ResearchPad - odorants https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Nutritional and physicochemical characteristics of purple sweet corn juice before and after boiling]]> https://www.researchpad.co/article/elastic_article_7720 Sweet corn juice is becoming increasingly popular in China. In order to provide valuable health-related information to consumers, the nutritional and physicochemical characteristics of raw and boiled purple sweet corn juices were herein investigated. Sugars, antinutrients, total free phenols, anthocyanins, and antioxidant activity were analyzed by conventional chemical methods. The viscosity and stability of juices were determined by Ubbelohde viscosity meter and centrifugation, respectively. Boiling process could elevate viscosity, stability and sugar content, and reduce antinutrients, total free phenols, anthocyanins, and antioxidant activity in corn juice. In addition, short time boiling efficiently reduced the degradation of anthocyanins during subsequent refrigeration. The content of amino acids, vitamin B1/B2 and E were detected by High Performance Liquid Chromatography. Gas Chromatography Mass Spectrometry was used for the analysis of fatty acids and aroma compounds. Several aroma compounds not previously reported in corn were identified, including 1-heptanol, 2-methyl-2-butenal, (Z)-3-nonen-1-ol, 3-ethyl-2-methyl-1,3-hexadiene, and 2,4-bis(1,1-dimethylethyl)phenol. Interestingly, the boiling process had no apparent effect on the amino acids profile, but it caused a 45.8% loss of fatty acids in the juice by promoting the retention of fatty acids in the corn residue. These results provide detailed information that could be used for increasing consumers’ knowledge of sweet corn juice, further development of sweet corn juice by food producers, and maize breeding programs.

]]>
<![CDATA[Isolation and identification of aroma producing strain with esterification capacity from yellow water]]> https://www.researchpad.co/article/5c6f1540d5eed0c48467af8c

Kaoliang is a refreshing fragranced type of Chinese spirits with slight apple fragrance that comes from ethyl acetate (EA). Special aromas are produced by esterification microorganisms, which affect the taste and quality of the wine. In this study, new yeast strains were isolated from yellow water, a by-product during fermentation process. Meanwhile, the optimal culture condition was determined for its growth and EA production. Three new strains, Kazachstaniaexigua, Candida humilis and Saccharomyces cerevisiae were identified from yellow water. Among these strains, S. cerevisiae S5 was the new and dominant strain. Results from response surface methodology showed that S. cerevisiae S5 produced 161.88 ppm of EA, in the medium with 4.91% yeast extract, 9.82% peptone, and 20.91% glucose after 96 hours of cultivation at 27.53°C. GC analysis showed that aroma compounds, such as EA, isoamyl acetate and 2-phenylethanol increased from the sample of optimal condition when compared to the one from initial fermentation condition.

]]>
<![CDATA[Odorant mixtures elicit less variable and faster responses than pure odorants]]> https://www.researchpad.co/article/5c181342d5eed0c484774956

In natural environments, odors are typically mixtures of several different chemical compounds. However, the implications of mixtures for odor processing have not been fully investigated. We have extended a standard olfactory receptor model to mixtures and found through its mathematical analysis that odorant-evoked activity patterns are more stable across concentrations and first-spike latencies of receptor neurons are shorter for mixtures than for pure odorants. Shorter first-spike latencies arise from the nonlinear dependence of binding rate on odorant concentration, commonly described by the Hill coefficient, while the more stable activity patterns result from the competition between different ligands for receptor sites. These results are consistent with observations from numerical simulations and physiological recordings in the olfactory system of insects. Our results suggest that mixtures allow faster and more reliable olfactory coding, which could be one of the reasons why animals often use mixtures in chemical signaling.

]]>
<![CDATA[Cultural Adaptation of the Portuguese Version of the “Sniffin’ Sticks” Smell Test: Reliability, Validity, and Normative Data]]> https://www.researchpad.co/article/5989db0aab0ee8fa60bc9bcf

The cross-cultural adaptation and validation of the Sniffin`Sticks test for the Portuguese population is described. Over 270 people participated in four experiments. In Experiment 1, 67 participants rated the familiarity of presented odors and seven descriptors of the original test were adapted to a Portuguese context. In Experiment 2, the Portuguese version of Sniffin`Sticks test was administered to 203 healthy participants. Older age, male gender and active smoking status were confirmed as confounding factors. The third experiment showed the validity of the Portuguese version of Sniffin`Sticks test in discriminating healthy controls from patients with olfactory dysfunction. In Experiment 4, the test-retest reliability for both the composite score (r71 = 0.86) and the identification test (r71 = 0.62) was established (p<0.001). Normative data for the Portuguese version of Sniffin`Sticks test is provided, showing good validity and reliability and effectively distinguishing patients from healthy controls with high sensitivity and specificity. The Portuguese version of Sniffin`Sticks test identification test is a clinically suitable screening tool in routine outpatient Portuguese settings.

]]>
<![CDATA[Modulatory Effects of Sex Steroids Progesterone and Estradiol on Odorant Evoked Responses in Olfactory Receptor Neurons]]> https://www.researchpad.co/article/5989da3aab0ee8fa60b87835

The influence of the sex steroid hormones progesterone and estradiol on physiology and behavior during menstrual cycles and pregnancy is well known. Several studies indicate that olfactory performance changes with cyclically fluctuating steroid hormone levels in females. Knowledge of the exact mechanisms behind how female sex steroids modulate olfactory signaling is limited. A number of different known genomic and non-genomic actions that are mediated by progesterone and estradiol via interactions with different receptors may be responsible for this modulation. Next generation sequencing-based RNA-Seq transcriptome data from the murine olfactory epithelium (OE) and olfactory receptor neurons (ORNs) revealed the expression of several membrane progestin receptors and the estradiol receptor Gpr30. These receptors are known to mediate rapid non-genomic effects through interactions with G proteins. RT-PCR and immunohistochemical staining results provide evidence for progestin and estradiol receptors in the ORNs. These data support the hypothesis that steroid hormones are capable of modulating the odorant-evoked activity of ORNs. Here, we validated this hypothesis through the investigation of steroid hormone effects by submerged electro-olfactogram and whole cell patch-clamp recordings of ORNs. For the first time, we demonstrate that the sex steroid hormones progesterone and estradiol decrease odorant-evoked signals in the OE and ORNs of mice at low nanomolar concentrations. Thus, both of these sex steroids can rapidly modulate the odor responsiveness of ORNs through membrane progestin receptors and the estradiol receptor Gpr30.

]]>
<![CDATA[Activation of odorant receptor in colorectal cancer cells leads to inhibition of cell proliferation and apoptosis]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbdf4

The analysis and functional characterization of ectopically expressed human olfactory receptors (ORs) is becoming increasingly important, as many ORs have been identified in several healthy and cancerous tissues. OR activation has been demonstrated to have influence on cancer cell growth and progression. Here, ORs were identified using RNA-Seq analyses and RT-PCR. We demonstrated the OR protein localization in HCT116 cells using immunocytochemistry (IHC). In order to analyze the physiological role of OR51B4, we deorphanized the receptor by the use of CRE-Luciferase assays, conducted calcium imaging experiments as well as scratch- and proliferation assays. Furthermore, western blot analyses revealed the involvement of different protein kinases in the ligand-dependent signaling pathway. Receptor knockdown via shRNA was used to analyze the involvement of OR51B4.

We identified OR51B4, which is highly expressed in the colon cancer cell line HCT116 and in native human colon cancer tissues. We deorphanized the receptor and identified Troenan as an effective ligand. Troenan stimulation of HCT116 cells has anti-proliferative, anti-migratory and pro-apoptotic effects, mediated by changes in the intracellular calcium level upon PLC activation. These effects cause changes in the phosphorylation levels of p38, mTor and Akt kinases. Knockdown of the receptor via shRNA confirmed the involvement of OR51B4.

This study emphasizes the importance of ectopically expressed ORs in the therapy for several diseases. The findings provide the basis for alternative treatments of colorectal cancer.

]]>
<![CDATA[Binding Properties of General Odorant Binding Proteins from the Oriental Fruit Moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae)]]> https://www.researchpad.co/article/5989da99ab0ee8fa60ba2f22

Background

The oriental fruit moth Grapholita molesta is a host-switching pest species. The adults highly depend on olfactory cues in locating optimal host plants and oviposition sites. Odorant binding proteins (OBPs) are thought to be responsible for recognizing and transporting hydrophobic odorants across the aqueous sensillum lymph to stimulate the odorant receptors (ORs) within the antennal sensilla and activate the olfactory signal transduction pathway. Exploring the physiological function of these OBPs could facilitate understanding insect chemical communications.

Methodology/Principal Finding

Two antennae-specific general OBPs (GOBPs) of G. molesta were expressed and purified in vitro. The binding affinities of G. molesta GOBP1 and 2 (GmolGOBP1 and 2) for sex pheromone components and host plant volatiles were measured by fluorescence ligand-binding assays. The distribution of GmolGOBP1 and 2 in the antennal sensillum were defined by whole mount fluorescence immunohistochemistry (WM-FIHC) experiments. The binding sites of GmolGOBP2 were predicted using homology modeling, molecular docking and site-directed mutagenesis. Both GmolGOBP1 and 2 are housing in sensilla basiconica and with no differences in male and female antennae. Recombinant GmolGOBP1 (rGmolGOBP1) exhibited broad binding properties towards host plant volatiles and sex pheromone components; rGmolGOBP2 could not effectively bind host plant volatiles but showed specific binding affinity with a minor sex pheromone component dodecanol. We chose GmolGOBP2 and dodecanol for further homology modeling, molecular docking, and site-directed mutagenesis. Binding affinities of mutants demonstrated that Thr9 was the key binding site and confirmed dodecanol bonding to protein involves a hydrogen bond. Combined with the pH effect on binding affinities of rGmolGOBP2, ligand binding and release of GmolGOBP2 were related to a pH-dependent conformational transition.

Conclusion

Two rGmolGOBPs exhibit different binding characteristics for tested ligands. rGmolGOBP1 has dual functions in recognition of host plant volatiles and sex pheromone components, while rGmolGOBP2 is mainly involved in minor sex pheromone component dodecanol perception. This study also provides empirical evidence for the predicted functions of key amino acids in recombinant protein ligand-binding characteristics.

]]>
<![CDATA[Mixtures of Two Bile Alcohol Sulfates Function as a Proximity Pheromone in Sea Lamprey]]> https://www.researchpad.co/article/5989daefab0ee8fa60bc0a8c

Unique mixtures of pheromone components are commonly identified in insects, and have been shown to increase attractiveness towards conspecifics when reconstructed at the natural ratio released by the signaler. In previous field studies of pheromones that attract female sea lamprey (Petromyzon marinus, L.), putative components of the male-released mating pheromone included the newly described bile alcohol 3,12-diketo-4,6-petromyzonene-24-sulfate (DkPES) and the well characterized 3-keto petromyzonol sulfate (3kPZS). Here, we show chemical evidence that unequivocally confirms the elucidated structure of DkPES, electrophysiological evidence that each component is independently detected by the olfactory epithelium, and behavioral evidence that mature female sea lamprey prefer artificial nests activated with a mixture that reconstructs the male-released component ratio of 30:1 (3kPZS:DkPES, molar:molar). In addition, we characterize search behavior (sinuosity of swim paths) of females approaching ratio treatment sources. These results suggest unique pheromone ratios may underlie reproductive isolating mechanisms in vertebrates, as well as provide utility in pheromone-integrated control of invasive sea lamprey in the Great Lakes.

]]>
<![CDATA[A Conserved Odorant Receptor Tuned to Floral Volatiles in Three Heliothinae Species]]> https://www.researchpad.co/article/5989da33ab0ee8fa60b8518f

Odorant receptors (ORs) play an important role in insects to monitor and adapt to the external environment, such as host plant location, oviposition-site selection, mate recognition and natural enemy avoidance. In our study, we identified and characterized OR12 from three closely-related species, Helicoverpa armigera, Helicoverpa assulta, Heliothis virescens, sharing between 90 and 98% of their amino acids. The tissue expression pattern analysis in H. armigera showed that HarmOR12 was strongly expressed both in male and female antennae, but not in other tissues. Functional analysis performed in the heterologous Xenopus expression system showed that all three OR12 were tuned to six structurally related plant volatiles. Electroantennogram recordings from male and female antennae of H. armigera closely matched the data of in vitro functional studies. Our results revealed that OR12 has a conserved role in Heliothinae moths and might represent a suitable target for the control of these crop pests.

]]>
<![CDATA[Inhibition of insect olfactory behavior by an airborne antagonist of the insect odorant receptor co-receptor subunit]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be0141

Response to volatile environmental chemosensory cues is essential for insect survival. The odorant receptor (OR) family is an important class of receptors that detects volatile molecules; guiding insects towards food, mates, and oviposition sites. ORs are odorant-gated ion channels, consisting of a variable odorant specificity subunit and a conserved odorant receptor co-receptor (Orco) subunit, in an unknown stoichiometry. The Orco subunit possesses an allosteric site to which modulators can bind and noncompetitively inhibit odorant activation of ORs. In this study, we characterized several halogen-substituted versions of a phenylthiophenecarboxamide Orco antagonist structure. Orco antagonist activity was assessed on ORs from Drosophila melanogaster flies and Culex quinquefasciatus mosquitoes, expressed in Xenopus laevis oocytes and assayed by two-electrode voltage clamp electrophysiology. One compound, OX1w, was also shown to inhibit odorant activation of a panel of Anopheles gambiae mosquito ORs activated by diverse odorants. Next, we asked whether Orco antagonist OX1w could affect insect olfactory behavior. A Drosophila melanogaster larval chemotaxis assay was utilized to address this question. Larvae were robustly attracted to highly diluted ethyl acetate in a closed experimental chamber. Attraction to ethyl acetate was Orco dependent and also required the odorant specificity subunit Or42b. The addition of the airborne Orco antagonist OX1w to the experimental chamber abolished larval chemotaxis towards ethyl acetate. The Orco antagonist was not a general inhibitor of sensory behavior, as behavioral repulsion from a light source was unaffected. This is the first demonstration that an airborne Orco antagonist can alter olfactory behavior in an insect. These results suggest a new approach to insect control and emphasize the need to develop more potent Orco antagonists.

]]>
<![CDATA[A Cross Modal Performance-Based Measure of Sensory Stimuli Intricacy]]> https://www.researchpad.co/article/5989da5cab0ee8fa60b9032a

We define a new measure of sensory stimuli which has the following properties: It is cross modal, performance based, robust, and well defined. We interpret this measure as the intricacy or complexity of the stimuli, yet its validity is independent of its interpretation. We tested the validity and cross modality of our measure using three olfactory and one visual experiment. In order to test the link between our measure and cognitive performance we also conducted an additional visual experiment. We found that our measure is correlated with the results of the well-established Rapid Serial Visual Presentation masking experiment. Specifically, ranking stimuli according to our measure was correlated at r = 0.75 (p < 0.002) with masking effectiveness. Thus, our novel measure of sensory stimuli provides a new quantitative tool for the study of sensory processing.

]]>
<![CDATA[Evidence for a shape-based recognition of odorants in vivo in the human nose from an analysis of the molecular mechanism of lily-of-the-valley odorants detection in the Lilial and Bourgeonal family using the C/Si/Ge/Sn switch strategy]]> https://www.researchpad.co/article/5b41a70f463d7e6c04616420

We performed an analysis of possible mechanisms of ligand recognition in the human nose. The analysis is based on in vivo odor threshold determination and in vitro Ca2+ imaging assays with a C/Si/Ge/Sn switch strategy applied to the compounds Lilial and Bourgeonal, to differentiate between different molecular mechanisms of odorant detection. Our results suggest that odorant detection under threshold conditions is mainly based on the molecular shape, i.e. the van der Waals surface, and electrostatics of the odorants. Furthermore, we show that a single olfactory receptor type is responsible for odor detection of Bourgeonal at the threshold level in humans in vivo. Carrying out a QM analysis of vibrational energies contained in the odorants, there is no evidence for a vibration-based recognition.

]]>
<![CDATA[A Mathematical Model of the Olfactory Bulb for the Selective Adaptation Mechanism in the Rodent Olfactory System]]> https://www.researchpad.co/article/5989da3eab0ee8fa60b8917d

To predict the odor quality of an odorant mixture, the interaction between odorants must be taken into account. Previously, an experiment in which mice discriminated between odorant mixtures identified a selective adaptation mechanism in the olfactory system. This paper proposes an olfactory model for odorant mixtures that can account for selective adaptation in terms of neural activity. The proposed model uses the spatial activity pattern of the mitral layer obtained from model simulations to predict the perceptual similarity between odors. Measured glomerular activity patterns are used as input to the model. The neural interaction between mitral cells and granular cells is then simulated, and a dissimilarity index between odors is defined using the activity patterns of the mitral layer. An odor set composed of three odorants is used to test the ability of the model. Simulations are performed based on the odor discrimination experiment on mice. As a result, we observe that part of the neural activity in the glomerular layer is enhanced in the mitral layer, whereas another part is suppressed. We find that the dissimilarity index strongly correlates with the odor discrimination rate of mice: r = 0.88 (p = 0.019). We conclude that our model has the ability to predict the perceptual similarity of odorant mixtures. In addition, the model also accounts for selective adaptation via the odor discrimination rate, and the enhancement and inhibition in the mitral layer may be related to this selective adaptation.

]]>
<![CDATA[Transplant Antennae and Host Brain Interact to Shape Odor Perceptual Space in Male Moths]]> https://www.researchpad.co/article/5989db30ab0ee8fa60bd1f61

Behavioral responses to odors rely first upon their accurate detection by peripheral sensory organs followed by subsequent processing within the brain’s olfactory system and higher centers. These processes allow the animal to form a unified impression of the odor environment and recognize combinations of odorants as single entities. To investigate how interactions between peripheral and central olfactory pathways shape odor perception, we transplanted antennal imaginal discs between larval males of two species of moth Heliothis virescens and Heliothis subflexa that utilize distinct pheromone blends. During metamorphic development olfactory receptor neurons originating from transplanted discs formed connections with host brain neurons within olfactory glomeruli of the adult antennal lobe. The normal antennal receptor repertoire exhibited by males of each species reflects the differences in the pheromone blends that these species employ. Behavioral assays of adult transplant males revealed high response levels to two odor blends that were dissimilar from those that attract normal males of either species. Neurophysiological analyses of peripheral receptor neurons and central olfactory neurons revealed that these behavioral responses were a result of: 1. the specificity of H. virescens donor olfactory receptor neurons for odorants unique to the donor pheromone blend and, 2. central odor recognition by the H. subflexa host brain, which typically requires peripheral receptor input across 3 distinct odor channels in order to elicit behavioral responses.

]]>
<![CDATA[Rodents and humans are able to detect the odour of L-Lactate]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be0011

L-Lactate (LL) is an essential cellular metabolite which can be used to generate energy. In addition, accumulating evidence suggests that LL is used for inter-cellular signalling. Some LL-sensitive receptors have been identified but we recently proposed that there may be yet another unknown G-protein coupled receptor (GPCR) sensitive to LL in the brain. Olfactory receptors (ORs) represent the largest family of GPCRs and some of them are expressed outside the olfactory system, including brain, making them interesting candidates for non-olfactory LL signalling. One of the “ectopically” expressed ORs, Olfr78 in mice (Olr59 in rats and OR51E2 in humans), reportedly can be activated by LL. This implies that both rodents and humans should be able to detect the LL odour. Surprisingly, this has never been demonstrated. Here we show that mice can detect the odour of LL in odour detection and habituation-dishabituation tasks, and discriminate it from peppermint and vanilla odours. Behaviour of the Olfr78 null mice and wildtype mice in odour detection task was not different, indicating that rodents are equipped with more than one LL-sensitive OR. Rats were also able to use the smell of LL as a cue in an odour-reward associative learning task. When presented to humans, more than 90% of participants detected a smell of LL in solution. Interestingly, LL was perceived differently than acetate or propionate—LL was preferentially reported as a pleasant sweet scent while acetate and propionate were perceived as repulsive sour/acid smells. Subjective perception of LL smell was different in men and women. Taken together, our data demonstrate that both rodents and humans are able to detect the odour of LL. Moreover, in mice, LL perception is not purely mediated by Olfr78. Discovery of further LL-sensitive OR might shed the light on their contribution to LL signalling in the body.

]]>
<![CDATA[Identification of Putative Chemosensory Receptor Genes from the Athetis dissimilis Antennal Transcriptome]]> https://www.researchpad.co/article/5989db4aab0ee8fa60bd9d5f

Olfaction plays a crucial role in insect population survival and reproduction. Identification of the genes associated with the olfactory system, without the doubt will promote studying the insect chemical communication system. In this study, RNA-seq technology was used to sequence the antennae transcriptome of Athetis dissimilis, an emerging crop pest in China with limited genomic information, with the purpose of identifying the gene set involved in olfactory recognition. Analysis of the transcriptome of female and male antennae generated 13.74 Gb clean reads in total from which 98,001 unigenes were assembled, and 25,930 unigenes were annotated. Total of 60 olfactory receptors (ORs), 18 gustatory receptors (GRs), and 12 ionotropic receptors (IRs) were identified by Blast and sequence similarity analyzes. One obligated olfactory receptor co-receptor (Orco) and four conserved sex pheromone receptors (PRs) were annotated in 60 ORs. Among the putative GRs, five genes (AdisGR1, 6, 7, 8 and 94) clustered in the sugar receptor family, and two genes (AdisGR3 and 93) involved in CO2 detection were identified. Finally, AdisIR8a.1 and AdisIR8a.2 co-receptors were identified in the group of candidate IRs. Furthermore, expression levels of these chemosensory receptor genes in female and male antennae were analyzed by mapping the Illumina reads.

]]>
<![CDATA[Odorant Receptors of the New Zealand Endemic Leafroller Moth Species Planotortrix octo and P. excessana]]> https://www.researchpad.co/article/5989db40ab0ee8fa60bd6a75

Moths use their sense of smell to find food sources, mating partners and oviposition sites. For this they possess a family of odorant receptors (ORs). Some ORs are used by both sexes whereas others have sex-specific roles. For example, male moths possess ORs specifically tuned to sex pheromones produced by conspecific females. Here we identify sets of ORs from the antennae of New Zealand endemic leafroller moths Planotortrix octo (48 ORs) and P. excessana (47 ORs) using an RNA-Seq approach. Two orthologous ORs show male-biased expression in the adult antennae of both species (OR7 and OR30) and one other OR in each species was female-biased in its expression (PoctOR25, PexcOR14) by qPCR. PAML analysis conducted on male-biased ORs indicated positive selection acting on the male-biased OR7. The fact that OR7 is likely under positive selection, that it is male-biased in its expression and that its orthologue in C. obliquana, CoblOR7, responds to sex pheromone components also utilised by Planotortrix species, suggests that this receptor may also be important in sex pheromone reception in Planotortrix species.

]]>
<![CDATA[Odorant Responses and Courtship Behaviors Influenced by at4 Neurons in Drosophila]]> https://www.researchpad.co/article/5989db02ab0ee8fa60bc70f3

In insects, pheromones function as triggers to elicit complex behavior programs, such as courtship and mating behavior. In most species, the neurons tuned to pheromones are localized in a specific subset of olfactory sensilla located on the antenna called trichoid sensilla. In Drosophila there are two classes of trichoid sensilla, at1 sensilla that contain the dendrites of a single neuron that is specifically tuned to the male-specific pheromone 11-cis vaccenyl acetate (cVA), and at4 sensilla that contain three neurons with relatively poorly defined chemical specificity and function. Using a combination of odorant receptor mutant analysis, single sensillum electrophysiology and optogenetics, we have examined the chemical tuning and behavioral consequences of the three at4 olfactory neuron classes. Our results indicate that one class, Or65abc neurons, are unresponsive to cVA pheromone, and function to inhibit courtship behaviors in response to an unknown ligand, while the other two neuron classes, Or88a and Or47b neurons, are sensitive to a diverse array of fly and non-fly odors, and activation of these neurons has little direct impact on courtship behaviors.

]]>
<![CDATA[Silencing the Olfactory Co-Receptor RferOrco Reduces the Response to Pheromones in the Red Palm Weevil, Rhynchophorus ferrugineus]]> https://www.researchpad.co/article/5989dacaab0ee8fa60bb3f88

The red palm weevil (RPW, Rhynchophorus ferrugineus), one of the most widespread of all invasive insect pest species, is a major cause of severe damage to economically important palm trees. RPW exhibits behaviors very similar to those of its sympatric species, the Asian palm weevil (R. vulneratus), which is restricted geographically to the southern part of Southeast Asia. Although efficient and sustainable control of these pests remains challenging, olfactory-system disruption has been proposed as a promising approach for controlling palm weevils. Here, we report the cloning and sequencing of an olfactory co-receptor (Orco) from R. ferrugineus (RferOrco) and R. vulneratus (RvulOrco) and examine the effects of RferOrco silencing (RNAi) on odorant detection. RferOrco and RvulOrco encoding 482 amino acids showing 99.58% identity. The injection of double-stranded RNA (dsRNA) from RferOrco into R. ferrugineus pupae significantly reduced RferOrco gene expression and led to the failure of odor-stimulus detection, as confirmed through olfactometer and electroantennography (EAG) assays. These results suggest that olfactory-system disruption leading to reduced pheromone detection holds great potential for RPW pest-control strategies.

]]>
<![CDATA[NK Cells Respond to Haptens by the Activation of Calcium Permeable Plasma Membrane Channels]]> https://www.researchpad.co/article/5989dadaab0ee8fa60bb9622

Natural Killer (NK) cells mediate innate immunity to infected and transformed cells. Yet, NK cells can also mount hapten-specific recall responses thereby contributing to contact hypersensitivity (CHS). However, since NK cells lack antigen receptors that are used by the adaptive immune system to recognize haptens, it is not clear if NK cells respond directly to haptens and, if so, what mediates these responses. Here we show that among four haptens the two that are known to induce NK cell-dependent CHS trigger the rapid influx of extracellular Ca2+ into NK cells and lymphocyte cell lines. Thus lymphocytes can respond to haptens independent of antigen presentation and antigen receptors. We identify the Ca2+-permeable cation channel TRPC3 as a component of the lymphocyte response to one of these haptens. These data suggest that the response to the second hapten is based on a distinct mechanism, consistent with the capacity of NK cells to discriminate haptens. These findings raise the possibility that antigen-receptor independent activation of immune cells contributes to CHS.

]]>