ResearchPad - nitriles https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Zinc isotope variations in archeological human teeth (Lapa do Santo, Brazil) reveal dietary transitions in childhood and no contamination from gloves]]> https://www.researchpad.co/article/elastic_article_14585 Zinc (Zn) isotope ratios of dental enamel are a promising tracer for dietary reconstruction in archeology, but its use is still in its infancy. A recent study demonstrated a high risk of Zn contamination from nitrile, and latex gloves used during chemical sample preparation. Here we assess the potential impact of the use of such gloves during enamel sampling on the Zn isotope composition of teeth from a population of early Holocene hunter gatherers from Lapa do Santo, Lagoa Santa, Minas Gerais, Brazil. We first examined the amount of Zn and its isotopic composition released from the gloves used in this study by soaking them in weak nitric acid and water. We compared Zn isotope ratios obtained from teeth that were sampled wearing nitrile, latex or no gloves. Finally, we performed a linear mixed model (LMM) to investigate post hoc the relationship between the gloves used for sampling and the Zn isotope variability in dental enamel. We found that the gloves used in this study released a similar amount of Zn compared to previous work, but only in acidic solution. Zn isotope ratios of teeth and the LMM identified no sign of significant Zn coming from the gloves when teeth were handled for enamel sampling. We hypothesize that Zn in gloves is mostly released by contact with acids. We found that the main source of Zn isotope variability in the Lapa do Santo population was related to the developmental stage of the tooth tissues sampled. We report identical results for two individuals coming from a different archeological context. Tooth enamel formed in utero and/or during the two first years of life showed higher Zn isotope ratios than enamel formed after weaning. More work is required to systematically investigate if Zn isotopes can be used as a breastfeeding tracer.

]]>
<![CDATA[Pesticide distribution and depletion kinetic determination in honey and beeswax: Model for pesticide occurrence and distribution in beehive products]]> https://www.researchpad.co/article/5c76fe5bd5eed0c484e5b94e

Beehive products such as honey, beeswax and recently pollen have been regarded for many years as appropriate sentinels for environmental pesticide pollutions. However, despite yearly application of hundreds of approved pesticides in agricultural fields, only a minor fraction of these organic compounds were actually detected in honey and beeswax samples. This observation has led us to question the general suitability of beehive products as a sentinel for synthetic organic pesticides applied in the field. The aim of the present study was to experimentally determine the distribution (logarithmic ratio of beeswax to honey pesticide concentration, LogD) and depletion kinetics (half-life) of selected pesticides in honey and beeswax as a measure of the latter matrixes to serve as a pesticide sentinel. The obtained parameters were used to extrapolate to pesticide burden in honey and beeswax samples collected from German and Israeli apiaries. In addition, we aimed to establish a mathematical model, enabling us to predict distribution of selected pesticides between honey to beeswax, by utilizing simple substance descriptors, namely, octanol/water partitioning coefficient, molar weight and Henry coefficient. Based on the present results, it appears that pesticides with LogD values > 1 and half-life in beeswax > 1 day, were likely to accumulate and detected in beeswax samples, and less likely to be found in honey. On the other hand, pesticides with negative LogD values were highly likely to be found in honey and less so in beeswax samples. Finally, pesticides with LogD values between 0–1 were expected to be found in both matrixes. The developed model was successfully applied to predict LogD values, thereby identifying octanol/water partitioning and molar weight as the most prominent substance descriptors, which affect pesticide distribution between honey and beeswax.

]]>
<![CDATA[Determination of blood dexmedetomidine in dried blood spots by LC-MS/MS to screen therapeutic levels in paediatric patients]]> https://www.researchpad.co/article/5c46655ed5eed0c484518d3c

Dexmedetomidine is an imidazole derivative, with high affinity for α2 adrenergic receptors, used for sedation, analgesia and adjuvant anaesthesia. In this study, an analytical method for the quantification of dexmedetomidine in dried blood spots was developed, validated and applied. The drug was extracted from dried blood spot by liquid extraction; the separation was carried out by ultra high-resolution liquid chromatography in reverse phase coupled to tandem mass spectrometry method. An X Select cyano 5 μm HSS column (2.1 X 150 mm, Waters) and a mobile phase composed of 0.1% formic acid: acetonitrile [50:50 v/v], were used. The test was linear over the concentration range of 50 to 2000 pg/mL. The coefficients of variation for the intra and interday trials were less than 15%. The drug was stable under the conditions tested. The method was successfully applied for the quantification of 6 patients, aged 0 to 2 years, with classification ASA I, who underwent ambulatory surgeries, receiving a dose of 1 μg/Kg dexmedetomidine IV. The drug concentrations in the different sampling times were in the range of 76 to 868 pg/mL.

]]>
<![CDATA[High stringency evaluation of the inactivation / exclusion efficacy of a MALDI-TOF MS chemical extraction method, with filtration of extract through 0.1 µm filters, on Bacillus anthracis Vollum vegetative cells and spores]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf60f

A previous report indicated that a formic acid chemical extraction method for the preparation of protein extracts for matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) identification, with filtration of extracts through 0.2 μm regenerated cellulose (RC) filters, would not reliably inactivate or exclude Bacillus anthracis Vollum cells or spores when tested under high stringency conditions. B. anthracis was recovered from 13/36 extracts (3/18 from vegetative cell extracts and 10/18 from bacterial spore extracts). In this paper we report the repetition of this study but with the substitution of the 0.2 μm, regenerated cellulose, filters with 0.1 μm polyvinylidene fluoride (PVDF) filters. Experiments were conducted under the same high stringency post-treatment viability test methods (100% of resulting protein content; 7 days Luria (L)-broth and a further 7 days L-agar plate incubation; or 7 days L-agar plate only incubation). B. anthracis was not recovered from any of 18 replicates generated from high concentrations of vegetative cells (107 to 108 cfu), but a single B. anthracis colony was recovered from one of 18 replicates generated from high concentrations of bacterial spores (108 cfu), using a post-treatment viability culture method of 7 days on L-agar plate only. We discuss our results in the context of other similar studies and also a requirement to develop standardised post-treatment viability test methods.

]]>
<![CDATA[Isolation and determination of ivermectin in post-mortem and in vivo tissues of dung beetles using a continuous solid phase extraction method followed by LC-ESI+-MS/MS]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc466

A new analytical method based on solvent extraction, followed by continuous solid-phase extraction (SPE) clean-up using a polymeric sorbent, was demonstrated to be applicable for the detection of ivermectin in complex biological matrices of dung beetles (hemolymph, excreta or dry tissues) using liquid chromatography combined with positive electrospray ionization tandem mass spectrometry (LC/ESI+–MS/MS). Using a signal-to-noise ratio of 3:1, the limit of detection (LOD) in the insect matrices at trace levels was 0.01 ng g–1 and the limit of quantification (LOQ) was 0.1 ng g–1. The proposed method was successfully used to quantitatively determine the levels of ivermectin in the analysis of small samples in in vivo and post mortem samples, demonstrating the usefulness for quantitative analyses that are focused on future pharmacokinetic and bioavailability studies in insects and the establishment of a new protocol to study the impact of ivermectin on non-target arthropods such as dung beetles and other insects that are related with the “dung community”. Because satisfactory precision and accuracy values were obtained in both in vivo matrices, we suggest that the method can be consistently used for quantitative determinations that are focused on future pharmacokinetic and bioavailability studies in insects. Furthermore, this new analytical method was successfully applied to biological samples of dead dung beetles from the field suggesting that the method can be used to establish a new routine analysis of ivermectin residues in insect carcasses that is applied to complement typical mortality tests.

]]>
<![CDATA[Detection of a Serum Siderophore by LC-MS/MS as a Potential Biomarker of Invasive Aspergillosis]]> https://www.researchpad.co/article/5989da36ab0ee8fa60b8630d

Invasive aspergillosis (IA) is a life-threatening systemic mycosis caused primarily by Aspergillus fumigatus. Early diagnosis of IA is based, in part, on an immunoassay for circulating fungal cell wall carbohydrate, galactomannan (GM). However, a wide range of sensitivity and specificity rates have been reported for the GM test across various patient populations. To obtain iron in vivo, A. fumigatus secretes the siderophore, N,N',N"-triacetylfusarinine C (TAFC) and we hypothesize that TAFC may represent a possible biomarker for early detection of IA. We developed an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for TAFC analysis from serum, and measured TAFC in serum samples collected from patients at risk for IA. The method showed lower and upper limits of quantitation (LOQ) of 5 ng/ml and 750 ng/ml, respectively, and complete TAFC recovery from spiked serum. As proof of concept, we evaluated 76 serum samples from 58 patients with suspected IA that were investigated for the presence of GM. Fourteen serum samples obtained from 11 patients diagnosed with probable or proven IA were also analyzed for the presence of TAFC. Control sera (n = 16) were analyzed to establish a TAFC cut-off value (≥6 ng/ml). Of the 36 GM-positive samples (≥0.5 GM index) from suspected IA patients, TAFC was considered positive in 25 (69%). TAFC was also found in 28 additional GM-negative samples. TAFC was detected in 4 of the 14 samples (28%) from patients with proven/probable aspergillosis. Log-transformed TAFC and GM values from patients with proven/probable IA, healthy individuals and SLE patients showed a significant correlation with a Pearson r value of 0.77. In summary, we have developed a method for the detection of TAFC in serum that revealed this fungal product in the sera of patients at risk for invasive aspergillosis. A prospective study is warranted to determine whether this method provides improved early detection of IA.

]]>
<![CDATA[Foliar Essential Oil Glands of Eucalyptus Subgenus Eucalyptus (Myrtaceae) Are a Rich Source of Flavonoids and Related Non-Volatile Constituents]]> https://www.researchpad.co/article/5989da00ab0ee8fa60b73be2

The sub-dermal secretory cavities (glands) embedded within the leaves of Eucalyptus (Myrtaceae) were once thought to be the exclusive repositories of monoterpene and sesquiterpene oils. Recent research has debunked this theory and shown that abundant non-volatile compounds also occur within foliar glands. In particular, glands of four species in subgenus Eucalyptus contain the biologically active flavanone pinocembrin. Pinocembrin shows great promise as a pharmaceutical and is predominantly plant-sourced, so Eucalyptus could be a potential commercial source of such compounds. To explore this we quantified and assessed the purity of pinocembrin in glands of 11 species of E. subg. Eucalyptus using Electro-Spray Ionisation Liquid Chromatography Mass Spectrometry of acetonitrile extracts and Gas Chromatography Mass Spectrometry analyses of hexane extracts of isolated glands which were free from other leaf tissues. Our results showed that the glands of subgenus Eucalyptus contain numerous flavanones that are structurally related to pinocembrin and often present in much greater abundance. The maximum concentration of pinocembrin was 2 mg g-1 dry leaf found in E. stellulata, whereas that of dimethylpinocembrin (5,7-dimethoxyflavanone) was 10 mg g-1 in E. oreades and that of pinostrobin (5-hydroxy-7-methoxyflavanone) was 12 mg g-1 in E. nitida. We also found that the flavanones are exclusively located within the foliar glands rather than distributed throughout leaf tissues. The flavanones differ from the non-methylated pinocembrin in the degree and positions of methylation. This finding is particularly important given the attractiveness of methylated flavonoids as pharmaceuticals and therapeutics. Another important finding was that glands of some members of the subgenus also contain flavanone O-glucosides and flavanone-β-triketone conjugates. In addition, glands contain free β-triketones, β-triketone heterodimers and chromone C-glucosides. Therefore, the foliar glands of this taxonomically distinct group of plants are a rich source of a range of flavonoids and other biologically active compounds with great commercial potential.

]]>
<![CDATA[Preformulation Studies on Piperlongumine]]> https://www.researchpad.co/article/5989daf8ab0ee8fa60bc3ab4

Piperlongumine is a natural alkaloid extracted from piper plants which has been used traditionally for the treatment of certain diseases. This compound shows interesting in vitro pharmacological activity such as selective anticancer activity and higher cytotoxicity than methotrexate, cyclophosphamide and adriamycin on breast, colon, and osteosarcoma cancers, respectively. However, the physicochemical properties for this compound have not been well characterized. In this research, preformulation studies for piperlongumine have been performed to determine factors which influence solubility and stability which, in turn, can be used to assist future formulation development. The solubility of piperlongumine in water was found to be approximately 26 μg/ml. Using 10% polysorbate 80 as a surfactant resulted in a 27 fold increase in solubility. Cosolvents and cyclodextrins afforded concentrations of 1 mg/ml and higher. The pH degradation rate profile for piperlongumine at various temperatures shows significant instability of the drug at pH values ≥ 7 and 3, and maximum stability around pH 4. It was estimated that it would take approximately 17 weeks for piperlongumine to degrade by 10% at 25°C, pH 4. Additionally, piperlongumine showed marked photo-degradation upon exposure to an ultraviolet light source, especially in aqueous media.

]]>
<![CDATA[The Recently Identified Isoleucine Conjugate of cis-12-Oxo-Phytodienoic Acid Is Partially Active in cis-12-Oxo-Phytodienoic Acid-Specific Gene Expression of Arabidopsis thaliana]]> https://www.researchpad.co/article/5989db4eab0ee8fa60bdb3c7

Oxylipins of the jasmonate family are active as signals in plant responses to biotic and abiotic stresses as well as in development. Jasmonic acid (JA), its precursor cis-12-oxo-phytodienoic acid (OPDA) and the isoleucine conjugate of JA (JA-Ile) are the most prominent members. OPDA and JA-Ile have individual signalling properties in several processes and differ in their pattern of gene expression. JA-Ile, but not OPDA, is perceived by the SCFCOI1-JAZ co-receptor complex. There are, however, numerous processes and genes specifically induced by OPDA. The recently identified OPDA-Ile suggests that OPDA specific responses might be mediated upon formation of OPDA-Ile. Here, we tested OPDA-Ile-induced gene expression in wild type and JA-deficient, JA-insensitive and JA-Ile-deficient mutant background. Tests on putative conversion of OPDA-Ile during treatments revealed only negligible conversion. Expression of two OPDA-inducible genes, GRX480 and ZAT10, by OPDA-Ile could be detected in a JA-independent manner in Arabidopsis seedlings but less in flowering plants. The data suggest a bioactivity in planta of OPDA-Ile.

]]>
<![CDATA[Development of an immunochromatographic strip test for the rapid detection of zearalenone in wheat from Jiangsu province, China]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf6b8

A colloidal gold (ICS) test was developed for rapid detection of zearalenone (ZEN) in wheat samples. The mAb against ZEN was prepared in our laboratory and labelled with colloidal gold as a probe for the ICS test. The conditions were optimized and 30 nm colloidal gold nanoparticles were chosen for optimal performance. Millipore 135 was chosen as the NC membrane for its level of sensitivity. The optimum amount of coated antigen ZEN-OVA and anti-ZEN mAb was 0.5 mg/mL and 8 μg/mL, respectively. The ICS test, which has a detection limit of 15 ng/mL for ZEN, could be completed in 5 min. Analysis of ZEN in 202 wheat samples over three consecutive years revealed that data obtained from the ICS test were in a good agreement with LC-MS/MS data. This result demonstrated that the ICS test could be used as a qualitative tool to screen on-site for ZEN.

]]>
<![CDATA[Excited state dynamics of bis-dehydroxycurcumin tert-butyl ester, a diketo-shifted derivative of the photosensitizer curcumin]]> https://www.researchpad.co/article/5989db59ab0ee8fa60bdf1f8

Bis-dehydroxycurcumin tert-butyl ester (K2T23) is a derivative of the natural spice curcumin. Curcumin is widely studied for its multiple therapeutic properties, including photosensitized cytotoxicity. However, the full exploitation of curcumin phototoxic potential is hindered by the extreme instability of its excited state, caused by very efficient non radiative decay by means of transfer of the enolic proton to the nearby keto oxygen. K2T23 is designed to exhibit a tautomeric equilibrium shifted toward the diketo conformers with respect to natural curcumin. This property should endow K2T23 with superior excited-state stability when excited in the UVB band, i.e., in correspondence of the diketo conformers absorption peaks, making this compound an interesting candidate for topical photodynamic therapy of, e.g., skin tumors or oral infections. In this work, the tautomeric equilibrium of K2T23 between the keto-enolic and diketo conformers is assessed in the ground state in several organic solvents by UV-visible absorption and by nuclear magnetic resonance. The same tautomeric equilibrium is also probed in the excited-state in the same environments by means of steady-state fluorescence and time-correlated single-photon counting measurements. These techniques are also exploited to elucidate the excited state dynamics and excited-state deactivation pathways of K2T23, which are compared to those determined for several other curcuminoids characterized in previous works of ours. The ability of K2T23 in photosensitizing the production of singlet oxygen is compared with that of curcumin.

]]>
<![CDATA[Development and validation of reversed-phase HPLC gradient method for the estimation of efavirenz in plasma]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf7d6

Efavirenz is an anti-viral agent of non-nucleoside reverse transcriptase inhibitor category used as a part of highly active retroviral therapy for the treatment of infections of human immune deficiency virus type-1. A simple, sensitive and rapid reversed—phase high performance liquid chromatographic gradient method was developed and validated for the determination of efavirenz in plasma. The method was developed with high performance liquid chromatography using Waters X-Terra Shield, RP18 50 x 4.6 mm, 3.5 μm column and a mobile phase consisting of phosphate buffer pH 3.5 and Acetonitrile. The elute was monitored with the UV-Visible detector at 260 nm with a flow rate of 1.5 mL/min. Tenofovir disoproxil fumarate was used as internal standard. The method was validated for linearity, precision, accuracy, specificity, robustness and data obtained were statistically analyzed. Calibration curve was found to be linear over the concentration range of 1–300 μg/mL. The retention times of efavirenz and tenofovir disoproxil fumarate (internal standard) were 5.941 min and 4.356 min respectively. The regression coefficient value was found to be 0.999. The limit of detection and the limit of quantification obtained were 0.03 and 0.1 μg/mL respectively. The developed HPLC method can be useful for quantitative pharmacokinetic parameters determination of efavirenz in plasma.

]]>
<![CDATA[Doping Polypyrrole Films with 4-N-Pentylphenylboronic Acid to Enhance Affinity towards Bacteria and Dopamine]]> https://www.researchpad.co/article/5989da28ab0ee8fa60b8176b

Here we demonstrate the use of a functional dopant as a fast and simple way to tune the chemical affinity and selectivity of polypyrrole films. More specifically, a boronic-functionalised dopant, 4-N-Pentylphenylboronic Acid (PBA), was used to provide to polypyrrole films with enhanced affinity towards diols. In order to prove the proposed concept, two model systems were explored: (i) the capture and the electrochemical detection of dopamine and (ii) the adhesion of bacteria onto surfaces. The chemisensor, based on overoxidised polypyrrole boronic doped film, was shown to have the ability to capture and retain dopamine, thus improving its detection; furthermore the chemisensor showed better sensitivity in comparison with overoxidised perchlorate doped films. The adhesion of bacteria, Deinococcus proteolyticus, Escherichia coli, Streptococcus pneumoniae and Klebsiella pneumoniae, onto the boric doped polypyrrole film was also tested. The presence of the boronic group in the polypyrrole film was shown to favour the adhesion of sugar-rich bacterial cells when compared with a control film (Dodecyl benzenesulfonate (DBS) doped film) with similar morphological and physical properties. The presented single step synthesis approach is simple and fast, does not require the development and synthesis of functional monomers, and can be easily expanded to the electrochemical, and possibly chemical, fabrication of novel functional surfaces and interfaces with inherent pre-defined sensing and chemical properties.

]]>
<![CDATA[Residue analysis and persistence evaluation of fipronil and its metabolites in cotton using high-performance liquid chromatography-tandem mass spectrometry]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbe1d

A simple residue analytical method based on the QuEChERS approach and high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detection was developed for the analysis of fipronil and its three metabolites in cottonseed, cotton plant and soil. The average recoveries of four test compounds from all three matrices were 78.6–108.9% at the level of 0.005 to 0.5 mg/kg, with an RSD in the range of 0.6 to 13.7%. The limit of quantification (LOQ) of the four test compounds ranged from 0.005 to 0.01 mg/kg. The results of the residual dynamics experiments showed that fipronil dissipated rapidly in cotton plants and soil and that oxidation and photolysis were the main degradation pathways. Moreover, the bi-exponential models demonstrated a good fit of the measured data for fipronil in cotton plants and soil, with R2 in the range of 0.8989 to 0.9989. Furthermore, a total of 40 samples of cottonseed from Shandong Province were analyzed, and all of the samples were free from the four test compound residues.

]]>
<![CDATA[Novel biphenyl ester derivatives as tyrosinase inhibitors: Synthesis, crystallographic, spectral analysis and molecular docking studies]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdbc5a

Biphenyl-based compounds are clinically important for the treatments of hypertension and inflammatory, while many more are under development for pharmaceutical uses. In the present study, a series of 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl benzoates, 2(a-q), and 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl pyridinecarboxylate, 2(r-s) were synthesized by reacting 1-([1,1'-biphenyl]-4-yl)-2-bromoethan-1-one with various carboxylic acids using potassium carbonate in dimethylformamide at ambient temperature. Single-crystal X-ray diffraction studies revealed a more closely packed crystal structure can be produced by introduction of biphenyl moiety. Five of the compounds among the reported series exhibited significant anti-tyrosinase activities, in which 2p, 2r and 2s displayed good inhibitions which are comparable to standard inhibitor kojic acid at concentrations of 100 and 250 μg/mL. The inhibitory effects of these active compounds were further confirmed by computational molecular docking studies and the results revealed the primary binding site is active-site entrance instead of inner copper binding site which acted as the secondary binding site.

]]>
<![CDATA[Ultra-performance hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for simultaneous determination of allopurinol, oxypurinol and lesinurad in rat plasma: Application to pharmacokinetic study in rats]]> https://www.researchpad.co/article/5c9405f3d5eed0c48453958f

A fixed dose combination of lesinurad and allopurinol has been recently approved by USFDA and EMA for treatment of gout-associated hyperuricemia in patients who have not achieved target serum uric acid levels with allopurinol alone. In this study, an ultra-performance hydrophilic interaction liquid chromatography (UPHILIC) coupled with tandem mass spectrometry method was developed and validated for simultaneous determination of allopurinol, oxypurinol and lesinurad in rat plasma. Liquid liquid extraction using ethyl acetate as extracting agent was used for samples extraction procedure. Acquity UPLC HILIC column (100 mm x 2.1, 1.7μm) was used for separation of allopurinol, oxypurinol, lesinurad and internal standard (5-Florouracil). The mobile phase consisting of acetonitrile, water and formic acid (95:5:0.1, v/v/v), were eluted at 0.3 mL/min flow rate having total chromatographic run time of 3 min per sample. The analytes were detected on Acquity triple quadrupole mass spectrometer equipped with a Z-Spray electrospray ionization (ESI). The ESI source was operated in negative mode and multiple reaction monitoring was used for ion transition for all compounds. The precursor to product ion transition of m/z 134.94 > 64.07 for allopurinol, 150.89 > 41.91 for oxypurinol, 401.90 > 176.79 for lesinurad and 128.85 >41.92 for internal standard were used for identification and quantification. The calibration curves for all analytes were found to be linear with weighing factor of 1/x2 using regression analysis. The developed assay was successfully applied in an oral pharmacokinetic study of allopurinol, oxypurinol and lesinurad in rats.

]]>
<![CDATA[New function of aldoxime dehydratase: Redox catalysis and the formation of an expected product]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcc6a

In general, hemoproteins are capable of catalyzing redox reactions. Aldoxime dehydratase (OxdA), which is a unique heme-containing enzyme, catalyzes the dehydration of aldoximes to the corresponding nitriles. Its reaction is a rare example of heme directly activating an organic substrate, unlike the utilization of H2O2 or O2 as a mediator of catalysis by other heme-containing enzymes. While it is unknown whether OxdA catalyzes redox reactions or not, we here for the first time detected catalase activity (which is one of the redox activities) of wild-type OxdA, OxdA(WT). Furthermore, we constructed a His320 → Asp mutant of OxdA [OxdA(H320D)], and found it exhibits catalase activity. Determination of the kinetic parameters of OxdA(WT) and OxdA(H320D) revealed that their Km values for H2O2 were similar to each other, but the kcat value of OxdA(H320D) was 30 times higher than that of OxdA(WT). Next, we examined another redox activity and found it was the peroxidase activity of OxdAs. While both OxdA(WT) and OxdA(H320D) showed the activity, the activity of OxdA(H320D) was dozens of times higher than that of OxdA(WT). These findings demonstrated that the H320D mutation enhances the peroxidase activity of OxdA. OxdAs (WT and H320D) were found to catalyze another redox reaction, a peroxygenase reaction. During this reaction of OxdA(H320D) with 1-methoxynaphthalene as a substrate, surprisingly, the reaction mixture changed to a color different from that with OxdA(WT), which was due to the known product, Russig’s blue. We purified and identified the new product as 1-methoxy-2-naphthalenol, which has never been reported as a product of the peroxygenase reaction, to the best of our knowledge. These findings indicated that the H320D mutation not only enhanced redox activities, but also significantly altered the hydroxylation site of the substrate.

]]>
<![CDATA[Metabolomic and Transcriptomic Comparison of Solid-State and Submerged Fermentation of Penicillium expansum KACC 40815]]> https://www.researchpad.co/article/5989daa7ab0ee8fa60ba8069

Penicillium spp. are known to harbor a wide array of secondary metabolites with cryptic bioactivities. However, the metabolomics of these species is not well-understood in terms of different fermentation models and conditions. The present study involved metabolomics profiling and transcriptomic analysis of Penicillium expansum 40815 under solid-state fermentation (SSF) and submerged fermentation (SmF). Metabolite profiling was carried out using ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry with multivariate analysis, followed by transcriptomic analyses of differentially expressed genes. In principal component analysis, the metabolite profiling data was studied under different experimental sets, including SSF and SmF. The significantly different metabolites such as polyketide metabolites (agonodepside B, rotiorin, verrucosidin, and ochrephilone) and corresponding gene transcripts (polyketide synthase, aromatic prenyltransferase, and terpenoid synthase) were primarily detected under SmF conditions. In contrast, the meroterpenoid compounds (andrastin A and C) and their genes transcripts were exclusively detected under SSF conditions. We demonstrated that the metabolite production and its corresponding gene expression levels in P. expansum 40815 were significantly influenced by the varying growth parameters and the immediate environment. This study further provides a foundation to produce specific metabolites by regulating fermentation conditions.

]]>
<![CDATA[Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency]]> https://www.researchpad.co/article/5989dac6ab0ee8fa60bb2634

Astringency perception, as an essential parameter for high-quality red wine, is principally elicited by condensed tannins in diversified chemical structures. Condensed tannins, which are also known as proanthocyanidins (PAs), belong to the flavonoid class of polyphenols and are incorporated by multiple flavan-3-ols units according to their degree of polymerization (DP). However, the influence of DP size of PAs on astringency perception remains unclear for decades. This controversy was mainly attributed to the lack of efficient strategies to isolate the PAs in non-galloylated forms and with individual degree size from grape/wine. In the present study, the astringency intensity of purified and identified grape oligomeric tannins (DP ranged from 1 to 5) was firstly explored. A novel non-solid phase strategy was used to rapidly exclude the galloylated PAs from the non-galloylated PAs and fractionate the latter according to their DP size. Then, a series of PAs with individual DP size and galloylation were purified by an approach of preparative hydrophilic interaction chromatography. Furthermore, purified compounds were identified by both normal phase HPLC-FLD and reverse phase UHPLC-ESI-Q-TOF. Finally, the contribution of the astringency perception of the individual purified tannins was examined with a salivary protein binding ability test. The results were observed by HPLC-FLD and quantified by changes in PA concentration remaining in the filtrate. In summary, a new approach without a solid stationary phase was developed to isolate PAs according to their DP size. And a positive relationship between the DP of PAs and salivary protein affinity was revealed.

]]>
<![CDATA[Simultaneous Quantification of Antidiabetic Agents in Human Plasma by a UPLC–QToF-MS Method]]> https://www.researchpad.co/article/5989d9eeab0ee8fa60b6d8f3

An ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry method for the simultaneous quantification of chlorpropamide, glibenclamide, gliclazide, glimepiride, metformin, nateglinide, pioglitazone, rosiglitazone, and vildagliptin in human plasma was developed and validated, using isoniazid and sulfaquinoxaline as internal standards. Following plasma protein precipitation using acetonitrile with 1% formic acid, chromatographic separation was performed on a cyano column using gradient elution with water and acetonitrile, both containing 0.1% formic acid. Detection was performed in a quadrupole time-of-flight analyzer, using electrospray ionization operated in the positive mode. Data from validation studies demonstrated that the new method is highly sensitive, selective, precise (RSD < 10%), accurate (RE < 12%), linear (r > 0.99), free of matrix and has no residual effects. The developed method was successfully applied to volunteers’ plasma samples. Hence, this method was demonstrated to be appropriate for clinical monitoring of antidiabetic agents.

]]>