ResearchPad - non-hodgkin-lymphoma https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Identification of a <i>miR-146b</i>-Fas ligand axis in the development of neutropenia in T large granular lymphocyte leukemia]]> https://www.researchpad.co/article/elastic_article_11033 Tlarge granular lymphocyte leukemia (T-LGLL) is characterized by the expansion of several large granular lymphocyte clones, among which a subset of large granular lymphocytes showing constitutively activated STAT3, a specific CD8+/CD4 phenotype and the presence of neutropenia has been identified. Although STAT3 is an inducer of transcription of a large number of oncogenes, so far its relationship with miRNAs has not been evaluated in T-LGLL patients. Here, we investigated whether STAT3 could carry out its pathogenetic role in T-LGLL through an altered expression of miRNAs. The expression level of 756 mature miRNA was assessed on purified T large granular lymphocytes (T-LGLs) by using a TaqMan Human microRNA Array. Hierarchical Clustering Analysis of miRNA array data shows that the global miRNome clusters with CD8 T-LGLs. Remarkably, CD8 T-LGLs exhibit a selective and STAT3-dependent repression of miR-146b expression, that significantly correlated with the absolute neutrophil counts and inversely correlated with the expression of Fas ligand (FasL), that is regarded as the most relevant factor in the pathogenesis of neutropenia. Experimental evidence demonstrates that the STAT3-dependent reduction of miR-146b expression in CD8 T-LGLs occurs as a consequence of miR-146b promoter hypermethylation and results in the disruption of the HuR-mediated post-transcriptional machinery controlling FasL mRNA stabilization. Restoring miR-146b expression in CD8 T-LGLs lead to a reduction of HuR protein and, in turn, of FasL mRNA expression, thus providing mechanistic insights for the existence of a STAT3-miR146b-FasL axis and neutropenia in T-LGLL.

]]>
<![CDATA[CXCR4 upregulation is an indicator of sensitivity to B-cell receptor/PI3K blockade and a potential resistance mechanism in B-cell receptor-dependent diffuse large B-cell lymphomas]]> https://www.researchpad.co/article/elastic_article_11022 B-cell receptor (BCR) signaling pathway components represent promising treatment targets in multiple B-cell malignancies including diffuse large B-cell lymphoma (DLBCL). In in vitro and in vivo model systems, a subset of DLBCLs depend upon BCR survival signals and respond to proximal BCR/phosphoinositide 3 kinase (PI3K) blockade. However, single-agent BCR pathway inhibitors have had more limited activity in patients with DLBCL, underscoring the need for indicators of sensitivity to BCR blockade and insights into potential resistance mechanisms. Here, we report highly significant transcriptional upregulation of C-X-C chemokine receptor 4 (CXCR4) in BCR-dependent DLBCL cell lines and primary tumors following chemical spleen tyrosine kinase (SYK) inhibition, molecular SYK depletion or chemical PI3K blockade. SYK or PI3K inhibition also selectively upregulated cell surface CXCR4 protein expression in BCR-dependent DLBCLs. CXCR4 expression was directly modulated by fork-head box O1 via the PI3K/protein kinase B/forkhead box O1 signaling axis. Following chemical SYK inhibition, all BCR-dependent DLBCLs exhibited significantly increased stromal cell-derived factor-1α (SDF-1α) induced chemotaxis, consistent with the role of CXCR4 signaling in B-cell migration. Select PI3K isoform inhibitors also augmented SDF-1α induced chemotaxis. These data define CXCR4 upregulation as an indicator of sensitivity to BCR/PI3K blockade and identify CXCR4 signaling as a potential resistance mechanism in BCR-dependent DLBCLs.

]]>
<![CDATA[An increase in <i>MYC</i> copy number has a progressive negative prognostic impact in patients with diffuse large B-cell and high-grade lymphoma, who may benefit from intensified treatment regimens]]> https://www.researchpad.co/article/elastic_article_11015 MYC translocations, a hallmark of Burkitt lymphoma, occur in 5-15% of diffuse large B-cell lymphoma, and have a negative prognostic impact. Numerical aberrations of MYC have also been detected in these patients, but their incidence and prognostic role are still controversial. We analyzed the clinical impact of MYC increased copy number on 385 patients with diffuse large B-cell lymphoma screened at diagnosis for MYC, BCL2, and BCL6 rearrangements. We enumerated the number of MYC copies, defining as amplified those cases with an uncountable number of extra-copies. The prevalence of MYC translocation, increased copy number and amplification was 8.8%, 15%, and 1%, respectively. Patients with 3 or 4 gene copies, accounting for more than 60% of patients with MYC copy number changes, had a more favorable outcome compared to patients with >4 copies or translocation of MYC, and were not influenced by the type of treatment received as first-line. Stratification according to the number of MYC extra-copies showed a negative correlation between an increasing number of copies and survival. Patients with >7 copies or the amplification of MYC had the poorest prognosis. Patients with >4 copies of MYC showed a similar, trending towards worse prognosis compared to patients with MYC translocation. The survival of patients with >4 copies, translocation or amplification of MYC seemed to be superior if intensive treatments were used. Our study underlines the importance of fluorescence in situ hybridization testing at diagnosis of diffuse large B-cell lymphoma to detect the rather frequent and clinically significant numerical aberrations of MYC.

]]>
<![CDATA[miR-497 suppresses cycle progression through an axis involving CDK6 in ALK-positive cells]]> https://www.researchpad.co/article/5c756312d5eed0c484cb74f7

Anaplastic large-cell lymphoma, a T-cell neoplasm, is primarily a pediatric disease. Seventy-five percent of pediatric anaplastic large-cell lymphoma cases harbor the chromosomal translocation t(2;5)(p23;q35) leading to the ectopic expression of NPM-ALK, a chimeric tyrosine kinase. NPM-ALK consists of an N-terminal nucleophosmin (NPM) domain fused to an anaplastic lymphoma kinase (ALK) cytoplasmic domain. Pediatric NPM-ALK+ anaplastic large-cell lymphoma is often a disseminated disease and young patients are prone to chemoresistance or relapse shortly after chemotherapeutic treatment. Furthermore, there is no gold standard protocol for the treatment of relapses. To the best of our knowledge, this is the first study on the potential role of the microRNA, miR-497, in NPM-ALK+ anaplastic large-cell lymphoma tumorigenesis. Our results show that miR-497 expression is repressed in NPM-ALK+ cell lines and patient samples through the hypermethylation of its promoter and the activity of NPM-ALK is responsible for this epigenetic repression. We demonstrate that overexpression of miR-497 in human NPM-ALK+ anaplastic large-cell lymphoma cells inhibits cellular growth and causes cell cycle arrest by targeting CDK6, E2F3 and CCNE1, the three regulators of the G1 phase of the cell cycle. Interestingly, we show that a scoring system based on CDK6, E2F3 and CCNE1 expression could help to identify relapsing pediatric patients. In addition, we demonstrate the sensitivity of NPM-ALK+ cells to CDK4/6 inhibition using for the first time a selective inhibitor, palbociclib. Together, our findings suggest that CDK6 could be a therapeutic target for the development of future treatments for NPM-ALK+ anaplastic large-cell lymphoma.

]]>
<![CDATA[Bromodomain and extra-terminal domain inhibition modulates the expression of pathologically relevant microRNAs in diffuse large B-cell lymphoma]]> https://www.researchpad.co/article/5c1c2d97d5eed0c484464794

Aberrant changes in microRNA expression contribute to lymphomagenesis. Bromodomain and extra-terminal domain inhibitors such as OTX015 (MK-8628, birabresib) have demonstrated preclinical and clinical activity in hematologic tumors. MicroRNA profiling of diffuse large B-cell lymphoma cells treated with OTX015 revealed changes in the expression levels of a limited number of microRNAs, including miR-92a-1-5p, miR-21-3p, miR-155-5p and miR-96-5p. Analysis of publicly available chromatin immunoprecipitation sequencing data of diffuse large B-cell lymphoma cells treated with bromodomain and extra-terminal domain (BET) inhibitors showed that the BET family member BRD4 bound to the upstream regulatory regions of multiple microRNA genes and that this binding decreased following BET inhibition. Alignment of our microRNA profiling data with the BRD4 chromatin immunoprecipitation sequencing data revealed that microRNAs downregulated by OTX015 also exhibited reduced BRD4 binding in their promoter regions following treatment with another bromodomain and extra-terminal domain inhibitor, JQ1, indicating that BRD4 contributes directly to microRNA expression in lymphoma. Treatment with bromodomain and extra-terminal domain inhibitors also decreased the expression of the arginine methyltransferase PRMT5, which plays a crucial role in B-cell transformation and negatively modulates the transcription of miR-96-5p. The data presented here indicate that in addition to previously observed effects on the expression of coding genes, bromodomain and extra-terminal domain inhibitors also modulate the expression of microRNAs involved in lymphomagenesis.

]]>
<![CDATA[Cyclin-dependent kinase 9 as a potential specific molecular target in NK-cell leukemia/lymphoma]]> https://www.researchpad.co/article/5c1c2d9ad5eed0c4844648a5

BAY 1143572 is a highly selective inhibitor of cyclin-dependent kinase 9/positive transcription elongation factor b. It has entered phase I clinical studies. Here, we have assessed the utility of BAY 1143572 for treating natural killer (NK) cell leukemias/lymphomas that have a poor prognosis, namely extranodal NK/T-cell lymphoma, nasal type and aggressive NK-cell leukemia, in a preclinical mouse model in vivo as well as in tissue culture models in vitro. Seven NK-cell leukemia/lymphoma lines and primary aggressive NK-cell leukemia cells from two individual patients were treated with BAY 1143572 in vitro. Primary tumor cells from an aggressive NK-cell leukemia patient were used to establish a xenogeneic murine model for testing BAY 1143572 therapy. Cyclin-dependent kinase 9 inhibition by BAY 1143572 resulted in prevention of phosphorylation at the serine 2 site of the C-terminal domain of RNA polymerase II. This resulted in lower c-Myc and Mcl-1 levels in the cell lines, causing growth inhibition and apoptosis. In aggressive NK-cell leukemia primary tumor cells, exposure to BAY 1143572 in vitro resulted in decreased Mcl-1 protein levels resulting from inhibition of RNA polymerase II C-terminal domain phosphorylation at the serine 2 site. Orally administering BAY 1143572 once per day to aggressive NK-cell leukemia-bearing mice resulted in lower tumor cell infiltration into the bone marrow, liver, and spleen, with less export to the periphery relative to control mice. The treated mice also had a survival advantage over the untreated controls. The specific small molecule targeting agent BAY1143572 has potential for treating NK-cell leukemia/lymphoma.

]]>
<![CDATA[Antiviral Treatment of HCV-Infected Patients with B-Cell Non-Hodgkin Lymphoma: ANRS HC-13 Lympho-C Study]]> https://www.researchpad.co/article/5989d9faab0ee8fa60b7181d

Hepatitis C virus (HCV) infection is associated with lymphoproliferative disorders and B-cell non-Hodgkin lymphomas (B-NHLs). Evaluation of the efficacy and safety profiles of different antiviral therapies in HCV patients with B-NHL is warranted. Methods: First, we evaluated the sustained virologic response (SVR) and safety of Peg-interferon-alpha (Peg-IFN) + ribavirin +/- first protease inhibitors (PI1s) therapy in 61 HCV patients with B-NHL enrolled in a nationwide observational survey compared with 94 matched HCV-infected controls without B-NHL. In a second series, interferon-free regimens using a newly optimal combination therapy with direct-acting antiviral drugs (DAAs) were evaluated in 10 patients with HCV and B-NHL. Results: The main lymphoma type was diffuse large B-cell lymphoma (38%) followed by marginal zone lymphoma (31%). In the multivariate analysis, patients with B-NHL treated by Peg-IFN-based therapy exhibited a greater SVR rate compared with controls, 50.8% vs 30.8%, respectively, p<0.01, odds ratio (OR) = 11.2 [2.3, 52.8]. B-NHL response was better (p = 0.02) in patients with SVR (69%) than in patients without SVR (31%). Premature discontinuation of Peg-IFN-based therapy was significantly more frequent in the B-NHL group (19.6%) compared with the control group (6.3%), p<0.02. Overall, survival was significantly enhanced in the controls than in the B-NHL group (hazard ratio = 34.4 [3.9, 304.2], p< 0.01). Using DAAs, SVR was achieved in 9/10 patients (90%). DAAs were both well tolerated and markedly efficient. Conclusions: The virologic response of HCV-associated B-NHL is high. Our study provides a comprehensive evaluation of different strategies for the antiviral treatment of B-NHL associated with HCV infection.

]]>
<![CDATA[Variation in Dicer Gene Is Associated with Increased Survival in T-Cell Lymphoma]]> https://www.researchpad.co/article/5989dadfab0ee8fa60bbb1bc

Dicer, an endonuclease in RNase III family, is essential for the RNA interference (RNAi) pathway. Aberrant expression of Dicer has been shown in various cancers including some subtypes of T cell lymphoma (TCL), which influences patient prognosis. A single-nucleotide polymorphism (SNP) rs3742330A>G has been identified in the Dicer gene, located in the 3′ untranslated region (3′ UTR) that is important for mRNA transcript stability. We investigated whether rs3742330 is associated with the survival in 163 TCL patients. Significant association between Dicer rs3742330 and TCL survival were found. Patients carrying the GG genotype (n = 12) had a significantly increased overall survival (OS) compared with those carrying the GA and AA genotypes (n = 70 and n = 81, respectively; p = 0.031). Moreover, the significant association was maintained for patients with mature T type (n = 134; p = 0.026). In multivariate Cox-regression analysis, rs3742330 proved to be an independent predictor for OS, together with the commonly used International Prognostic Index (IPI) and BAFF rs9514828, another SNP we have previously reported to be associated with TCL survival, with hazard ratios (HRs) for patient death rate of 8.956 (95% CI, 1.210 to 66.318; p = 0.032) for the GA genotype and 10.145 (95% CI, 1.371 to 75.084; p = 0.023) for the AA genotype. Furthermore, we observed cumulative effects of Dicer rs3742330 and BAFF rs9514828 on TCL survival. Compared with patients carrying zero unfavorable genotype, those carrying one and two unfavorable genotypes had an increased risk of death with a HR of 7.104 (95% CI, 0.969–53.086; p = 0.054) and 14.932 (95% CI, 1.950–114.354; p = 0.009), respectively, with a significant dose-response trend (ptrend  = 0.004). In conclusion, Dicer rs3742330 is associated with TCL survival, suggesting that genetic variation might play a role in predicting prognosis of TCL patients.

]]>
<![CDATA[Rate of Primary Refractory Disease in B and T-Cell Non-Hodgkin’s Lymphoma: Correlation with Long-Term Survival]]> https://www.researchpad.co/article/5989d9feab0ee8fa60b72ff8

Background

Primary refractory disease is a main challenge in the management of non-Hodgkin’s Lymphoma (NHL). This survey was performed to define the rate of refractory disease to first-line therapy in B and T-cell NHL subtypes and the long-term survival of primary refractory compared to primary responsive patients.

Methods

Medical records were reviewed of 3,106 patients who had undergone primary treatment for NHL between 1982 and 2012, at the Hematology Centers of Torino and Bergamo, Italy. Primary treatment included CHOP or CHOP-like regimens (63.2%), intensive therapy with autograft (16.9%), or other therapies (19.9%). Among B-cell NHL, 1,356 (47.8%) received first-line chemotherapy with rituximab. Refractory disease was defined as stable/progressive disease, or transient response with disease progression within six months.

Results

Overall, 690 (22.2%) patients showed primary refractory disease, with a higher incidence amongst T-cell compared to B-cell NHL (41.9% vs. 20.5%, respectively, p<0.001). Several other clinico-pathological factors at presentation were variably associated with refractory disease, including histological aggressive disease, unfavorable clinical presentation, Bone Marrow involvement, low lymphocyte/monocyte ration and male gender. Amongst B-cell NHL, the addition of rituximab was associated with a marked reduction of refractory disease (13.6% vs. 26.7% for non-supplemented chemotherapy, p<0.001). Overall, primary responsive patients had a median survival of 19.8 years, compared to 1.3 yr. for refractory patients. A prolonged survival was consistently observed in all primary responsive patients regardless of the histology. The long life expectancy of primary responsive patients was documented in both series managed before and after 2.000. Response to first line therapy resulted by far the most predictive factor for long-term outcome (HR for primary refractory disease: 16.52, p<0.001).

Conclusion

Chemosensitivity to primary treatment is crucial for the long-term survival in NHL. This supports the necessity of studies aimed to early identify refractory disease and to develop different treatment strategies for responsive and refractory patients.

]]>
<![CDATA[Genome-Wide Detection of Genes Targeted by Non-Ig Somatic Hypermutation in Lymphoma]]> https://www.researchpad.co/article/5989da87ab0ee8fa60b9c6c3

The processes of somatic hypermutation (SHM) and class switch recombination introduced by activation-induced cytosine deaminase (AICDA) at the Immunoglobulin (Ig) loci are key steps for creating a pool of diversified antibodies in germinal center B cells (GCBs). Unfortunately, AICDA can also accidentally introduce mutations at bystander loci, particularly within the 5′ regulatory regions of proto-oncogenes relevant to diffuse large B cell lymphomas (DLBCL). Since current methods for genomewide sequencing such as Exon Capture and RNAseq only target mutations in coding regions, to date non-Ig promoter SHMs have been studied only in a handful genes. We designed a novel approach integrating bioinformatics tools with next generation sequencing technology to identify regulatory loci targeted by SHM genome-wide. We observed increased numbers of SHM associated sequence variant hotspots in lymphoma cells as compared to primary normal germinal center B cells. Many of these SHM hotspots map to genes that have not been reported before as mutated, including BACH2, BTG2, CXCR4, CIITA, EBF1, PIM2, and TCL1A, etc., all of which have potential roles in B cell survival, differentiation, and malignant transformation. In addition, using BCL6 and BACH2 as examples, we demonstrated that SHM sites identified in these 5′ regulatory regions greatly altered their transcription activities in a reporter assay. Our approach provides a first cost-efficient, genome-wide method to identify regulatory mutations and non-Ig SHM hotspots.

]]>
<![CDATA[Role of Smad Proteins in Resistance to BMP-Induced Growth Inhibition in B-Cell Lymphoma]]> https://www.researchpad.co/article/5989db40ab0ee8fa60bd6aa3

Bone morphogenetic protein (BMP) expression and signaling are altered in a variety of cancers, but the functional impact of these alterations is uncertain. In this study we investigated the impact of expression of multiple BMPs and their signaling pathway components in human B-cell lymphoma. BMP messages, in particular BMP7, were detected in normal and malignant B cells. Addition of exogenous BMPs inhibited DNA synthesis in most lymphoma cell lines examined, but some cell lines were resistant. Tumor specimens from three out of five lymphoma patients were also resistant to BMPs, as determined by no activation of the BMP effectors Smad1/5/8. We have previously shown that BMP-7 potently induced apoptosis in normal B cells, which was in contrast to no or little inhibitory effect of this BMP in the lymphoma cells tested. BMP-resistance mechanisms were investigated by comparing sensitive and resistant cell lines. While BMP receptors are downregulated in many cancers, we documented similar receptor levels in resistant and sensitive lymphoma cells. We found a positive correlation between activation of Smad1/5/8 and inhibition of DNA synthesis. Gene expression analysis of two independent data sets showed that the levels of inhibitory Smads varied across different B-cell lymphoma. Furthermore, stable overexpression of Smad7 in two different BMP-sensitive cell lines with low endogenous levels of SMAD7, rendered them completely resistant to BMPs. This work highlights the role of Smads in determining the sensitivity to BMPs and shows that upregulation of Smad7 in cancer cells is sufficient to escape the negative effects of BMPs.

]]>
<![CDATA[Proteomic Profiling of a Mouse Model for Ovarian Granulosa Cell Tumor Identifies VCP as a Highly Sensitive Serum Tumor Marker in Several Human Cancers]]> https://www.researchpad.co/article/5989d9daab0ee8fa60b673ef

The initial aim of this study was to identify novel serum diagnostic markers for the human ovarian granulosa cell tumor (GCT), a tumor that represents up to 5% of all ovarian cancers. To circumvent the paucity of human tissues available for analyses, we used the Ctnnb1tm1Mmt/+;Ptentm1Hwu/tmiHwu;Amhr2tm3(cre)Bhr/+ transgenic mouse model, which features the constitutive activation of CTNNB1 signaling combined with the loss of Pten in granulosa cells and develops GCTs that mimic aggressive forms of the human disease. Proteomic profiling by mass spectrometry showed that vinculin, enolase 1, several heat shock proteins, and valosin containing protein (VCP) were more abundantly secreted by cultured mouse GCT cells compared to primary cultured GC. Among these proteins, only VCP was present in significantly increased levels in the preoperative serum of GCT cancer patients compared to normal subjects. To determine the specificity of VCP, serum levels were also measured in ovarian carcinoma, non-Hodgkin's lymphoma and breast, colon, pancreatic, lung, and prostate cancer patients. Increased serum VCP levels were observed in the majority of cancer cases, with the exception of patients with lung or prostate cancer. Moreover, serum VCP levels were increased in some GCT, ovarian carcinoma, breast cancer, and colon cancer patients who did not otherwise display increased levels of widely used serum tumor markers for their cancer type (e.g. inhibin A, inhibin B, CA125, CEA, or CA15.3). These results demonstrate the potential use of VCP as highly sensitive serum marker for GCT as well as several other human cancers.

]]>
<![CDATA[Oligomeric Structure of the MALT1 Tandem Ig-Like Domains]]> https://www.researchpad.co/article/5989db15ab0ee8fa60bcce87

Background

Mucosa-associated lymphoid tissue 1 (MALT1) plays an important role in the adaptive immune program. During TCR- or BCR-induced NF-κB activation, MALT1 serves to mediate the activation of the IKK (IκB kinase) complex, which subsequently regulates the activation of NF-κB. Aggregation of MALT1 is important for E3 ligase activation and NF-κB signaling.

Principal Findings

Unlike the isolated CARD or paracaspase domains, which behave as monomers, the tandem Ig-like domains of MALT1 exists as a mixture of dimer and tetramer in solution. High-resolution structures reveals a protein-protein interface that is stabilized by a buried surface area of 1256 Å2 and contains numerous hydrogen and salt bonds. In conjunction with a second interface, these interactions may represent the basis of MALT1 oligomerization.

Conclusions

The crystal structure of the tandem Ig-like domains reveals the oligomerization potential of MALT1 and a potential intermediate in the activation of the adaptive inflammatory pathway.

Enhanced version

This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

]]>
<![CDATA[Fast and Non-Toxic In Situ Hybridization without Blocking of Repetitive Sequences]]> https://www.researchpad.co/article/5989db17ab0ee8fa60bcd459

Formamide is the preferred solvent to lower the melting point and annealing temperature of nucleic acid strands in in situ hybridization (ISH). A key benefit of formamide is better preservation of morphology due to a lower incubation temperature. However, in fluorescence in situ hybridization (FISH), against unique DNA targets in tissue sections, an overnight hybridization is required to obtain sufficient signal intensity. Here, we identified alternative solvents and developed a new hybridization buffer that reduces the required hybridization time to one hour (IQFISH method). Remarkably, denaturation and blocking against repetitive DNA sequences to prevent non-specific binding is not required. Furthermore, the new hybridization buffer is less hazardous than formamide containing buffers. The results demonstrate a significant increased hybridization rate at a lowered denaturation and hybridization temperature for both DNA and PNA (peptide nucleic acid) probes. We anticipate that these formamide substituting solvents will become the foundation for changes in the understanding and performance of denaturation and hybridization of nucleic acids. For example, the process time for tissue-based ISH for gene aberration tests in cancer diagnostics can be reduced from days to a few hours. Furthermore, the understanding of the interactions and duplex formation of nucleic acid strands may benefit from the properties of these solvents.

]]>
<![CDATA[Childhood hematologic cancer and residential proximity to oil and gas development]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc7b5

Background

Oil and gas development emits known hematological carcinogens, such as benzene, and increasingly occurs in residential areas. We explored whether residential proximity to oil and gas development was associated with risk for hematologic cancers using a registry-based case-control study design.

Methods

Participants were 0–24 years old, living in rural Colorado, and diagnosed with cancer between 2001–2013. For each child in our study, we calculated inverse distance weighted (IDW) oil and gas well counts within a 16.1-kilometer radius of residence at cancer diagnosis for each year in a 10 year latency period to estimate density of oil and gas development. Logistic regression, adjusted for age, race, gender, income, and elevation was used to estimate associations across IDW well count tertiles for 87 acute lymphocytic leukemia (ALL) cases and 50 non-Hodgkin lymphoma (NHL) cases, compared to 528 controls with non-hematologic cancers.

Findings

Overall, ALL cases 0–24 years old were more likely to live in the highest IDW well count tertiles compared to controls, but findings differed substantially by age. For ages 5–24, ALL cases were 4.3 times as likely to live in the highest tertile, compared to controls (95% CI: 1.1 to 16), with a monotonic increase in risk across tertiles (trend p-value = 0.035). Further adjustment for year of diagnosis increased the association. No association was found between ALL for children aged 0–4 years or NHL and IDW well counts. While our study benefited from the ability to select cases and controls from the same population, use of cancer-controls, the limited number of ALL and NHL cases, and aggregation of ages into five year ranges, may have biased our associations toward the null. In addition, absence of information on O&G well activities, meteorology, and topography likely reduced temporal and spatial specificity in IDW well counts.

Conclusion

Because oil and gas development has potential to expose a large population to known hematologic carcinogens, further study is clearly needed to substantiate both our positive and negative findings. Future studies should incorporate information on oil and gas development activities and production levels, as well as levels of specific pollutants of interest (e.g. benzene) near homes, schools, and day care centers; provide age-specific residential histories; compare cases to controls without cancer; and address other potential confounders, and environmental stressors.

]]>
<![CDATA[Expression of BAFF and BAFF-R in Follicular Lymphoma: Correlation with Clinicopathologic Characteristics and Survival Outcomes]]> https://www.researchpad.co/article/5989da2cab0ee8fa60b82b7f

Background

B-cell activation factor (BAFF) and BAFF-receptor (BAFF-R) play crucial roles in the viability and proliferation of malignant lymphoma cells. Limited information exists regarding expression profiles and the prognostic role of BAFF and BAFF-R in follicular lymphoma (FL). We sought to determine the expression profiles of BAFF and BAFF-R in FL and to evaluate the correlation of BAFF and BAFF-R expression with clinicopathologic characteristics and outcome of FL. Correlation between expression levels of BAFF detected by immunohistochemical (IHC) and serum levels of BAFF was also evaluated.

Methods

Paraffin-embedded specimens from 115 patients were immunohistochemically examined for BAFF and BAFF-R expression. Expression levels were dichotomized into low versus high categories based on immunostaining intensity. The correlation of BAFF and BAFF-R expression with clinicopathologic characteristics and patient outcome was assessed. Serum levels of BAFF in 35 of the 115 patients with IHC data were measured by Enzyme-linked Immunosorbent assay (ELISA).

Results

BAFF and BAFF-R were expressed in 88.7% (102/115) and 87.8% (101/115) of the cases, respectively. BAFF expression was significantly correlated with only one clinicopathologic feature: Ann Arbor stage. No significant correlation was found between expression levels of BAFF detected by IHC and serum levels of BAFF detected by ELISA. High expression of BAFF-R, but not BAFF, was significantly correlated with inferior progression-free survival (PFS; P = 0.013) and overall survival (OS; P = 0.03). High expression of BAFF-R, bulky disease, and elevated lactate dehydrogenase were correlated with inferior PFS and OS in multivariate analysis. A prognostic scoring system incorporating these 3 risk factors identified 3 distinct prognostic groups with 5-year PFS of 59.4%, 41.9%, and 10.7% and OS of 91.3%, 79.7%, and 45.8%, respectively.

Conclusions

Most patients with FL variably express BAFF and BAFF-R. High expression of BAFF-R, but not BAFF, may be an independent risk factor for PFS and OS in FL.

]]>
<![CDATA[Copy Number Variation Analysis on a Non-Hodgkin Lymphoma Case-Control Study Identifies an 11q25 Duplication Associated with Diffuse Large B-Cell Lymphoma]]> https://www.researchpad.co/article/5989da11ab0ee8fa60b79be8

Recent GWAS have identified several susceptibility loci for NHL. Despite these successes, much of the heritable variation in NHL risk remains to be explained. Common copy-number variants are important genomic sources of variability, and hence a potential source to explain part of this missing heritability. In this study, we carried out a CNV analysis using GWAS data from 681 NHL cases and 749 controls to explore the relationship between common structural variation and lymphoma susceptibility. Here we found a novel association with diffuse large B-cell lymphoma (DLBCL) risk involving a partial duplication of the C-terminus region of the LOC283177 long non-coding RNA that was further confirmed by quantitative PCR. For chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), known somatic deletions were identified on chromosomes 13q14, 11q22-23, 14q32 and 22q11.22. Our study shows that GWAS data can be used to identify germline CNVs associated with disease risk for DLBCL and somatic CNVs for CLL/SLL.

]]>
<![CDATA[Therapeutic Potential and Challenges of Targeting Receptor Tyrosine Kinase ROR1 with Monoclonal Antibodies in B-Cell Malignancies]]> https://www.researchpad.co/article/5989da46ab0ee8fa60b8bd3d

Background

Based on its selective cell surface expression in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), receptor tyrosine kinase ROR1 has recently emerged as a promising target for therapeutic monoclonal antibodies (mAbs). To further assess the suitability of ROR1 for targeted therapy of CLL and MCL, a panel of mAbs was generated and its therapeutic utility was investigated.

Methodology and Principal Findings

A chimeric rabbit/human Fab library was generated from immunized rabbits and selected by phage display. Chimeric rabbit/human Fab and IgG1 were investigated for their capability to bind to human and mouse ROR1, to mediate antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and internalization, and to agonize or antagonize apoptosis using primary CLL cells from untreated patients as well as MCL cell lines. A panel of mAbs demonstrated high affinity and specificity for a diverse set of epitopes that involve all three extracellular domains of ROR1, are accessible on the cell surface, and mediate internalization. The mAb with the highest affinity and slowest rate of internalization was found to be the only mAb that mediated significant, albeit weak, ADCC. None of the mAbs mediated CDC. Alone, they did not enhance or inhibit apoptosis.

Conclusions and Significance

Owing to its relatively low cell surface density, ROR1 may be a preferred target for armed rather than naked mAbs. Provided is a panel of fully sequenced and thoroughly characterized anti-ROR1 mAbs suitable for conversion to antibody-drug conjugates, immunotoxins, chimeric antigen receptors, and other armed mAb entities for preclinical and clinical studies.

]]>
<![CDATA[Identification of Methylated Genes Associated with Aggressive Clinicopathological Features in Mantle Cell Lymphoma]]> https://www.researchpad.co/article/5989db03ab0ee8fa60bc7728

Background

Mantle cell lymphoma (MCL) is genetically characterized by the t(11;14)(q13;q32) translocation and a high number of secondary chromosomal alterations. The contribution of DNA methylation to MCL lymphomagenesis is not well known. We sought to identify epigenetically silenced genes in these tumours that might have clinical relevance.

Methodology/Principal Findings

To identify potential methylated genes in MCL we initially investigated seven MCL cell lines treated with epigenetic drugs and gene expression microarray profiling. The methylation status of selected candidate genes was validated by a quantitative assay and subsequently analyzed in a series of primary MCL (n = 38). After pharmacological reversion we identified 252 potentially methylated genes. The methylation analysis of a subset of these genes (n = 25) in the MCL cell lines and normal B lymphocytes confirmed that 80% of them were methylated in the cell lines but not in normal lymphocytes. The subsequent analysis in primary MCL identified five genes (SOX9, HOXA9, AHR, NR2F2, and ROBO1) frequently methylated in these tumours. The gene methylation events tended to occur in the same primary neoplasms and correlated with higher proliferation, increased number of chromosomal abnormalities, and shorter survival of the patients.

Conclusions

We have identified a set of genes whose methylation degree and gene expression levels correlate with aggressive clinicopathological features of MCL. Our findings also suggest that a subset of MCL might show a CpG island methylator phenotype (CIMP) that may influence the behaviour of the tumours.

]]>
<![CDATA[VR09 Cell Line: An EBV-Positive Lymphoblastoid Cell Line with In Vivo Characteristics of Diffuse Large B Cell Lymphoma of Activated B-Cell Type]]> https://www.researchpad.co/article/5989da86ab0ee8fa60b9c4b6

Background

small B-cell neoplasms can show plasmacytic differentiation and may potentially progress to aggressive lymphoma (DLBCL). Epstein-Barr virus (EBV) infection may cause the transformation of malignant cells in vitro.

Design and Method

we established VR09 cell line with plasmacytic differentiation, obtained from a case of atypical, non-CLL B-cell chronic lymphoproliferative disease with plasmacytic features. We used flow cytometry, immunohistochemistry, polymerase chain reaction, cytogenetic analysis and florescence in situ hybridization in the attempt at thoroughly characterizing the cell line. We showed VR09 tumorigenic potential in vivo, leading to the development of activated DLBCL with plasmacytic features.

Results

VR09 cells displayed plasmacytic appearance and grew as spherical tumors when inoculated subcutaneously into immunodeficient Rag2−/− γ-chain−/− mice. VR09 cell line and tumors displayed the phenotype of activated stage of B cell maturation, with secretory differentiation (CD19+ CD20+ CD79a+ CD79b+/− CD138+ cyclin D1- Ki67 80% IgM+ IgD+ MUM1+ MNDA+ CD10- CD22+ CD23+ CD43+ K+, λ- Bcl2+ Bcl6-) and they presented episomal EBV genome, chromosome 12 trisomy, lack of c-MYC rearrangement and Myd88 gene mutation, presence of somatic hypermutation in the VH region, and wild-type p53.

Conclusion

This new EBV-positive cell line may be useful to further characterize in vivo activated DLBCL with plasmacytic features.

]]>