ResearchPad - nano-express https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[High-Performance AlGaN Double Channel HEMTs with Improved Drain Current Density and High Breakdown Voltage]]> https://www.researchpad.co/article/elastic_article_10002 In this work, AlGaN double channel heterostructure is proposed and grown by metal organic chemical vapor deposition (MOCVD), and high-performance AlGaN double channel high electron mobility transistors (HEMTs) are fabricated and investigated. The implementation of double channel feature effectively improves the transport properties of AlGaN channel heterostructures. On one hand, the total two dimensional electron gas (2DEG) density is promoted due to the double potential wells along the vertical direction and the enhanced carrier confinement. On the other hand, the average 2DEG density in each channel is reduced, and the mobility is elevated resulted from the suppression of carrier-carrier scattering effect. As a result, the maximum drain current density (Imax) of AlGaN double channel HEMTs reaches 473 mA/mm with gate voltage of 0 V. Moreover, the superior breakdown performance of the AlGaN double channel HEMTs is also demonstrated. These results not only show the great application potential of AlGaN double channel HEMTs in microwave power electronics but also develop a new thinking for the studies of group III nitride-based electronic devices.

]]>
<![CDATA[High Photon Absorptivity of Quantum Dot Infrared Photodetectors Achieved by the Surface Plasmon Effect of Metal Nanohole Array]]> https://www.researchpad.co/article/elastic_article_9981 With the increasing demand for small-scale photodetector devices, quantum dot–based infrared photodetectors have attracted more and more attention in the past decades. In this work, periodic metal nanohole array structures are introduced to the quantum dot infrared photodetectors to enhance the photon absorptivity performance via the surface plasmon enhancement effect in order to overcome the bottleneck of low optical absorption efficiency that exists in conventional photodetectors. The results demonstrate that the optimized metal nanohole array structures can greatly enhance the photon absorptivity up to 86.47% in the specific photodetectors, which is 1.89 times than that of conventional photodetectors without the metal array structures. The large enhancement of the absorptivity can be attributed to the local coupling surface plasmon effect caused by the metal nanohole array structures. It is believed that the study can provide certain theoretical guidance for high-performance nanoscale quantum dot–based infrared photodetectors.

]]>
<![CDATA[Water-Soluble Fullerenol with Hydroxyl Group Dependence for Efficient Two-Photon Excited Photodynamic Inactivation of Infectious Microbes]]> https://www.researchpad.co/article/elastic_article_9864 We successfully prepared water-soluble fullerenol [C60(OH)46] that exhibited a high singlet oxygen quantum yield and efficiently generated reactive oxygen species. Additionally, the water-soluble C60(OH)46 with a higher composition of exposed hydroxyl groups had superior two-photon stability and characteristics compared with that with a lower composition of such groups. Therefore, the prepared fullerenol can be an effective two-photon photosensitizer. The water-soluble C60(OH)46 had favorable two-photon properties. During two-photon photodynamic therapy, the water-soluble C60(OH)46 had substantial antimicrobial activity against Escherichia coli at an ultralow-energy level of 211.2 nJ pixel−1 with 800 scans and a photoexcited wavelength of 760 nm.

]]>
<![CDATA[A WS<sub>2</sub> Case Theoretical Study: Hydrogen Storage Performance Improved by Phase Altering]]> https://www.researchpad.co/article/elastic_article_8956 Hydrogen is a clean energy with high efficiency, while the storage and transport problems still prevent its extensive use. Because of the large specific surface area and unique electronic structure, two-dimensional materials have great potential in hydrogen storage. Particularly, monolayer 2H-WS2 has been proven to be suitable for hydrogen storage. But there are few studies concerning the other two phases of WS2 (1T, 1T′) in hydrogen storage. Here, we carried out first-principle calculations to investigate the hydrogen adsorption behaviors of all the three phases of WS2. Multiple hydrogen adsorption studies also evaluate the hydrogen storage abilities of these materials. Comprehensive analysis results show that the 1T′-WS2 has better hydrogen storage performance than the 2H-WS2, which means phase engineering could be an effective way to improve hydrogen storage performance. This paper provides a reference for the further study of hydrogen storage in two-dimensional materials.

]]>
<![CDATA[Effects of Post Annealing on Electrical Performance of Polycrystalline Ga<sub>2</sub>O<sub>3</sub> Photodetector on Sapphire]]> https://www.researchpad.co/article/elastic_article_8852 Effects of post annealing on the physical and electrical properties of solar-blind polycrystalline gallium oxide (Ga2O3) ultraviolet photodetectors on the sapphire substrate are investigated. The grain size of poly-Ga2O3 becomes larger with the post annealing temperature (PAT) increasing from 800 °C to 1000 °C, but it gets smaller with further raising PAT to 1100 °C. A blue shift is observed at the absorption edge of the transmittance spectra of Ga2O3 on sapphire as increasing PAT, due to the incorporation of Al from the sapphire substrate into Ga2O3 to form (AlxGa1–x)2O3. The high-resolution X-ray diffraction and transmittance spectra measurement indicate that the substitutional Al composition and bandgap of (AlxGa1–x)2O3 annealed at 1100 °C can be above 0.30 and 5.10 eV, respectively. The Rmax of the sample annealed at 1000 °C increases about 500% compared to the as-deposited device, and the sample annealed at 1000 °C has short rise time and decay time of 0.148 s and 0.067 s, respectively. This work may pave a way for the fabrication of poly-Ga2O3 ultraviolet photodetector and find a method to improve responsivity and speed of response.

]]>
<![CDATA[Anti-Epcam Aptamer (Syl3c)-Functionalized Liposome for Targeted Delivery Of Doxorubicin: In Vitro And In Vivo Antitumor Studies in Mice Bearing C26 Colon Carcinoma]]> https://www.researchpad.co/article/elastic_article_8849 In this study, we have surface-functionalized PEGylated-nanoliposomal doxorubicin (DOX) with anti-EpCAM (epithelial cell adhesion molecule) aptamer via post-insertion of anti-EpCAM aptamer-conjugated DSPE-mPEG2000 into Caelyx® (ED-lip). The size, charge, release profile, and cytotoxicity and cellular uptake of formulation were determined. The characterization of the ED-lip demonstrated the slightly increase in size and PDI along with the decrease in zeta potential which indicated that post-insertion efficiently done. The results of flow cytometry and fluorescent microscopy have shown that ED-lip enhanced the rate of cell uptake on C26 cell line compared to Caelyx®. The ED-lip also had more cytotoxic effects than Caelyx® which indicated the efficacy of anti-EpCAM aptamer as targeting ligand. The pharmacokinetic and tissue biodistribution of formulations in mice bearing C26 tumors demonstrated that ED-lip did not affect the distribution profile of DOX compared to Caelyx® in animal model. In addition, ED-lip effectively improved the tumor accumulation of DOX and promoted survival of animals compared to Caelyx®. These results suggest that the functionalization of Caelyx® with anti-EpCAM aptamer is promising in cancer treatment and merits further investigation.

]]>
<![CDATA[Test Pattern Design for Plasma Induced Damage on Inter-Metal Dielectric in FinFET Cu BEOL Processes]]> https://www.researchpad.co/article/N5b3f6ae3-6456-4cf1-95c8-25012c726052 High-density interconnects, enabled by advanced CMOS Cu BEOL technologies, lead to closely placed metals layers. High-aspect ratio metal lines require extensive plasma etching processes, which may cause reliability concerns on inter metal dielectric (IMD) layers. This study presents newly proposed test patterns for evaluating the effect of plasma-induced charging effect on the integrity of IMD between closely placed metal lines. Strong correlations between the plasma charging intensities and damages found in IMD layers are found and analyzed comprehensively.

]]>
<![CDATA[Nec-1 Attenuates Neurotoxicity Induced by Titanium Dioxide Nanomaterials on Sh-Sy5y Cells Through RIP1]]> https://www.researchpad.co/article/N3ca75f4d-f968-401e-96cf-d1e9f0e4ce5f

Titanium dioxide nanomaterials are applied in numerous fields due to their splendid physicochemical characteristics, which in turn poses a potential threat to human health. Recently, numerous in vivo studies have revealed that titanium dioxide nanoparticles (TNPs) can be transported into animal brains after exposure through various routes. Absorbed TNPs can accumulate in the brain and may disturb neuronal cells, leading to brain dysfunction. In vitro studies verified the neurotoxicity of TNPs. The mechanisms underlying the neurotoxicity of TNPs remains unclear. Whether necroptosis is involved in the neurotoxicity of TNPs is unknown. Therefore, we performed an in vitro study and found that TNPs induced inflammatory injury in SH-SY5Y cells in a dose-dependent way, which was mitigated by necrostatin-1 (Nec-1) pretreatment. Since receptor-interacting protein kinase 1 (RIP1) is reported to be the target of Nec-1, we silenced it by siRNA. We exposed mutant and wild-type cells to TNPs and assessed inflammatory injury. Silencing RIP1 expression inhibited inflammatory injury induced by TNPs exposure. Taken together, Nec-1 ameliorates the neurotoxicity of TNPs through RIP1. However, more studies should be performed to comprehensively assess the correlation between the neurotoxicity of TNPs and RIP1.

]]>
<![CDATA[Construction of ZnTiO3/Bi4NbO8Cl heterojunction with enhanced photocatalytic performance]]> https://www.researchpad.co/article/Ndefa0fe0-f2bb-4fd9-811e-91f3fec79fff

Constructing heterojunction is an effective strategy to enhance photocatalytic performance of photocatalysts. Herein, we fabricated ZnTiO3/Bi4NbO8Cl heterojunction with improved performance via a typical mechanical mixing method. The rhodamine (RhB) degradation rate over heterojunction is higher than that of individual ZnTiO3 or Bi4NbO8Cl under Xenon-arc lamp irradiation. Combining ZnTiO3 with Bi4NbO8Cl can inhibit the recombination of photo-excited carriers. The improved quantum efficiency was demonstrated by transient-photocurrent responses (PC), electrochemical impedance spectroscopy (EIS), photoluminescence (PL) spectra, and time-resolved PL (TRPL) spectra. This research may be valuable for photocatalysts in the industrial application.

]]>
<![CDATA[The PI3K/mTOR dual inhibitor BEZ235 nanoparticles improve radiosensitization of hepatoma cells through apoptosis and regulation DNA repair pathway]]> https://www.researchpad.co/article/N0784bdd0-cb96-4192-be73-356d1cbe659c

Abstract

Polymer materials encapsulating drugs have broad prospects for drug delivery. We evaluated the effectiveness of polyethylene glycol-poly (lactic-co-glycolic acid) (PLGA-PEG) encapsulation and release characteristics of PI3K/mTOR inhibitor NVP-BEZ235 (BEZ235). We proposed a strategy for targeting radiosensitization of liver cancer cells. The biocompatibility, cell interaction, and internalization of Glypican-3 (GPC3) antibody-modified, BEZ235-loaded PLGA-PEG nanoparticles (NP-BEZ235-Ab) in hepatoma cells in vitro were studied. Also, the cell killing effect of NP-BEZ235-Ab combined with γ-ray cell was evaluated. We used confocal microscopy to monitor nanoparticle-cell interactions and cellular uptake, conducted focus-formation experiments to analyze the synergistic biological effects of NP-BEZ235-Ab and priming, and studied synergy in liver cancer cells using molecular biological methods such as western blotting. We found that PLGA-PEG has good loading efficiency for BEZ235 and high selectivity to GPC3-positive HepG2 liver cancer cells, thus documenting that NP-BEZ235-Ab acts as a small-molecule drug delivery nanocarrier. At the nominal concentration, the NP-BEZ235-Ab nanoformulation synergistically kills liver cancer cells with significantly higher efficiency than does the free drug. Thus, NP-BEZ235-Ab is a potential radiosensitizer.

Graphical Abstract

]]>
<![CDATA[Strain Engineering on the Electronic and Optical Properties of WSSe Bilayer]]> https://www.researchpad.co/article/Nfafc814f-e328-4c24-a1f2-62aacbe2d950

Controllable optical properties are important for optoelectronic applications. Based on the unique properties and potential applications of two-dimensional Janus WSSe, we systematically investigate the strain-modulated electronic and optical properties of WSSe bilayer through the first-principle calculations. The preferred stacking configurations and chalcogen orders are determined by the binding energies. The bandgap of all the stable structures are found sensitive to the external stress and could be tailored from semiconductor to metallicity under appropriate compressive strains. Atomic orbital projected energy bands reveal a positive correlation between the degeneracy and the structural symmetry, which explains the bandgap evolutions. Dipole transition preference is tuned by the biaxial strain. A controllable transformation between anisotropic and isotropic optical properties is achieved under an around − 6%~− 4% critical strain. The strain controllable electronic and optical properties of the WSSe bilayer may open up an important path for exploring next-generation optoelectronic applications.

]]>
<![CDATA[Organic Phosphorous and Calcium Source Induce the Synthesis of Yolk-Shell Structured Microspheres of Calcium Phosphate with High-Specific Surface Area: Application in HEL Adsorption]]> https://www.researchpad.co/article/N30deeaab-ca46-4985-8a5a-ec6024f4d508

Yolk-shell-structured calcium phosphate microspheres have a great potential for medical applications due to their excellent physicochemical properties and biocompatibility. However, developing a yolk-shell-structured calcium phosphate with high adsorption capability remains a challenge. Herein, a porous yolk-shell-structured microsphere (ATP-CG) of calcium phosphate with high-specific surface area [SBET = 143 m2 g−1, which is approximately three times as high as that of ATP-CL microspheres synthesized by replacing calcium source with calcium l-lactate pentahydrate (CL)] was successfully synthesized by using adenosine 5'-triphosphate disodium salt (ATP) as the phosphorous source and calcium gluconate monohydrate (CG) as calcium source through a self-templating approache. The influences of molar ratio of Ca to P (Ca/P), hydrothermal temperature, and time on the morphology of ATP-CG microspheres were also investigated. It is found that the organic calcium source and organic phosphorous source play a vital role in the formation of yolk-shell structure. Furthermore, a batch of adsorption experiments were investigated to illuminate the adsorption mechanism of two kinds of yolk-shell-structured microspheres synthesized with different calcium sources. The results show that the adsorption capacity of ATP-CG microspheres (332 ± 36 mg/g) is about twice higher than that of ATP-CL microspheres (176 ± 33 mg/g). Moreover, the higher-specific surface area caused by the calcium source and unique surface chemical properties for ATP-CG microspheres play an important role in the improvement of HEL adsorption capability. The study indicates that the as-prepared yolk-shell-structured microsphere is promising for application in drug delivery fields and provides an effective approach for improving drug adsorption capability.

]]>
<![CDATA[Designing Aptamer-Gold Nanoparticle-Loaded pH-Sensitive Liposomes Encapsulate Morin for Treating Cancer]]> https://www.researchpad.co/article/N1b27094a-ad0d-4a36-9292-54cd36d78783

This study proposes the synthesis of a type of anticancer nanoparticle, aptamers and Au nanoparticle (Apt-Au)-modified Morin pH-sensitive liposome (MSL), which exhibits targeting properties. Tumors are difficult to cure because their microenvironment varies from that of normal tissue; its pH is lower than that of normal tissue, which generally impedes the effectiveness of drugs. Thus, pH-responsive drugs have attracted extensive attention. Gold nanoparticles (AuNPs) show potential as drug carriers because of their small size, good biocompatibility, easy surface modification, and strong cell penetration. Apt-Au@MSL exhibits excellent monodispersity and tumor-targeting properties and can be released in partly acidic environment via dialysis. We screened our model cancer cell by MTT assay and found that SGC-7901 cells can effectively suppress proliferation. In vivo results demonstrate that the administration of Apt-Au@MSL could inhibit tumor growth in xenograft mouse models. H&E staining and TUNEL assay further confirmed that Apt-Au@MSL can promote tumor apoptosis. Apt-Au@MSL may induce apoptosis by triggering overproduction of reactive oxygen species (ROS) and regulating multiple signal crosstalk. Both blood biochemistry tests and H&E staining suggested that these materials exhibit negligible acute toxicity and good biocompatibility in vivo. With its powerful function, Apt-Au@MSL can be used as a target-based anticancer material for future clinical cancer treatment.

]]>
<![CDATA[Bouncing of Hydroxylated Silica Nanoparticles: an Atomistic Study Based on REAX Potentials]]> https://www.researchpad.co/article/N04b7b9aa-63d9-445b-8e1a-2f2472d2e6c4

Clean silica surfaces have a high surface energy. In consequence, colliding silica nanoparticles will stick rather than bounce over a wide range of collision velocities. Often, however, silica surfaces are passivated by adsorbates, in particular water, which considerably reduce the surface energy. We study the effect of surface hydroxylation on silica nanoparticle collisions by atomistic simulation, using the REAX potential that allows for bond breaking and formation. We find that the bouncing velocity is reduced by more than an order of magnitude compared to clean nanoparticle collisions.

]]>
<![CDATA[Ultrasensitive Wearable Pressure Sensors Based on Silver Nanowire-Coated Fabrics]]> https://www.researchpad.co/article/N99f9a228-f39a-4282-9397-ad00c3970cb8

Flexible pressure sensors have attracted increasing attention due to their potential applications in wearable human health monitoring and care systems. Herein, we present a facile approach for fabricating all-textile-based piezoresistive pressure sensor with integrated Ag nanowire-coated fabrics. It fully takes advantage of the synergistic effect of the fiber/yarn/fabric multi-level contacts, leading to the ultrahigh sensitivity of 3.24 × 105 kPa−1 at 0–10 kPa and 2.16 × 104 kPa−1 at 10–100 kPa, respectively. Furthermore, the device achieved a fast response/relaxation time (32/24 ms) and a high stability (> 1000 loading/unloading cycles). Thus, such all-textile pressure sensor with high performance is expected to be applicable in the fields of smart cloths, activity monitoring, and healthcare device.

]]>
<![CDATA[Full-Spectrum Analysis of Perovskite-Based Surface Plasmon Nanolasers]]> https://www.researchpad.co/article/N7c47bc4a-18ef-4dd0-90bb-81996637eea4

We systematically studied the characteristics of hybrid perovskite-based surface plasmon nanolasers. If one changes the anion composition of perovskites, the emission wavelength can be easily tuned. We conducted in full-spectrum modeling that featured hybrid perovskite nanowires placed on different SiO2-coated metallic (Au, Ag, and Al) plates. The proposed nanocavities that supported plasmonic gap modes exhibited distinguished properties of nanolasers, such as low-transparency threshold-gain and low lasing threshold. The corresponding experimental results for the MAPbBr3 nanolaser on Ag revealed the low-threshold operation. These superior features were attributed to enhanced light-matter interaction with strong coupling. Therefore, the proposed scheme, integrated with hybrid perovskite as gain material, provides an excellent platform for nanoscale plasmon lasing in the visible to near-infrared spectra.

]]>
<![CDATA[Electric-Controlled Valley Pseudomagnetoresistance in Graphene with Y-Shaped Kekulé Lattice Distortion]]> https://www.researchpad.co/article/Nc27081dd-2692-4312-bec0-5d1ffd1f0436

We propose a new method for regulating valley pseudomagnetoresistance in ballistic graphene-based valley field-effect transistors by taking into account the Y-shaped Kekulé lattice distortion and electric barrier. The device involves valley injection and valley detection by ferromagnetic-strain source and drain. The valley manipulation in the channel is achieved via the Y-shaped Kekulé lattice distortion and electric barrier. The central mechanism of these devices lies on Y-shaped Kekulé lattice distortion in graphene can induce a valley precession, thus controlling the valley orientation of channel electrons and hence the current collected at the drain. We found that the tuning external bias voltage makes the valley pseudomagnetoresistance oscillate between positive and negative values and colossal tunneling valley pseudomagnetoresistance of over 30,000% can be achieved. Our results suggest that the synergy of valleytronics and digital logics may provide new paradigms for valleytronic-based information processing and reversible computing.

]]>
<![CDATA[Three-Dimensional CuO/TiO2 Hybrid Nanorod Arrays Prepared by Electrodeposition in AAO Membranes as an Excellent Fenton-Like Photocatalyst for Dye Degradation]]> https://www.researchpad.co/article/N36533af9-b9b7-4c5c-b67f-d396bb440e16

Three-dimensional (3D) CuO/TiO2 hybrid heterostructure nanorod arrays (NRs) with noble-metal-free composition, fabricated by template-assisted low-cost processes, were used as the photo-Fenton-like catalyst for dye degradation. Here, CuO NRs were deposited into anodic aluminum oxide templates by electrodeposition method annealed at various temperatures, followed by deposition of TiO2 thin films through E-gun evaporation, resulting in the formation of CuO/TiO2 p-n heterojunction. The distribution of elements and compositions of the CuO/TiO2 p-n heterojunction were analyzed by EDS mapping and EELS profiles, respectively. In the presence of H2O2, CuO/TiO2 hybrid structure performed more efficiently than CuO NRs for Rhodamine B degradation under the irradiation of 500-W mercury-xenon arc lamp. This study demonstrated the effect of length of CuO NRs, on the photo-degradation performance of CuO NRs as well as CuO/TiO2 heterostructure. The optimized CuO/TiO2 hybrid NR array structure exhibited the highest photo-degradation activity, and the mechanism and role of photo-Fenton acting as the catalyst in photo-degradation of dye was also investigated.

]]>
<![CDATA[Development of a General Fabrication Strategy for Carbonaceous Noble Metal Nanocomposites with Photothermal Property]]> https://www.researchpad.co/article/N4d1f7de2-6fe4-4ae3-b579-94392b7ce417

Graphic abstract

This study demonstrate a facile hydrothermal synthesis of noble metal carbonaceous nanocomposites (e.g., Au@C) with simple procedures under mild conditions, which can be25expanded as a general method for preparing diverse carbonaceous core-shell nanoparticles. The Au@C carbonaceous nanostructures exhibit interesting UV-Vis properties dependent upon shell thickness.

]]>
<![CDATA[Fabrication of High-Quality and Strain-Relaxed GeSn Microdisks by Integrating Selective Epitaxial Growth and Selective Wet Etching Methods]]> https://www.researchpad.co/article/N858380cb-fc42-448b-b6c2-0953657c3ad4

GeSn is a promising material for the fabrication of on-chip photonic and nanoelectronic devices. Processing techniques dedicated to GeSn have thus been developed, including epitaxy, annealing, ion implantation, and etching. In this work, suspended, strain-relaxed, and high-quality GeSn microdisks are realized by a new approach without any etching to GeSn alloy. The GeSn alloy was grown on pre-patterned Ge (001) substrate by molecular beam epitaxy at low temperatures. The transmission electron microscopy and scanning electron microscopy were carried out to determine the microstructures of the GeSn samples. The microdisks with different diameters of Ge pedestals were fabricated by controlling the selective wet etching time, and micro-Raman results show that the microdisks with different dimensions of the remaining Ge pedestals have different extents of strain relaxation. The compressive strain of microdisks is almost completely relaxed under suitable conditions. The semiconductor processing technology presented in this work can be an alternative method to fabricate innovative GeSn and other materials based micro/nano-structures for a range of Si-compatible photonics, 3D-MOSFETs, and microelectromechanical device applications.

]]>