ResearchPad - neurobiology-physiology https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Identification and prevention of heterotopias in mouse neocortical neural cell migration incurred by surgical damages during utero electroporation procedures]]> https://www.researchpad.co/article/elastic_article_15161 In utero electroporation (IUE) is a useful technique for gene delivery in embryonic mouse brain. IUE technique is used to investigate the mammalian brain development in vivo. However, according to recent studies, IUE methodology has some limitations like the formation of artificial ectopias and heterotopias at the micro-injection site. Thus far, the artificial heterotopias generated by physical trauma during IUE are rarely reported. Here, we reported the artificial heterotopias and ectopias generated from surgical damages of micropipette in detail, and moreover, we described the protocol to avoid these phenotypes. For the experimental purpose, we transferred empty plasmids (pCAGIG-GFP) with green fluorescent-labelled protein into the cortical cortex by IUE and then compared the structure of the cortex region between the injected and un-injected cerebral hemispheres. The coronary section showed that ectopias and heterotopias were appeared on imperfect-injected brains, and layer maker staining, which including Ctip2 and TBR1 and laminin, can differentiate the physical damage, revealing the neurons in artificial ectopic and heterotopic area were not properly arranged. Moreover, premature differentiation of neurons in ectopias and heterotopias were observed. To avoid heterotopias and ectopias, we carefully manipulated the method of IUE application. Thus, this study might be helpful for the in utero electroporator to distinguish the artificial ectopias and heterotopias that caused by the physical injury by microneedle and the ways to avoid those undesirable circumstances.

]]>
<![CDATA[Knockdown of LncRNAZFAS1 suppresses cell proliferation and metastasis in non-small cell lung cancer]]> https://www.researchpad.co/article/elastic_article_15134 To evaluate the effects of LncRNAZFAS1 on cell proliferation and tumor metastasis in non-small cell lung cancer (NSCLC), we detected the expression level of LncRNAZFAS1 in NSCLC-related tissues and cells. qRT-PCR results revealed that LncRNAZFAS1 in tumor tissues was significantly higher than that in normal lung tissue, especially significantly up-regulated in stage III / IV and in metastatic NSCLC tissues. LncRNAZFAS1 expression was dramatically up-regulated in 4 NSCLC-related cells (A549, SPC-A1, SK-MES-1, and NCI-H1299), with having the highest expression level in A549 cells. Furthermore, we implemented a knockdown of LncRNAZFAS1 in A549 cells, and the results of CCK8 and Transwell assays suggested that knockdown of LncRNAZFAS1 significantly inhibited NSCLC cell proliferation and metastasis. Next, we constructed a tumor xenograft model to evaluate the effect of LncRNAZFAS1 on the NSCLC cell proliferation in vivo. The results indicated that knockdown of LncRNAZFAS1 dramatically inhibited A549 cells proliferation and repressed tumor growth. Additionally, knockdown of LncRNAZFAS1 drastically weakened the expressions of MMP2, MMP9 and Bcl-2 proteins, whereas noticeably strengthened the expression of BAX protein. Our results altogether suggest that knockdown of LncRNAZFAS1 has a negative effect on the proliferation and metastasis of NSCLC cell, which implying LncRNAZFAS1 is a potential unfavorable biomarker in patients with NSCLC.

]]>