ResearchPad - non-coding-rna https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Regulation of cell growth and migration by miR-96 and miR-183 in a breast cancer model of epithelial-mesenchymal transition]]> https://www.researchpad.co/article/elastic_article_7836 Breast cancer is the most commonly diagnosed malignancy in women, and has the second highest mortality rate. Over 90% of all cancer-related deaths are due to metastasis, which is the spread of malignant cells from the primary tumor to a secondary site in the body. It is hypothesized that one cause of metastasis involves epithelial-mesenchymal transition (EMT). When epithelial cells undergo EMT and transition into mesenchymal cells, they display increased levels of cell proliferation and invasion, resulting in a more aggressive phenotype. While many factors regulate EMT, microRNAs have been implicated in driving this process. MicroRNAs are short noncoding RNAs that suppress protein production, therefore loss of microRNAs may promote the overexpression of specific target proteins important for EMT. The goal of this study was to investigate the role of miR-96 and miR-183 in EMT in breast cancer. Both miR-96 and miR-183 were found to be downregulated in post-EMT breast cancer cells. When microRNA mimics were transfected into these cells, there was a significant decrease in cell viability and migration, and a shift from a mesenchymal to an epithelial morphology (mesenchymal-epithelial transition or MET). These MET-related changes may be facilitated in part by the regulation of ZEB1 and vimentin, as both of these proteins were downregulated when miR-96 and miR-183 were overexpressed in post-EMT cells. These findings indicate that the loss of miR-96 and miR-183 may help facilitate EMT and contribute to the maintenance of a mesenchymal phenotype. Understanding the role of microRNAs in regulating EMT is significant in order to not only further elucidate the pathways that facilitate metastasis, but also identify potential therapeutic options for preventing or reversing this process.

]]>
<![CDATA[Investigating gene-microRNA networks in atrial fibrillation patients with mitral valve regurgitation]]> https://www.researchpad.co/article/elastic_article_7684 Atrial fibrillation (AF) is predicted to affect around 17.9 million individuals in Europe by 2060. The disease is associated with severe electrical and structural remodelling of the heart, and increased the risk of stroke and heart failure. In order to improve treatment and find new drug targets, the field needs to better comprehend the exact molecular mechanisms in these remodelling processes.ObjectivesThis study aims to identify gene and miRNA networks involved in the remodelling of AF hearts in AF patients with mitral valve regurgitation (MVR).MethodsTotal RNA was extracted from right atrial biopsies from patients undergoing surgery for mitral valve replacement or repair with AF and without history of AF to test for differentially expressed genes and miRNAs using RNA-sequencing and miRNA microarray. In silico predictions were used to construct a mRNA-miRNA network including differentially expressed mRNAs and miRNAs. Gene and chromosome enrichment analysis were used to identify molecular pathways and high-density AF loci.ResultsWe found 644 genes and 43 miRNAs differentially expressed in AF patients compared to controls. From these lists, we identified 905 pairs of putative miRNA-mRNA interactions, including 37 miRNAs and 295 genes. Of particular note, AF-associated miR-130b-3p, miR-338-5p and miR-208a-3p were differentially expressed in our AF tissue samples. These miRNAs are predicted regulators of several differentially expressed genes associated with cardiac conduction and fibrosis. We identified two high-density AF loci in chromosomes 14q11.2 and 6p21.3.ConclusionsAF in MVR patients is associated with down-regulation of ion channel genes and up-regulation of extracellular matrix genes. Other AF related genes are dysregulated and several are predicted to be targeted by miRNAs. Our novel miRNA-mRNA regulatory network provides new insights into the mechanisms of AF. ]]> <![CDATA[Identification of miRNA signatures associated with radiation-induced late lung injury in mice]]> https://www.researchpad.co/article/elastic_article_7641 Acute radiation exposure of the thorax can lead to late serious, and even life-threatening, pulmonary and cardiac damage. Sporadic in nature, late complications tend to be difficult to predict, which prompted this investigation into identifying non-invasive, tissue-specific biomarkers for the early detection of late radiation injury. Levels of circulating microRNA (miRNA) were measured in C3H and C57Bl/6 mice after whole thorax irradiation at doses yielding approximately 70% mortality in 120 or 180 days, respectively (LD70/120 or 180). Within the first two weeks after exposure, weight gain slowed compared to sham treated mice along with a temporary drop in white blood cell counts. 52% of C3H (33 of 64) and 72% of C57Bl/6 (46 of 64) irradiated mice died due to late radiation injury. Lung and heart damage, as assessed by computed tomography (CT) and histology at 150 (C3H mice) and 180 (C57Bl/6 mice) days, correlated well with the appearance of a local, miRNA signature in the lung and heart tissue of irradiated animals, consistent with inherent differences in the C3H and C57Bl/6 strains in their propensity for developing radiation-induced pneumonitis or fibrosis, respectively. Radiation-induced changes in the circulating miRNA profile were most prominent within the first 30 days after exposure and included miRNA known to regulate inflammation and fibrosis. Importantly, early changes in plasma miRNA expression predicted survival with reasonable accuracy (88–92%). The miRNA signature that predicted survival in C3H mice, including miR-34a-5p, -100-5p, and -150-5p, were associated with pro-inflammatory NF-κB-mediated signaling pathways, whereas the signature identified in C57Bl/6 mice (miR-34b-3p, -96-5p, and -802-5p) was associated with TGF-β/SMAD signaling. This study supports the hypothesis that plasma miRNA profiles could be used to identify individuals at high risk of organ-specific late radiation damage, with applications for radiation oncology clinical practice or in the context of a radiological incident.

]]>
<![CDATA[Highly efficient serum-free manipulation of miRNA in human NK cells without loss of viability or phenotypic alterations is accomplished with TransIT-TKO]]> https://www.researchpad.co/article/N4e6e8e95-63ae-420d-a6d7-c2f1aa3d99e6

Natural killer (NK) cells are innate lymphocytes with functions that include target cell killing, inflammation and regulation. NK cells integrate incoming activating and inhibitory signals through an array of germline-encoded receptors to gauge the health of neighbouring cells. The reactive potential of NK cells is influenced by microRNA (miRNA), small non-coding sequences that interfere with mRNA expression. miRNAs are highly conserved between species, and a single miRNA can have hundreds to thousands of targets and influence entire cellular programs. Two miRNA species, miR-155-5p and miR-146a-5p are known to be important in controlling NK cell function, but research to best understand the impacts of miRNA species within NK cells has been bottlenecked by a lack of techniques for altering miRNA concentrations efficiently and without off-target effects. Here, we describe a non-viral and straightforward approach for increasing or decreasing expression of miRNA in primary human NK cells. We achieve >90% transfection efficiency without off-target impacts on NK cell viability, education, phenotype or function. This opens the opportunity to study and manipulate NK cell miRNA profiles and their impacts on NK cellular programs which may influence outcomes of cancer, inflammation and autoimmunity.

]]>
<![CDATA[Age-related transcriptional modules and TF-miRNA-mRNA interactions in neonatal and infant human thymus]]> https://www.researchpad.co/article/Ne5173bb6-5611-4e9c-b8d8-f6fe9062bcd6

The human thymus suffers a transient neonatal involution, recovers and then starts a process of decline between the 1st and 2nd years of life. Age-related morphological changes in thymus were extensively investigated, but the genomic mechanisms underlying this process remain largely unknown. Through Weighted Gene Co-expression Network Analysis (WGCNA) and TF-miRNA-mRNA integrative analysis we studied the transcriptome of neonate and infant thymic tissues grouped by age: 0–30 days (A); 31days-6 months (B); 7–12 months (C); 13–18 months (D); 19-31months (E). Age-related transcriptional modules, hubs and high gene significance (HGS) genes were identified, as well as TF-miRNA-hub/HGS co-expression correlations. Three transcriptional modules were correlated with A and/or E groups. Hubs were mostly related to cellular/metabolic processes; few were differentially expressed (DE) or related to T-cell development. Inversely, HGS genes in groups A and E were mostly DE. In A (neonate) one third of the hyper-expressed HGS genes were related to T-cell development, against one-twentieth in E, what may correlate with the early neonatal depletion and recovery of thymic T-cell populations. This genomic mechanism is tightly regulated by TF-miRNA-hub/HGS interactions that differentially govern cellular and molecular processes involved in the functioning of the neonate thymus and in the beginning of thymic decline.

]]>
<![CDATA[Analysis of the nucleocytoplasmic shuttling RNA-binding protein HNRNPU using optimized HITS-CLIP method]]> https://www.researchpad.co/article/Nb5a6160c-8969-498c-b6ff-671487ce7810

RNA-binding proteins (RBPs) control many types of post-transcriptional regulation, including mRNA splicing, mRNA stability, and translational efficiency, by directly binding to their target RNAs and their mutation and dysfunction are often associated with several human neurological diseases and tumorigenesis. Crosslinking immunoprecipitation (CLIP), coupled with high-throughput sequencing (HITS-CLIP), is a powerful technique for investigating the molecular mechanisms underlying disease pathogenesis by comprehensive identification of RBP target sequences at the transcriptome level. However, HITS-CLIP protocol is still required for some optimization due to experimental complication, low efficiency and time-consuming, whose library has to be generated from very small amounts of RNAs. Here we improved a more efficient, rapid, and reproducible CLIP method by optimizing BrdU-CLIP. Our protocol produced a 10-fold greater yield of pre-amplified CLIP library, which resulted in a low duplicate rate of CLIP-tag reads because the number of PCR cycles required for library amplification was reduced. Variance of the yields was also reduced, and the experimental period was shortened by 2 days. Using this, we validated IL-6 expression by a nuclear RBP, HNRNPU, which directly binds the 3’-UTR of IL-6 mRNA in HeLa cells. Importantly, this interaction was only observed in the cytoplasmic fraction, suggesting a role of cytoplasmic HNRNPU in mRNA stability control. This optimized method enables us to accurately identify target genes and provides a snapshot of the protein-RNA interactions of nucleocytoplasmic shuttling RBPs.

]]>
<![CDATA[Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity]]> https://www.researchpad.co/article/N52f944dc-26d8-4e67-9222-1bf646d955e0

Soil salinization is a serious problem for cultivation of rice, as among cereals rice is the most salt sensitive crop, and more than 40% of the total agricultural land amounting to approximately 80 million ha the world over is salt affected. Salinity affects a plant in a varieties of ways, including ion toxicity, osmotic stress and oxidative damage. Since miRNAs occupy the top place in biochemical events determining a trait, understanding their role in salt tolerance is highly desirable, which may allow introduction of the trait in the rice cultivars of choice through biotechnological interventions. High throughput sequencing of sRNAs in the root and shoot tissues of the seedlings of the control and NaCl treated Pokkali, a salt-tolerant rice variety, identified 75 conserved miRNAs and mapped 200 sRNAs to the rice genome as novel miRNAs. Expression of nine novel miRNAs and two conserved miRNAs were confirmed by Northern blotting. Several of both conserved and novel miRNAs that expressed differentially in root and/or shoot tissues targeted transcription factors like AP2/EREBP domain protein, ARF, NAC, MYB, NF-YA, HD-Zip III, TCP and SBP reported to be involved in salt tolerance or in abiotic stress tolerance in general. Most of the novel miRNAs expressed in the salt tolerant wild rice Oryza coarctata, suggesting conservation of miRNAs in taxonomically related species. One of the novel miRNAs, osa-miR12477, also targeted L-ascorbate oxidase (LAO), indicating build-up of oxidative stress in the plant upon salt treatment, which was confirmed by DAB staining. Thus, salt tolerance might involve miRNA-mediated regulation of 1) cellular abundance of the hormone signaling components like EREBP and ARF, 2) synthesis of abiotic stress related transcription factors, and 3) antioxidative component like LAO for mitigation of oxidative damage. The study clearly indicated importance of osa-miR12477 regulated expression of LAO in salt tolerance in the plant.

]]>
<![CDATA[Epigenetic factor siRNA screen during primary KSHV infection identifies novel host restriction factors for the lytic cycle of KSHV]]> https://www.researchpad.co/article/Ndd7e3d68-7b94-48ec-a25e-5b9298486000

Establishment of viral latency is not only essential for lifelong Kaposi’s sarcoma-associated herpesvirus (KSHV) infection, but it is also a prerequisite of viral tumorigenesis. The latent viral DNA has a complex chromatin structure, which is established in a stepwise manner regulated by host epigenetic factors during de novo infection. However, despite the importance of viral latency in KSHV pathogenesis, we still have limited information about the repertoire of epigenetic factors that are critical for the establishment and maintenance of KSHV latency. Therefore, the goal of this study was to identify host epigenetic factors that suppress lytic KSHV genes during primary viral infection, which would indicate their role in latency establishment. We performed an siRNA screen targeting 392 host epigenetic factors during primary infection and analyzed which ones affect the expression of the viral replication and transcription activator (RTA) and/or the latency-associated nuclear antigen (LANA), which are viral genes essential for lytic replication and latency, respectively. As a result, we identified the Nucleosome Remodeling and Deacetylase (NuRD) complex, Tip60 and Tip60-associated co-repressors, and the histone demethylase KDM2B as repressors of KSHV lytic genes during both de novo infection and the maintenance of viral latency. Furthermore, we showed that KDM2B rapidly binds to the incoming viral DNA as early as 8 hpi, and can limit the enrichment of activating histone marks on the RTA promoter favoring the downregulation of RTA expression even prior to the polycomb proteins-regulated heterochromatin establishment on the viral genome. Strikingly, KDM2B can also suppress viral gene expression and replication during lytic infection of primary gingival epithelial cells, revealing that KDM2B can act as a host restriction factor of the lytic cycle of KSHV during both latent and lytic infections in multiple different cell types.

]]>
<![CDATA[RNAmountAlign: Efficient software for local, global, semiglobal pairwise and multiple RNA sequence/structure alignment]]> https://www.researchpad.co/article/N67fc2065-7e6a-4783-aab9-eb74d3ac0a95

Alignment of structural RNAs is an important problem with a wide range of applications. Since function is often determined by molecular structure, RNA alignment programs should take into account both sequence and base-pairing information for structural homology identification. This paper describes C++ software, RNAmountAlign, for RNA sequence/structure alignment that runs in O(n3) time and O(n2) space for two sequences of length n; moreover, our software returns a p-value (transformable to expect value E) based on Karlin-Altschul statistics for local alignment, as well as parameter fitting for local and global alignment. Using incremental mountain height, a representation of structural information computable in cubic time, RNAmountAlign implements quadratic time pairwise local, global and global/semiglobal (query search) alignment using a weighted combination of sequence and structural similarity. RNAmountAlign is capable of performing progressive multiple alignment as well. Benchmarking of RNAmountAlign against LocARNA, LARA, FOLDALIGN, DYNALIGN, STRAL, MXSCARNA, and MUSCLE shows that RNAmountAlign has reasonably good accuracy and faster run time supporting all alignment types. Additionally, our extension of RNAmountAlign, called RNAmountAlignScan, which scans a target genome sequence to find hits having high sequence and structural similarity to a given query sequence, outperforms RSEARCH and sequence-only query scans and runs faster than FOLDALIGN query scan.

]]>
<![CDATA[Retraction: DJ-1 Modulates α-Synuclein Aggregation State in a Cellular Model of Oxidative Stress: Relevance for Parkinson's Disease and Involvement of HSP70]]> https://www.researchpad.co/article/N05d3b52b-2e52-4bb2-9470-b0dedbc652af ]]> <![CDATA[Micro-RNA signatures in monozygotic twins discordant for congenital heart defects]]> https://www.researchpad.co/article/N5a7c737e-22cf-4de0-b5e8-861cb3f8f58f

Background

MicroRNAs (miRNAs) are small RNAs regulating gene expression post-transcriptionally. Recent studies demonstrated that miRNAs are involved in the development of congenital heart defects (CHD). In this study, we aimed at identifying the specific patterns of miRNAs in blood of monozygotic twin pairs discordant for CHD and to assess whether miRNAs might be involved in the development or reflect the consequences of CHD.

Methods

miRNA microarray analysis and Real-Time Quantitative PCR (RT-qPCR) were employed to determine the miRNA abundance level from 12 monozygotic twins discordant for CHD and their non-CHD co-twins (n = 12). Enrichment analyses of altered miRNAs were performed using bioinformatics tools.

Results

Compared with non-CHD co-twins, profiling analysis indicated 34 miRNAs with a significant difference in abundance level (p<0.05, fold change ≥ 1.3), of which 11 miRNAs were up-regulated and 23 miRNAs were down-regulated. Seven miRNAs were validated with RT-qPCR including miR-511-3p, miR-1306-5p, miR-421, miR-4707-3p, miR-4732-3p, miR-5189-3p, and miR-890, and the results were consistent with microarray analysis. Five miRNAs namely miR-511-3p, miR-1306-5p, miR-4732-3p, miR-5189-3p, and miR-890 were found to be significantly up-regulated in twins < 10 years old. Bioinformatics analysis showed that the 7 validated miRNAs were involved in phosphatidylinositol signaling, gap junction signaling, and adrenergic signaling in cardiomyocytes.

Conclusions

Our data show deregulated miRNA abundance levels in the peripheral blood of monozygotic twins discordant for CHD, and identify new candidates for further analysis, which may contribute to understanding the development of CHD in the future. Bioinformatics analysis indicated that the target genes of these miRNAs are likely involved in signaling and communication of cardiomyocytes.

]]>
<![CDATA[Quantitative dynamics of Salmonella and E. coli in feces of feedlot cattle treated with ceftiofur and chlortetracycline]]> https://www.researchpad.co/article/Nd45d35d0-8623-4716-b387-5e4fac70c4ad

Antibiotic use in beef cattle is a risk factor for the expansion of antimicrobial-resistant Salmonella populations. However, actual changes in the quantity of Salmonella in cattle feces following antibiotic use have not been investigated. Previously, we observed an overall reduction in Salmonella prevalence in cattle feces associated with both ceftiofur crystalline-free acid (CCFA) and chlortetracycline (CTC) use; however, during the same time frame the prevalence of multidrug-resistant Salmonella increased. The purpose of this analysis was to quantify the dynamics of Salmonella using colony counting (via a spiral-plating method) and hydrolysis probe-based qPCR (TaqMan® qPCR). Additionally, we quantified antibiotic-resistant Salmonella by plating to agar containing antibiotics at Clinical & Laboratory Standards Institute breakpoint concentrations. Cattle were randomly assigned to 4 treatment groups across 16 pens in 2 replicates consisting of 88 cattle each. Fecal samples from Days 0, 4, 8, 14, 20, and 26 were subjected to quantification assays. Duplicate qPCR assays targeting the Salmonella invA gene were performed on total community DNA for 1,040 samples. Diluted fecal samples were spiral plated on plain Brilliant Green Agar (BGA) and BGA with ceftriaxone (4 μg/ml) or tetracycline (16 μg/ml). For comparison purposes, indicator non-type-specific (NTS) E. coli were also quantified by direct spiral plating. Quantity of NTS E. coli and Salmonella significantly decreased immediately following CCFA treatment. CTC treatment further decreased the quantity of Salmonella but not NTS E. coli. Effects of antibiotics on the imputed log10 quantity of Salmonella were analyzed via a multi-level mixed linear regression model. The invA gene copies decreased with CCFA treatment by approximately 2 log10 gene copies/g feces and remained low following additional CTC treatment. The quantities of tetracycline or ceftriaxone-resistant Salmonella were approximately 4 log10 CFU/g feces; however, most of the samples were under the quantification limit. The results of this study demonstrate that antibiotic use decreases the overall quantity of Salmonella in cattle feces in the short term; however, the overall quantities of antimicrobial-resistant NTS E. coli and Salmonella tend to remain at a constant level throughout.

]]>
<![CDATA[Identification and expression profiling of miRNAs in two color variants of carrot (Daucus carota L.) using deep sequencing]]> https://www.researchpad.co/article/5c8accd2d5eed0c48499009d

microRNAs represent small endogenous RNAs which are known to play a crucial role in various plant metabolic processes. Carrot being an important vegetable crop, represents one of the richest sources of carotenoids and anthocyanins. Most of the studies on microRNAs have been conducted in the aerial parts of the plants. However, carrot has the rare distinction of storing these compounds in roots. Therefore, carrot represents a good model system to unveil the regulatory roles of miRNAs in the underground edible part of the plant. For the first time, we report the genome wide identification and expression profiling of miRNAs in two contrasting color variants of carrot namely Orange Red and Purple Black using RNA-seq. Illumina sequencing resulted in the generation of 25.5M and 18.9M reads in Orange Red and Purple Black libraries, respectively. In total, 144 and 98 (read count >10), conserved microRNAs and 36 and 66 novel microRNAs were identified in Orange Red and Purple Black, respectively. Functional categorization and differential gene expression revealed the presence of several miRNA genes targeting various secondary metabolic pathways including carotenoid and anthocyanin biosynthetic pathways in the two libraries. 11 known and 2 novel microRNAs were further validated using Stem-Loop PCR and qRT-PCR. Also, target validation was performed for selected miRNA genes using RLM-RACE approach. The present work has laid a foundation towards understanding of various metabolic processes, particularly the color development in carrot. This information can be further employed in targeted gene expression for increasing the carotenoid and anthocyanin content in crop plants.

]]>
<![CDATA[Characterization of mammalian Lipocalin UTRs in silico: Predictions for their role in post-transcriptional regulation]]> https://www.researchpad.co/article/5c897780d5eed0c4847d2e76

The Lipocalin family is a group of homologous proteins characterized by its big array of functional capabilities. As extracellular proteins, they can bind small hydrophobic ligands through a well-conserved β-barrel folding. Lipocalins evolutionary history sprawls across many different taxa and shows great divergence even within chordates. This variability is also found in their heterogeneous tissue expression pattern. Although a handful of promoter regions have been previously described, studies on UTR regulatory roles in Lipocalin gene expression are scarce. Here we report a comprehensive bioinformatic analysis showing that complex post-transcriptional regulation exists in Lipocalin genes, as suggested by the presence of alternative UTRs with substantial sequence conservation in mammals, alongside a high diversity of transcription start sites and alternative promoters. Strong selective pressure could have operated upon Lipocalins UTRs, leading to an enrichment in particular sequence motifs that limit the choice of secondary structures. Mapping these regulatory features to the expression pattern of early and late diverging Lipocalins suggests that UTRs represent an additional phylogenetic signal, which may help to uncover how functional pleiotropy originated within the Lipocalin family.

]]>
<![CDATA[Identification of soil bacteria capable of utilizing a corn ethanol fermentation byproduct]]> https://www.researchpad.co/article/5c8c1951d5eed0c484b4d3e6

A commercial corn ethanol production byproduct (syrup) was used as a bacterial growth medium with the long-term aim to repurpose the resulting microbial biomass as a protein supplement in aquaculture feeds. Anaerobic batch reactors were used to enrich for soil bacteria metabolizing the syrup as the sole nutrient source over an eight-day period with the goal of obtaining pure cultures of facultative organisms from the reactors. Amplification of the V4 variable region of the 16S rRNA gene was performed using barcoded primers to track the succession of microbes enriched for during growth on the syrup. The resulting PCR products were sequenced using Illumina MiSeq protocols, analyzed via the program QIIME, and the alpha-diversity was calculated. Seven bacterial families were the most prevalent in the bioreactor community after eight days of enrichment: Clostridiaceae, Alicyclobacillaceae, Ruminococcaceae, Burkholderiaceae, Bacillaceae, Veillonellaceae, and Enterobacteriaceae. Pure culture isolates obtained from the reactors, and additional laboratory stock strains, capable of facultative growth, were grown aerobically in microtiter plates with the syrup substrate to monitor growth yield. Reactor isolates of interest were identified at a species level using the full 16S rRNA gene and other biomarkers. Bacillus species, commonly used as probiotics in aquaculture, showed the highest biomass yield of the monocultures examined. Binary combinations of monocultures yielded no apparent synergism between organisms, suggesting competition for nutrients instead of cooperative metabolite conversion.

]]>
<![CDATA[Prolyl isomerization of FAAP20 catalyzed by PIN1 regulates the Fanconi anemia pathway]]> https://www.researchpad.co/article/5c784fbdd5eed0c484007497

The Fanconi Anemia (FA) pathway is a multi-step DNA repair process at stalled replication forks in response to DNA interstrand cross-links (ICLs). Pathological mutation of key FA genes leads to the inherited disorder FA, characterized by progressive bone marrow failure and cancer predisposition. The study of FA is of great importance not only to children suffering from FA but also as a model to study cancer pathogenesis in light of genome instability among the general population. FANCD2 monoubiquitination by the FA core complex is an essential gateway that connects upstream DNA damage signaling to enzymatic steps of repair. FAAP20 is a key component of the FA core complex, and regulated proteolysis of FAAP20 mediated by the ubiquitin E3 ligase SCFFBW7 is critical for maintaining the integrity of the FA complex and FA pathway signaling. However, upstream regulatory mechanisms that govern this signaling remain unclear. Here, we show that PIN1, a phosphorylation-specific prolyl isomerase, regulates the integrity of the FA core complex, thus FA pathway activation. We demonstrate that PIN1 catalyzes cis-trans isomerization of the FAAP20 pSer48-Pro49 motif and promotes FAAP20 stability. Mechanistically, PIN1-induced conformational change of FAAP20 enhances its interaction with the PP2A phosphatase to counteract SCFFBW7-dependent proteolytic signaling at the phosphorylated degron motif. Accordingly, PIN1 deficiency impairs FANCD2 activation and the DNA ICL repair process. Together, our study establishes PIN1-dependent prolyl isomerization as a new regulator of the FA pathway and genomic integrity.

]]>
<![CDATA[miR-7977 inhibits the Hippo-YAP signaling pathway in bone marrow mesenchymal stromal cells]]> https://www.researchpad.co/article/5c8823ead5eed0c4846392f6

We and others have demonstrated that various abnormalities of the bone marrow (BM) mesenchymal stromal cells (MSCs) such as aberrant cytokine expression, abnormal hedgehog signaling, and impaired miRNA biogenesis are observed in patients with acute myeloid leukemia (AML). However, underlying mechanisms to induce the dysfunction of BM MSCs have not yet been clarified. We previously showed that AML cells release abundant exosomal miR-7977, which, in turn, enters BM mesenchymal stromal cells (MSCs). However, the precise function of miR-7977 is not known. In this study, we performed transduction of a miR-7977 mimic into MSCs, compared transcriptomes between control-transduced (n = 3) and miR-7977-transduced MSCs (n = 3), and conducted pathway analysis. The array data revealed that the expression of 0.05% of genes was reduced 2-fold and the expression of 0.01% of genes was increased 2-fold. Interestingly, approximately half of these genes possessed a miR-7977 target site, while the other genes did not, suggesting that miR-7977 regulates the gene expression level directly and indirectly. Gene set enrichment analysis showed that the gene sets of Yes-associated protein 1 (YAP1) _up were significantly enriched (p<0.001, q<0.25), suggesting that miR-7977 modulates the Hippo-YAP signaling pathway. Visualization of pathway and network showed that miR-7977 significantly reduced the expression of Hippo core kinase, STK4. miR-7977 inactivated the Hippo-YAP signaling pathway as proven by GFP-tagged YAP nuclear trans localization and TEAD reporter assay. The miR-7977-transduced MSC cell line, HTS-5, showed elevated saturation density and enhanced entry into the cell cycle. These results suggest that miR-7977 is a critical factor that regulates the Hippo-YAP signaling pathway in BM-MSCs and may be involved in the upregulation of leukemia-supporting stroma growth.

]]>
<![CDATA[16S rRNA sequence embeddings: Meaningful numeric feature representations of nucleotide sequences that are convenient for downstream analyses]]> https://www.researchpad.co/article/5c7ee7c5d5eed0c4848f4d9c

Advances in high-throughput sequencing have increased the availability of microbiome sequencing data that can be exploited to characterize microbiome community structure in situ. We explore using word and sentence embedding approaches for nucleotide sequences since they may be a suitable numerical representation for downstream machine learning applications (especially deep learning). This work involves first encoding (“embedding”) each sequence into a dense, low-dimensional, numeric vector space. Here, we use Skip-Gram word2vec to embed k-mers, obtained from 16S rRNA amplicon surveys, and then leverage an existing sentence embedding technique to embed all sequences belonging to specific body sites or samples. We demonstrate that these representations are meaningful, and hence the embedding space can be exploited as a form of feature extraction for exploratory analysis. We show that sequence embeddings preserve relevant information about the sequencing data such as k-mer context, sequence taxonomy, and sample class. Specifically, the sequence embedding space resolved differences among phyla, as well as differences among genera within the same family. Distances between sequence embeddings had similar qualities to distances between alignment identities, and embedding multiple sequences can be thought of as generating a consensus sequence. In addition, embeddings are versatile features that can be used for many downstream tasks, such as taxonomic and sample classification. Using sample embeddings for body site classification resulted in negligible performance loss compared to using OTU abundance data, and clustering embeddings yielded high fidelity species clusters. Lastly, the k-mer embedding space captured distinct k-mer profiles that mapped to specific regions of the 16S rRNA gene and corresponded with particular body sites. Together, our results show that embedding sequences results in meaningful representations that can be used for exploratory analyses or for downstream machine learning applications that require numeric data. Moreover, because the embeddings are trained in an unsupervised manner, unlabeled data can be embedded and used to bolster supervised machine learning tasks.

]]>
<![CDATA[Na+/H+ exchanger (NHE) in Pacific white shrimp (Litopenaeus vannamei): Molecular cloning, transcriptional response to acidity stress, and physiological roles in pH homeostasis]]> https://www.researchpad.co/article/5c803c66d5eed0c484ad88a5

Na+/H+ exchangers are the most common membrane proteins involved in the regulation of intracellular pH that concurrently transport Na+ into the cells and H+ out of the cells. In this study, the full-length cDNA of the Na+/H+ exchanger (NHE) from the Pacific white shrimp (Litopenaeus vannamei) was cloned. The LvNHE cDNA is 3167 bp long, contains a 5’-untranslated region (UTR) of 74 bp and a 3’-UTR of 456 bp and an open reading frame (ORF) of 2637 bp, coding for a protein of 878 amino acids with 11 putative transmembrane domains and a long cytoplasmic tail. LvNHE shows high sequence homology with mud crab NHE at the amino acid level. LvNHE mRNA was detected in the hepatopancreas, gill, eyestalk, skin, heart, intestine, muscle, brain and stomach, with the highest abundance in the intestine. In the shrimp intestinal fragment cultures exposed to gradually declining pH medium (from pH 8.0 to pH 6.4), the LvNHE mRNA expression was significantly stimulated, with the highest response when incubated in pH 7.0 medium for 6 h. To investigate the functional roles of LvNHE in pH regulation at the physiological and cellular levels, the LvNHE mRNA expression was silenced by siRNA knockdown. Upon low-pH challenge, the hemolymph pH was significantly reduced in the LvNHE mRNA knockdown shrimp. In addition, knockdown of LvNHE mRNA reduced the recovery capacity of intracellular pH in intestinal fragment cultures after acidification. Altogether, this study demonstrates the role of NHE in shrimp response to low pH stress and provides new insights into the acid/base homeostasis mechanisms of crustaceans.

]]>
<![CDATA[A precedented nuclear genetic code with all three termination codons reassigned as sense codons in the syndinean Amoebophrya sp. ex Karlodinium veneficum]]> https://www.researchpad.co/article/5c818e8fd5eed0c484cc2557

Amoebophrya is part of an enigmatic, diverse, and ubiquitous marine alveolate lineage known almost entirely from anonymous environmental sequencing. Two cultured Amoebophrya strains grown on core dinoflagellate hosts were used for transcriptome sequencing. BLASTx using different genetic codes suggests that Amoebophyra sp. ex Karlodinium veneficum uses the three typical stop codons (UAA, UAG, and UGA) to encode amino acids. When UAA and UAG are translated as glutamine about half of the alignments have better BLASTx scores, and when UGA is translated as tryptophan one fifth have better scores. However, the sole stop codon appears to be UGA based on conserved genes, suggesting contingent translation of UGA. Neither host sequences, nor sequences from the second strain, Amoebophrya sp. ex Akashiwo sanguinea had similar results in BLASTx searches. A genome survey of Amoebophyra sp. ex K. veneficum showed no evidence for transcript editing aside from mitochondrial transcripts. The dynein heavy chain (DHC) gene family was surveyed and of 14 transcripts only two did not use UAA, UAG, or UGA in a coding context. Overall the transcriptome displayed strong bias for A or U in third codon positions, while the tRNA genome survey showed bias against codons ending in U, particularly for amino acids with two codons ending in either C or U. Together these clues suggest contingent translation mechanisms in Amoebophyra sp. ex K. veneficum and a phylogenetically distinct instance of genetic code modification.

]]>