls at the same depths.

]]>
<![CDATA[Historic DNA for taxonomy and conservation: A case-study of a century-old Hawaiian hawkmoth type (Lepidoptera: Sphingidae)]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbd9b

Analysing historic DNA from museum specimens offers the unique opportunity to study the molecular systematics and phylogenetics of rare and possibly extinct taxa. In the Hawaiian fauna, the hawkmoth, Hyles calida calida, occurs on several of the main islands and is quite frequent, whereas Hyles c. hawaiiensis is restricted to the Island of Hawaii where it appears to be very rare. Analysis of mitochondrial DNA sequences shows that Hyles c. hawaiiensis differs from the nominotypical subspecies by an average p-distance of 2.8%, which is of a similar order of magnitude to that found between other species of Hyles, suggesting that Hyles c. hawaiiensis should perhaps be awarded species status, although more data are required for a formal taxonomic revision. Given the rarity of this taxon, these analyses should be undertaken urgently so that conservation measures can be implemented before it becomes extinct.

]]>
<![CDATA[Hybridization Capture Using RAD Probes (hyRAD), a New Tool for Performing Genomic Analyses on Collection Specimens]]> https://www.researchpad.co/article/5989dac1ab0ee8fa60bb0c31

In the recent years, many protocols aimed at reproducibly sequencing reduced-genome subsets in non-model organisms have been published. Among them, RAD-sequencing is one of the most widely used. It relies on digesting DNA with specific restriction enzymes and performing size selection on the resulting fragments. Despite its acknowledged utility, this method is of limited use with degraded DNA samples, such as those isolated from museum specimens, as these samples are less likely to harbor fragments long enough to comprise two restriction sites making possible ligation of the adapter sequences (in the case of double-digest RAD) or performing size selection of the resulting fragments (in the case of single-digest RAD). Here, we address these limitations by presenting a novel method called hybridization RAD (hyRAD). In this approach, biotinylated RAD fragments, covering a random fraction of the genome, are used as baits for capturing homologous fragments from genomic shotgun sequencing libraries. This simple and cost-effective approach allows sequencing of orthologous loci even from highly degraded DNA samples, opening new avenues of research in the field of museum genomics. Not relying on the restriction site presence, it improves among-sample loci coverage. In a trial study, hyRAD allowed us to obtain a large set of orthologous loci from fresh and museum samples from a non-model butterfly species, with a high proportion of single nucleotide polymorphisms present in all eight analyzed specimens, including 58-year-old museum samples. The utility of the method was further validated using 49 museum and fresh samples of a Palearctic grasshopper species for which the spatial genetic structure was previously assessed using mtDNA amplicons. The application of the method is eventually discussed in a wider context. As it does not rely on the restriction site presence, it is therefore not sensitive to among-sample loci polymorphisms in the restriction sites that usually causes loci dropout. This should enable the application of hyRAD to analyses at broader evolutionary scales.

]]>
<![CDATA[Early Life Conditions and Physiological Stress following the Transition to Farming in Central/Southeast Europe: Skeletal Growth Impairment and 6000 Years of Gradual Recovery]]> https://www.researchpad.co/article/5989da75ab0ee8fa60b96765

Early life conditions play an important role in determining adult body size. In particular, childhood malnutrition and disease can elicit growth delays and affect adult body size if severe or prolonged enough. In the earliest stages of farming, skeletal growth impairment and small adult body size are often documented relative to hunter-gatherer groups, though this pattern is regionally variable. In Central/Southeast Europe, it is unclear how early life stress, growth history, and adult body size were impacted by the introduction of agriculture and ensuing long-term demographic, social, and behavioral change. The current study assesses this impact through the reconstruction and analysis of mean stature, body mass, limb proportion indices, and sexual dimorphism among 407 skeletally mature men and women from foraging and farming populations spanning the Late Mesolithic through Early Medieval periods in Central/Southeast Europe (~7100 calBC to 850 AD). Results document significantly reduced mean stature, body mass, and crural index in Neolithic agriculturalists relative both to Late Mesolithic hunter-gatherer-fishers and to later farming populations. This indication of relative growth impairment in the Neolithic, particularly among women, is supported by existing evidence of high developmental stress, intensive physical activity, and variable access to animal protein in these early agricultural populations. Among subsequent agriculturalists, temporal increases in mean stature, body mass, and crural index were more pronounced among Central European women, driving declines in the magnitude of sexual dimorphism through time. Overall, results suggest that the transition to agriculture in Central/Southeast Europe was challenging for early farming populations, but was followed by gradual amelioration across thousands of years, particularly among Central European women. This sex difference may be indicative, in part, of greater temporal variation in the social status afforded to young girls, in their access to resources during growth, and/or in their health status than was experienced by men.

]]>
<![CDATA[Opening the treasure chest: A DNA-barcoding primer set for most higher taxa of Central European birds and mammals from museum collections]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc721

DNA-barcoding is a rapidly developing method for efficiently identifying samples to species level by means of short standard DNA sequences. However, reliable species assignment requires the availability of a comprehensive DNA barcode reference library, and hence numerous initiatives aim at generating such barcode databases for particular taxa or geographic regions. Historical museum collections represent a potentially invaluable source for the DNA-barcoding of many taxa. This is particularly true for birds and mammals, for which collecting fresh (voucher) material is often very difficult to (nearly) impossible due to the special animal welfare and conservation regulations that apply to vertebrates in general, and birds and mammals in particular. Moreover, even great efforts might not guarantee sufficiently complete sampling of fresh material in a short period of time. DNA extracted from historical samples is usually degraded, such that only short fragments can be amplified, rendering the recovery of the barcoding region as a single fragment impossible. Here, we present a new set of primers that allows the efficient amplification and sequencing of the entire barcoding region in most higher taxa of Central European birds and mammals in six overlapping fragments, thus greatly increasing the value of historical museum collections for generating DNA barcode reference libraries. Applying our new primer set in recently established NGS protocols promises to further increase the efficiency of barcoding old bird and mammal specimens.

]]>