ResearchPad - nitrogen https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Effective coupling of rapid freeze-quench to high-frequency electron paramagnetic resonance]]> https://www.researchpad.co/article/elastic_article_7690 We report an easy, efficient and reproducible way to prepare Rapid-Freeze-Quench samples in sub-millimeter capillaries and load these into the probe head of a 275 GHz Electron Paramagnetic Resonance spectrometer. Kinetic data obtained for the binding reaction of azide to myoglobin demonstrate the feasibility of the method for high-frequency EPR. Experiments on the same samples at 9.5 GHz show that only a single series of Rapid-Freeze-Quench samples is required for studies at multiple microwave frequencies.

]]>
<![CDATA[(Electro‐)chemical Splitting of Dinitrogen with a Rhenium Pincer Complex]]> https://www.researchpad.co/article/elastic_article_7144 N2 splitting into terminal nitrides by chemical and electrochemical reduction of [ReCl2{N(CHCHPtBu2)2}] is presented. Comparison of electrochemical data with that of the previously reported, related pincer complex [ReCl2{N(CH2CH2PtBu2)2}] allowed for identifying key parameters that control the efficiency of the reaction sequence, which defines reductive N2 splitting.John Wiley & Sons, Ltd.

]]>
<![CDATA[Half‐Century Ammonia Emissions From Agricultural Systems in Southern Asia: Magnitude, Spatiotemporal Patterns, and Implications for Human Health]]> https://www.researchpad.co/article/N6ce220af-6a1d-4bf2-8e7a-31de41e56df3

Abstract

Much concern has been raised about the increasing threat to air quality and human health due to ammonia (NH3) emissions from agricultural systems, which is associated with the enrichment of reactive nitrogen (N) in southern Asia (SA), home of more than 60% the world's population (i.e., the people of West, central, East, South, and Southeast Asia). Southern Asia consumed more than half of the global synthetic N fertilizer and was the dominant region for livestock waste production since 2004. Excessive N application could lead to a rapid increase of NH3 in the atmosphere, resulting in severe air and water pollution in this region. However, there is still a lack of accurate estimates of NH3 emissions from agricultural systems. In this study, we simulated the agricultural NH3 fluxes in SA by coupling the Bidirectional NH3 exchange module (Bi‐NH3) from the Community Multi‐scale Air Quality model with the Dynamic Land Ecosystem Model. Our results indicated that NH3 emissions were 21.3 ± 3.9 Tg N yr−1 from SA agricultural systems with a rapidly increasing rate of ~0.3 Tg N yr−2 during 1961−2014. Among the emission sources, 10.8 Tg N yr−1 was released from synthetic N fertilizer use, and 10.4 ± 3.9 Tg N yr−1 was released from manure production in 2014. Ammonia emissions from China and India together accounted for 64% of the total amount in SA during 2000−2014. Our results imply that the increased NH3 emissions associated with high N inputs to croplands would likely be a significant threat to the environment and human health unless mitigation efforts are applied to reduce these emissions.

]]>
<![CDATA[Association of skeletal muscle and serum metabolites with maximum power output gains in response to continuous endurance or high-intensity interval training programs: The TIMES study – A randomized controlled trial]]> https://www.researchpad.co/article/5c6b2666d5eed0c484289a04

Background

Recent studies have begun to identify the molecular determinants of inter-individual variability of cardiorespiratory fitness (CRF) in response to exercise training programs. However, we still have an incomplete picture of the molecular mechanisms underlying trainability in response to exercise training.

Objective

We investigated baseline serum and skeletal muscle metabolomics profile and its associations with maximal power output (MPO) gains in response to 8-week of continuous endurance training (ET) and high-intensity interval training (HIIT) programs matched for total units of exercise performed (the TIMES study).

Methods

Eighty healthy sedentary young adult males were randomized to one of three groups and 70 were defined as completers (> 90% of sessions): ET (n = 30), HIIT (n = 30) and control (CO, n = 10). For the CO, participants were asked to not exercise for 8 weeks. Serum and skeletal muscle samples were analyzed by 1H-NMR spectroscopy. The targeted screens yielded 43 serum and 70 muscle reproducible metabolites (intraclass > 0.75; coefficient of variation < 25%). Associations of baseline metabolites with MPO trainability were explored within each training program via three analytical strategies: (1) correlations with gains in MPO; (2) differences between high and low responders to ET and HIIT; and (3) metabolites contributions to the most significant pathways related to gains in MPO. The significance level was set at P < 0.01 or false discovery rate of 0.1.

Results

The exercise programs generated similar gains in MPO (ET = 21.4 ± 8.0%; HIIT = 24.3 ± 8.5%). MPO associated baseline metabolites supported by all three levels of evidence were: serum glycerol, muscle alanine, proline, threonine, creatinine, AMP and pyruvate for ET, and serum lysine, phenylalanine, creatine, and muscle glycolate for HIIT. The most common pathways suggested by the metabolite profiles were aminoacyl-tRNA biosynthesis, and carbohydrate and amino acid metabolism.

Conclusion

We suggest that MPO gains in both programs are potentially associated with metabolites indicative of baseline amino acid and translation processes with additional evidence for carbohydrate metabolism in ET.

]]>
<![CDATA[A diurnal flux balance model of Synechocystis sp. PCC 6803 metabolism]]> https://www.researchpad.co/article/5c536a77d5eed0c484a4747a

Phototrophic organisms such as cyanobacteria utilize the sun’s energy to convert atmospheric carbon dioxide into organic carbon, resulting in diurnal variations in the cell’s metabolism. Flux balance analysis is a widely accepted constraint-based optimization tool for analyzing growth and metabolism, but it is generally used in a time-invariant manner with no provisions for sequestering different biomass components at different time periods. Here we present CycleSyn, a periodic model of Synechocystis sp. PCC 6803 metabolism that spans a 12-hr light/12-hr dark cycle by segmenting it into 12 Time Point Models (TPMs) with a uniform duration of two hours. The developed framework allows for the flow of metabolites across TPMs while inventorying metabolite levels and only allowing for the utilization of currently or previously produced compounds. The 12 TPMs allow for the incorporation of time-dependent constraints that capture the cyclic nature of cellular processes. Imposing bounds on reactions informed by temporally-segmented transcriptomic data enables simulation of phototrophic growth as a single linear programming (LP) problem. The solution provides the time varying reaction fluxes over a 24-hour cycle and the accumulation/consumption of metabolites. The diurnal rhythm of metabolic gene expression driven by the circadian clock and its metabolic consequences is explored. Predicted flux and metabolite pools are in line with published studies regarding the temporal organization of phototrophic growth in Synechocystis PCC 6803 paving the way for constructing time-resolved genome-scale models (GSMs) for organisms with a circadian clock. In addition, the metabolic reorganization that would be required to enable Synechocystis PCC 6803 to temporally separate photosynthesis from oxygen-sensitive nitrogen fixation is also explored using the developed model formalism.

]]>
<![CDATA[Dual isotopic evidence for nitrate sources and active biological transformation in the Northern South China Sea in summer]]> https://www.researchpad.co/article/5c3667a8d5eed0c4841a5f49

Nitrate (NO3-) concentrations and their dual isotopic compositions (δ15N-NO3- and δ18O-NO3-) were measured to constrain N sources and their cyclic processes in summer using samples from the water column of the northern South China Sea (NSCS). Our data revealed that higher NO3- concentrations and δ15N-NO3- values were observed in the upper waters of the coastal areas near the Pearl River Estuary (PRE). The Bayesian stable isotope mixing model was used to calculated the proportion of nitrate sources, the results indicated that the nitrate in the upper waters of the coastal areas near PRE were mainly influenced by manure and sewage (63%), atmospheric deposition (19%), soil organic nitrogen (12%) and reduced N fertilizer (6%). For the upper waters of the outer areas, low NO3- concentrations and δ15N-NO3- values, but high δ18O-NO3- values, reflected that NO3- was mainly influenced by Kuroshio water intrusion (60%), atmospheric deposition (32%) and nitrogen fixation/nitrification (8%). Complex processes were found in bottom waters. Nitrification and phytoplankton assimilation may be responsible for the higher nitrate concentrations and δ15N-NO3- values. Our study, therefore, utilizes the nitrate dual isotope to help illustrate the spatial variations in nitrate sources and complex nitrogen cycles in the NSCS.

]]>
<![CDATA[Effects of different pretreatments on flavonoids and antioxidant activity of Dryopteris erythrosora leave]]> https://www.researchpad.co/article/5c3667dad5eed0c4841a66be

Flavonoids are secondary metabolites of plants that often have medical applications. The influences of different sample drying pretreatments on flavonoids and antioxidant activity of ferns have not studies. Dryopteris erythrosora leaves used to analyze flavonoid alterations resulting from drying pretreatments. The total flavonoid content of D. erythrosora leaves exposed to different pretreatments was significantly different. The total flavonoid content of samples initially air-dried in shade and then oven-dried at 75°C were the highest (7.6%), while samples initially dried at 75°C had the lowest content (2.17%). Antioxidant activities of D. erythrosora leaves with different pretreatments varied. Group B first air-dried in the shade and then oven-dried at 75°C and group C first air-dried in the sun and then oven-dried at 75°C, both showed relatively stronger antioxidant activity. The best pretreatment for preserving the flavonoids was to first dry the plant material in the shade and then complete the drying process in an oven at 75°C. It was tentatively identified 22 flavonoids among the four different pretreatments by HPLC-ESI-TOF-MS.

]]>
<![CDATA[Generalizing soil properties in geographic space: Approaches used and ways forward]]> https://www.researchpad.co/article/5c269731d5eed0c48470ee42

Soil is one of the most complex systems on Earth, functioning at the interface between the lithosphere, biosphere, hydrosphere, and atmosphere and generating a multitude of functions. Moreover, soil constitutes the belowground environment from which plants capture water and nutrients. Despite their great importance, soil properties are often not sufficiently considered in other disciplines, especially in spatial studies of plant distributions. Most soil properties are available as point data and, to be used in spatial analyses, need to be generalised over entire regions (i.e. digital soil mapping). Three categories of statistical approaches can be used for such purpose: geostatistical approaches (GSA), predictive-statistical approaches (PSA), and hybrid approaches (HA) that combine the two previous ones. How then to choose the best approach in a given soil study context? Does it depend on the soil properties to be spatialized, the study area’s characteristics, and/or the availability of soil data? The main aims of this study was to review the use of these three approaches to derive maps of soil properties in relation to the soil parameters, the study area characteristics, and the number of soil samples. We evidenced that the approaches that tend to show the best performance for spatializing soil properties were not necessarily the ones most used in practice. Although PSA was the most widely used, it tended to be outperformed by HA in many cases, but the latter was far less used. However, as the study settings were not always properly described and not all situations were represented in the set of papers analysed, more comparative studies would be needed across a wider range of regions, soil properties, and spatial scales to provide robust conclusions on the best spatialization methods in a specific context.

]]>
<![CDATA[Tribological and antioxidation properties study of two N-containing borate ester derivatives as additive in rapeseed oil]]> https://www.researchpad.co/article/5c181382d5eed0c4847751f2

Two kinds of phenol- and N- containing borate ester, BTEB and BMEB have good hydrolysis stability due to the B-N coordination bond. The PB value improved by 60.7% and 67.6% respectively at 0.5wt% BTEB, BMEB in rapeseed oil. Their antiwear effect increases with the increase of adding content, and BMEB is better than BTEB. The friction-reducing effect of BTEB is better than BMEB. All additives formed a protective film which containing BOx, FeOx and other organic nitrogen compounds. The better capacities of BMEB may due to the complex boundary lubricating film which contain ferrous sulfate, ferrous sulfide. All additives possessed good antioxidation effect, and it increased the oxidation activation energy than rapeseed oil by 51.15% and 78.82% respectively at 0.25wt%.

]]>
<![CDATA[Using genome-scale metabolic models to compare serovars of the foodborne pathogen Listeria monocytogenes]]> https://www.researchpad.co/article/5b28b7ce463d7e14181b1813

Listeria monocytogenes is a microorganism of great concern for the food industry and the cause of human foodborne disease. Therefore, novel methods of control are needed, and systems biology is one such approach to identify them. Using a combination of computational techniques and laboratory methods, genome-scale metabolic models (GEMs) can be created, validated, and used to simulate growth environments and discern metabolic capabilities of microbes of interest, including L. monocytogenes. The objective of the work presented here was to generate GEMs for six different strains of L. monocytogenes, and to both qualitatively and quantitatively validate these GEMs with experimental data to examine the diversity of metabolic capabilities of numerous strains from the three different serovar groups most associated with foodborne outbreaks and human disease. Following qualitative validation, 57 of the 95 carbon sources tested experimentally were present in the GEMs, and; therefore, these were the compounds from which comparisons could be drawn. Of these 57 compounds, agreement between in silico predictions and in vitro results for carbon source utilization ranged from 80.7% to 91.2% between strains. Nutrient utilization agreement between in silico predictions and in vitro results were also conducted for numerous nitrogen, phosphorous, and sulfur sources. Additionally, quantitative validation showed that the L. monocytogenes GEMs were able to generate in silico predictions for growth rate and growth yield that were strongly and significantly (p < 0.0013 and p < 0.0015, respectively) correlated with experimental results. These findings are significant because they show that these GEMs for L. monocytogenes are comparable to published GEMs of other organisms for agreement between in silico predictions and in vitro results. Therefore, as with the other GEMs, namely those for Escherichia coli, Staphylococcus aureus, Vibrio vulnificus, and Salmonella spp., they can be used to determine new methods of growth control and disease treatment.

]]>
<![CDATA[Natural Polymorphism in BUL2 Links Cellular Amino Acid Availability with Chronological Aging and Telomere Maintenance in Yeast]]> https://www.researchpad.co/article/5989db14ab0ee8fa60bcccdb

Aging and longevity are considered to be highly complex genetic traits. In order to gain insight into aging as a polygenic trait, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard strain RM11 and a laboratory strain S288c, to identify quantitative trait loci that control chronological lifespan. Among the major loci that regulate chronological lifespan in this cross, one genetic linkage was found to be congruent with a previously mapped locus that controls telomere length variation. We found that a single nucleotide polymorphism in BUL2, encoding a component of an ubiquitin ligase complex involved in trafficking of amino acid permeases, controls chronological lifespan and telomere length as well as amino acid uptake. Cellular amino acid availability changes conferred by the BUL2 polymorphism alter telomere length by modulating activity of a transcription factor Gln3. Among the GLN3 transcriptional targets relevant to this phenotype, we identified Wtm1, whose upregulation promotes nuclear retention of ribonucleotide reductase (RNR) components and inhibits the assembly of the RNR enzyme complex during S-phase. Inhibition of RNR is one of the mechanisms by which Gln3 modulates telomere length. Identification of a polymorphism in BUL2 in this outbred yeast population revealed a link among cellular amino acid availability, chronological lifespan, and telomere length control.

]]>
<![CDATA[The Outcome of the Oxidations of Unusual Enediamide Motifs Is Governed by the Stabilities of the Intermediate Iminium Ions]]> https://www.researchpad.co/article/5989da1fab0ee8fa60b7e458

We compare the results from the oxidation of two unusual “enediamide” motifs (3,4-dihydropyrazin-2(1H)-ones), where a double bond is flanked by two amides. In one case the oxidation led to a ring-opened product arising from the cleavage of the double bond, and in the other a rare cis-dioxygenated compound was obtained. Both products have been characterized by X-ray crystallography. The outcomes of the key reactions are rationalized based on calculated free energies of intermediates.

]]>
<![CDATA[The cyanobacterial metabolite nocuolin a is a natural oxadiazine that triggers apoptosis in human cancer cells]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc660

Oxadiazines are heterocyclic compounds containing N-N-O or N-N-C-O system within a six membered ring. These structures have been up to now exclusively prepared via organic synthesis. Here, we report the discovery of a natural oxadiazine nocuolin A (NoA) that has a unique structure based on 1,2,3-oxadiazine. We have identified this compound in three independent cyanobacterial strains of genera Nostoc, Nodularia, and Anabaena and recognized the putative gene clusters for NoA biosynthesis in their genomes. Its structure was characterized using a combination of NMR, HRMS and FTIR methods. The compound was first isolated as a positive hit during screening for apoptotic inducers in crude cyanobacterial extracts. We demonstrated that NoA-induced cell death has attributes of caspase-dependent apoptosis. Moreover, NoA exhibits a potent anti-proliferative activity (0.7–4.5 μM) against several human cancer lines, with p53-mutated cell lines being even more sensitive. Since cancers bearing p53 mutations are resistant to several conventional anti-cancer drugs, NoA may offer a new scaffold for the development of drugs that have the potential to target tumor cells independent of their p53 status. As no analogous type of compound was previously described in the nature, NoA establishes a novel class of bioactive secondary metabolites.

]]>
<![CDATA[Extension of Yeast Chronological Lifespan by Methylamine]]> https://www.researchpad.co/article/5989dac9ab0ee8fa60bb389c

Background

Chronological aging of yeast cells is commonly used as a model for aging of human post-mitotic cells. The yeast Saccharomyces cerevisiae grown on glucose in the presence of ammonium sulphate is mainly used in yeast aging research. We have analyzed chronological aging of the yeast Hansenula polymorpha grown at conditions that require primary peroxisome metabolism for growth.

Methodology/Principal Findings

The chronological lifespan of H. polymorpha is strongly enhanced when cells are grown on methanol or ethanol, metabolized by peroxisome enzymes, relative to growth on glucose that does not require peroxisomes. The short lifespan of H. polymorpha on glucose is mainly due to medium acidification, whereas most likely ROS do not play an important role. Growth of cells on methanol/methylamine instead of methanol/ammonium sulphate resulted in further lifespan enhancement. This was unrelated to medium acidification. We show that oxidation of methylamine by peroxisomal amine oxidase at carbon starvation conditions is responsible for lifespan extension. The methylamine oxidation product formaldehyde is further oxidized resulting in NADH generation, which contributes to increased ATP generation and reduction of ROS levels in the stationary phase.

Conclusion/Significance

We conclude that primary peroxisome metabolism enhanced chronological lifespan of H. polymorpha. Moreover, the possibility to generate NADH at carbon starvation conditions by an organic nitrogen source supports further extension of the lifespan of the cell. Consequently, the interpretation of CLS analyses in yeast should include possible effects on the energy status of the cell.

]]>
<![CDATA[Tissue Turnover Rates and Isotopic Trophic Discrimination Factors in the Endothermic Teleost, Pacific Bluefin Tuna (Thunnus orientalis)]]> https://www.researchpad.co/article/5989dacaab0ee8fa60bb3eea

Stable isotope analysis (SIA) of highly migratory marine pelagic animals can improve understanding of their migratory patterns and trophic ecology. However, accurate interpretation of isotopic analyses relies on knowledge of isotope turnover rates and tissue-diet isotope discrimination factors. Laboratory-derived turnover rates and discrimination factors have been difficult to obtain due to the challenges of maintaining these species in captivity. We conducted a study to determine tissue- (white muscle and liver) and isotope- (nitrogen and carbon) specific turnover rates and trophic discrimination factors (TDFs) using archived tissues from captive Pacific bluefin tuna (PBFT), Thunnus orientalis, 1–2914 days after a diet shift in captivity. Half-life values for 15N turnover in white muscle and liver were 167 and 86 days, and for 13C were 255 and 162 days, respectively. TDFs for white muscle and liver were 1.9 and 1.1‰ for δ15N and 1.8 and 1.2‰ for δ13C, respectively. Our results demonstrate that turnover of 15N and 13C in bluefin tuna tissues is well described by a single compartment first-order kinetics model. We report variability in turnover rates between tissue types and their isotope dynamics, and hypothesize that metabolic processes play a large role in turnover of nitrogen and carbon in PBFT white muscle and liver tissues. 15N in white muscle tissue showed the most predictable change with diet over time, suggesting that white muscle δ15N data may provide the most reliable inferences for diet and migration studies using stable isotopes in wild fish. These results allow more accurate interpretation of field data and dramatically improve our ability to use stable isotope data from wild tunas to better understand their migration patterns and trophic ecology.

]]>
<![CDATA[Global Gene Expression Analysis of Cross-Protected Phenotype of Pectobacterium atrosepticum]]> https://www.researchpad.co/article/5989dabfab0ee8fa60bafee1

The ability to adapt to adverse conditions permits many bacterial species to be virtually ubiquitous and survive in a variety of ecological niches. This ability is of particular importance for many plant pathogenic bacteria that should be able to exist, except for their host plants, in different environments e.g. soil, water, insect-vectors etc. Under some of these conditions, bacteria encounter absence of nutrients and persist, acquiring new properties related to resistance to a variety of stress factors (cross-protection). Although many studies describe the phenomenon of cross-protection and several regulatory components that induce the formation of resistant cells were elucidated, the global comparison of the physiology of cross-protected phenotype and growing cells has not been performed. In our study, we took advantage of RNA-Seq technology to gain better insights into the physiology of cross-protected cells on the example of a harmful phytopathogen, Pectobacterium atrosepticum (Pba) that causes crop losses all over the world. The success of this bacterium in plant colonization is related to both its virulence potential and ability to persist effectively under various stress conditions (including nutrient deprivation) retaining the ability to infect plants afterwards. In our previous studies, we showed Pba to be advanced in applying different adaptive strategies that led to manifestation of cell resistance to multiple stress factors. In the present study, we determined the period necessary for the formation of cross-protected Pba phenotype under starvation conditions, and compare the transcriptome profiles of non-adapted growing cells and of adapted cells after the cross-protective effect has reached the maximal level. The obtained data were verified using qRT-PCR. Genes that were expressed differentially (DEGs) in two cell types were classified into functional groups and categories using different approaches. As a result, we portrayed physiological features that distinguish cross-protected phenotype from the growing cells.

]]>
<![CDATA[Rigid geometry solves “curse of dimensionality” effects in clustering methods: An application to omics data]]> https://www.researchpad.co/article/5989db5fab0ee8fa60be108e

The quality of samples preserved long term at ultralow temperatures has not been adequately studied. To improve our understanding, we need a strategy to analyze protein degradation and metabolism at subfreezing temperatures. To do this, we obtained liquid chromatography-mass spectrometry (LC/MS) data of calculated protein signal intensities in HEK-293 cells. Our first attempt at directly clustering the values failed, most likely due to the so-called “curse of dimensionality”. The clusters were not reproducible, and the outputs differed with different methods. By utilizing rigid geometry with a prime ideal I-adic (p-adic) metric, however, we rearranged the sample clusters into a meaningful and reproducible order, and the results were the same with each of the different clustering methods tested. Furthermore, we have also succeeded in application of this method to expression array data in similar situations. Thus, we eliminated the “curse of dimensionality” from the data set, at least in clustering methods. It is possible that our approach determines a characteristic value of systems that follow a Boltzmann distribution.

]]>
<![CDATA[Taxonomic and Functional Metagenomic Signature of Turfs in the Abrolhos Reef System (Brazil)]]> https://www.researchpad.co/article/5989d9ebab0ee8fa60b6c782

Turfs are widespread assemblages (consisting of microbes and algae) that inhabit reef systems. They are the most abundant benthic component in the Abrolhos reef system (Brazil), representing greater than half the coverage of the entire benthic community. Their presence is associated with a reduction in three-dimensional coral reef complexity and decreases the habitats available for reef biodiversity. Despite their importance, the taxonomic and functional diversity of turfs remain unclear. We performed a metagenomics and pigments profile characterization of turfs from the Abrolhos reefs. Turf microbiome primarily encompassed Proteobacteria (mean 40.57% ± s.d. 10.36, N = 1.548,192), Cyanobacteria (mean 35.04% ± s.d. 15.5, N = 1.337,196), and Bacteroidetes (mean 11.12% ± s.d. 4.25, N = 424,185). Oxygenic and anoxygenic phototrophs, chemolithotrophs, and aerobic anoxygenic phototrophic (AANP) bacteria showed a conserved functional trait of the turf microbiomes. Genes associated with oxygenic photosynthesis, AANP, sulfur cycle (S oxidation, and DMSP consumption), and nitrogen metabolism (N2 fixation, ammonia assimilation, dissimilatory nitrate and nitrite ammonification) were found in the turf microbiomes. Principal component analyses of the most abundant taxa and functions showed that turf microbiomes differ from the other major Abrolhos benthic microbiomes (i.e., corals and rhodoliths) and seawater. Taken together, these features suggest that turfs have a homogeneous functional core across the Abrolhos Bank, which holds diverse microbial guilds when comparing with other benthic organisms.

]]>
<![CDATA[Molybdate in Rhizobial Seed-Coat Formulations Improves the Production and Nodulation of Alfalfa]]> https://www.researchpad.co/article/5989da15ab0ee8fa60b7afb2

Rhizobia-legume symbiosis is the most well researched biological nitrogen fixation system. Coating legume seeds with rhizobia is now a recognized practical measure for improving the production of legume corp. However, the efficacy of some commercial rhizobia inoculants cannot be guaranteed in China due to the low rate of live rhizobia in these products. A greenhouse experiment was conducted to assess the effects of different rhizobial inoculant formulations on alfalfa productivity and nitrogen fixation. Two rhizobia strains, (ACCC17631 and ACCC17676), that are effective partners with alfalfa variety Zhongmu No. 1 were assessed with different concentrations of ammonium molybdate in seed-coat formulations with two different coating adhesives. Our study showed that the growth, nodulation, and nitrogen fixation ability of the plants inoculated with the ACCC17631 rhizobial strain were greatest when the ammonium molybdate application was0.2% of the formulation. An ammonium molybdate concentration of 0.1% was most beneficial to the growth of the plants inoculated with the ACCC17676 rhizobial strain. The sodium carboxymethyl cellulose and sodium alginate, used as coating adhesives, did not have a significant effect on alfalfa biomass and nitrogen fixation. However, the addition of skimmed milk to the adhesive improved nitrogenase activity. These results demonstrate that a new rhizobial seed-coat formulation benefitted alfalfa nodulation and yield.

]]>
<![CDATA[Low Probability of Initiating nirS Transcription Explains Observed Gas Kinetics and Growth of Bacteria Switching from Aerobic Respiration to Denitrification]]> https://www.researchpad.co/article/5989db01ab0ee8fa60bc6c4c

In response to impending anoxic conditions, denitrifying bacteria sustain respiratory metabolism by producing enzymes for reducing nitrogen oxyanions/-oxides (NOx) to N2 (denitrification). Since denitrifying bacteria are non-fermentative, the initial production of denitrification proteome depends on energy from aerobic respiration. Thus, if a cell fails to synthesise a minimum of denitrification proteome before O2 is completely exhausted, it will be unable to produce it later due to energy-limitation. Such entrapment in anoxia is recently claimed to be a major phenomenon in batch cultures of the model organism Paracoccus denitrificans on the basis of measured e-flow rates to O2 and NOx. Here we constructed a dynamic model and explicitly simulated actual kinetics of recruitment of the cells to denitrification to directly and more accurately estimate the recruited fraction (). Transcription of nirS is pivotal for denitrification, for it triggers a cascade of events leading to the synthesis of a full-fledged denitrification proteome. The model is based on the hypothesis that nirS has a low probability (, h−1) of initial transcription, but once initiated, the transcription is greatly enhanced through positive feedback by NO, resulting in the recruitment of the transcribing cell to denitrification. We assume that the recruitment is initiated as [O2] falls below a critical threshold and terminates (assuming energy-limitation) as [O2] exhausts. With  = 0.005 h−1, the model robustly simulates observed denitrification kinetics for a range of culture conditions. The resulting (fraction of the cells recruited to denitrification) falls within 0.038–0.161. In contrast, if the recruitment of the entire population is assumed, the simulated denitrification kinetics deviate grossly from those observed. The phenomenon can be understood as a ‘bet-hedging strategy’: switching to denitrification is a gain if anoxic spell lasts long but is a waste of energy if anoxia turns out to be a ‘false alarm’.

]]>