ResearchPad - nutrition-and-disease https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[End-Stage Renal Disease Patients Lose a Substantial Amount of Amino Acids during Hemodialysis]]> https://www.researchpad.co/article/Ndf56d4fc-ace3-4ff5-bc7c-e2cfbadc3068 Poor nutritional status is frequently observed in end-stage renal disease patients and associated with adverse clinical outcomes and increased mortality. Loss of amino acids (AAs) during hemodialysis (HD) may contribute to protein malnutrition in these patients.ObjectiveWe aimed to assess the extent of AA loss during HD in end-stage renal disease patients consuming their habitual diet.MethodsTen anuric chronic HD patients (mean ± SD age: 67.9 ± 19.3 y, BMI: 23.2 ± 3.5 kg/m2), undergoing HD 3 times per week, were selected to participate in this study. Spent dialysate was collected continuously and plasma samples were obtained directly before and after a single HD session in each participant. AA profiles in spent dialysate and in pre-HD and post-HD plasma were measured through ultra-performance liquid chromatography to determine AA concentrations and, as such, net loss of AAs. In addition, dietary intake before and throughout HD was assessed using a 24-h food recall questionnaire during HD. Paired-sample t tests were conducted to compare pre-HD and post-HD plasma AA concentrations.ResultsDuring an HD session, 11.95 ± 0.69 g AAs were lost via the dialysate, of which 8.26 ± 0.46 g were nonessential AAs, 3.69 ± 0.31 g were essential AAs, and 1.64 ± 0.17 g were branched-chain AAs. As a consequence, plasma total and essential AA concentrations declined significantly from 2.88 ± 0.15 and 0.80 ± 0.05 mmol/L to 2.27 ± 0.11 and 0.66 ± 0.05 mmol/L, respectively (P < 0.05). AA profiles of pre-HD plasma and spent dialysate were similar. Moreover, AA concentrations in pre-HD plasma and spent dialysate were strongly correlated (Spearman's ρ = 0.92, P < 0.001).ConclusionsDuring a single HD session, ∼12 g AAs are lost into the dialysate, causing a significant decline in plasma AA concentrations. AA loss during HD can contribute substantially to protein malnutrition in end-stage renal disease patients. This study was registered at the Netherlands Trial Registry (NTR7101). ]]> <![CDATA[Acute Peanut Consumption Alters Postprandial Lipids and Vascular Responses in Healthy Overweight or Obese Men123]]> https://www.researchpad.co/article/5bfe79ffd5eed0c484933cbf

Background: Postprandial hyperlipidemia is associated with impaired endothelial function. Peanut consumption favorably affects the lipid and lipoprotein profile; however, the effects on endothelial function remain unclear.

Objective: The purpose of the study was to evaluate the effects of acute peanut consumption as part of a high-fat meal on postprandial endothelial function.

Methods: We conducted a randomized, controlled, crossover postprandial study to evaluate the effect of acute peanut consumption on postprandial lipids and endothelial function as assessed by flow-mediated dilatation (FMD) of the brachial artery in 15 healthy overweight or obese men [mean age: 26.7 y; mean body mass index (in kg/m2): 31.4]. Participants consumed, in a randomized order, a peanut meal containing 3 ounces (85 g) ground peanuts (1198 kcal; 40.0% carbohydrate, 47.7% fat, 19.4% saturated fat, 13.2% protein) and a control meal matched for energy and macronutrient content. Meals were in the form of a shake, scheduled ≥1 wk apart. Lipids, lipoproteins, glucose, and insulin were measured at baseline (0 min) and at 30, 60, 120, and 240 min after shake consumption. FMD was measured at baseline and at 240 min.

Results: Acute peanut consumption blunted the serum triglyceride (TG) response 120 and 240 min after consumption compared with the control meal (means ± SEMs—120 min: 188.9 ± 19.4 compared with 197.5 ± 20.7 mg/dL; 240 min: 189.9 ± 24.3 compared with 197.3 ± 18.4 mg/dL; P < 0.05 for both). Total, LDL, and HDL cholesterol and glucose and insulin responses were similar between the test meals. Compared with baseline, only the control meal significantly decreased FMD at 240 min (control: −1.2% ± 0.5%; P = 0.029; peanut: −0.6% ± 0.5%; P = 0.3). Participants with higher baseline total (>150 mg/dL) and LDL (>100 mg/dL)-cholesterol concentrations showed a significant decrease in FMD after the control meal (−1.8%, P = 0.017; −2.0%, P = 0.038), whereas the peanut meal maintained endothelial function in all participants irrespective of total- and LDL-cholesterol concentrations.

Conclusion: The inclusion of 85 g peanuts (3 ounces) as part of a high-fat meal improved the postprandial TG response and preserved endothelial function in healthy overweight or obese men. This trial was registered at clinicaltrials.gov as NCT01405300.

]]>