ResearchPad - optic-disc https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model]]> https://www.researchpad.co/article/elastic_article_14620 To evaluate ways to improve the generalizability of a deep learning algorithm for identifying glaucomatous optic neuropathy (GON) using a limited number of fundus photographs, as well as the key features being used for classification.MethodsA total of 944 fundus images from Taipei Veterans General Hospital (TVGH) were retrospectively collected. Clinical and demographic characteristics, including structural and functional measurements of the images with GON, were recorded. Transfer learning based on VGGNet was used to construct a convolutional neural network (CNN) to identify GON. To avoid missing cases with advanced GON, an ensemble model was adopted in which a support vector machine classifier would make final classification based on cup-to-disc ratio if the CNN classifier had low-confidence score. The CNN classifier was first established using TVGH dataset, and then fine-tuned by combining the training images of TVGH and Drishti-GS datasets. Class activation map (CAM) was used to identify key features used for CNN classification. Performance of each classifier was determined through area under receiver operating characteristic curve (AUC) and compared with the ensemble model by diagnostic accuracy.ResultsIn 187 TVGH test images, the accuracy, sensitivity, and specificity of the CNN classifier were 95.0%, 95.7%, and 94.2%, respectively, and the AUC was 0.992 compared to the 92.8% accuracy rate of the ensemble model. For the Drishti-GS test images, the accuracy of the CNN, the fine-tuned CNN and ensemble model was 33.3%, 80.3%, and 80.3%, respectively. The CNN classifier did not misclassify images with moderate to severe diseases. Class-discriminative regions revealed by CAM co-localized with known characteristics of GON.ConclusionsThe ensemble model or a fine-tuned CNN classifier may be potential designs to build a generalizable deep learning model for glaucoma detection when large image databases are not available. ]]> <![CDATA[Factors Associated with the Retinal Nerve Fiber Layer Loss after Acute Primary Angle Closure: A Prospective EDI-OCT Study]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcbc7

Purpose

To determine the factors associated with retinal nerve fiber layer (RNFL) loss in eyes with acute primary angle-closure (APAC), particularly focusing on the influence of the change in the anterior lamina cribrosa surface depth (LCD).

Methods

After the initial presentation, 30 eyes with unilateral APAC were followed up at the following specific time points over a 12-month period: 1 week, 1~2 months, 2~3 months, 5~6 months, and 11~12 months. These follow-ups involved intraocular pressure measurements, enhanced depth-imaging spectral-domain optical coherence tomography (SD-OCT) scanning of the optic disc, and measurements of the circumpapillary RNFL thickness. The prelaminar tissue thickness (PLT) and LCD were determined in the SD-OCT images obtained at each follow-up visit.

Results

Repeated measures analysis of variance revealed a significant pattern of decrease in the global RNFL thickness, PLT, and LCD (all p<0.001). The global RNFL thickness decreased continuously throughout the follow-up period, while the PLT decreased until 5~6 months and did not change thereafter. The LCD reduced until 2~3 months and then also remained steady. Multivariable regression analysis revealed that symptoms with a longer duration before receiving laser peripheral iridotomy (LI) (p = 0.049) and a larger LCD reduction (p = 0.034) were significant factors associated with the conversion to an abnormal RNFL thickness defined using OCT normative data.

Conclusion

Early short-term decreases in the PLT and LCD and overall long-term decrease in the peripapillary RNFL were observed during a 12-month follow-up after an APAC episode. A longer duration of symptoms before receiving LI treatment and larger LCD reduction during follow-up were associated with the progressive RNFL loss. The LCD reduction may indicate a prior presence of significant pressure-induced stress that had been imposed on the optic nerve head at the time of APAC episode. Glaucomatous progression should be suspected in eyes showing LCD reduction after the APAC remission.

]]>
<![CDATA[The Effect of Optic Disc Center Displacement on Retinal Nerve Fiber Layer Measurement Determined by Spectral Domain Optical Coherence Tomography]]> https://www.researchpad.co/article/5989da57ab0ee8fa60b8f2e0

Purpose

To investigate the effect of optic disc center displacement on retinal nerve fiber layer (RNFL) measurement determined by spectral domain optical coherence tomography (SD-OCT).

Methods

The optic disc center was manipulated at 1-pixel intervals in horizontal, vertical, and diagonal directions. According to the manipulated optic disc center location, the RNFL thickness data were resampled: (1) at a 3.46-mm diameter circle; and (2) between a 2.5-mm diameter circle and 5.4-mm square. Error was calculated between the original and resampled RNFL measurements. The tolerable error threshold of the optic disc center displacement was determined by considering test-retest variability of SD-OCT. The unreliable zone was defined as an area with 10% or more variability.

Results

The maximum tolerable error thresholds of optic disc center displacement on the RNFL thickness map were distributed from 0.042 to 0.09 mm in 8 directions. The threshold shape was vertically elongated. Clinically important unreliable zones were located: (1) at superior and inferior region in the vertical displacement; (2) at inferotemporal region in the horizontal displacement, and (3) at superotemporal or inferotemporal region in the diagonal displacement. The unreliable zone pattern and threshold limit varied according to the direction of optic disc displacement.

Conclusions

Optic disc center displacement had a considerable impact on whole RNFL thickness measurements. Understanding the effect of optic disc center displacement could contribute to reliable RNFL measurements.

]]>
<![CDATA[The effect of parental factors in children with large cup-to-disc ratios]]> https://www.researchpad.co/article/5989db59ab0ee8fa60bdf0c3

Background

To investigate large cup-to-disc ratios (CDR) in children and to determine the relationship between parental CDR and clinical characteristics associated with glaucoma.

Methods

Two hundred thirty six children aged 6 to 12 years with CDR ≥ 0.6 were enrolled in this study. Subjects were classified into two groups based on parental CDR: disc suspect children with disc suspect (CDR ≥0.6) parents and disc suspect children without disc suspect parents. Ocular variables were compared between the two groups.

Results

Of the 236 disc suspect children, 100 (42.4%) had at least one disc suspect parent. Intraocular pressure (IOP) was higher in disc suspect children with disc suspect parents (16.52±2.66 mmHg) than in disc suspect children without disc suspect parents (14.38±2.30 mmHg, p = 0.023). In the group with disc suspect parents, vertical CDR significantly correlated with IOP (R = -0.325, p = 0.001), average retinal nerve fiber layer (RNFL) thickness (R = -0.319, p = 0.001), rim area (R = -0.740, p = 0.001), and cup volume (R = 0.499, p = 0.001). However, spherical equivalent (R = 0.333, p = 0.001), AL (R = -0.223, p = 0.009), and disc area (R = 0.325, p = 0.001) significantly correlated with vertical CDR in disc suspect children without disc suspect parents, in contrast to those with disc suspect parents. Larger vertical CDR was associated with the presence of disc suspect parents (p = 0.001), larger disc area (p = 0.001), thinner rim area (p = 0.001), larger average CDR (p = 0.001), and larger cup volume (p = 0.021).

Conclusions and relevance

Family history of large CDR was a significant factor associated with large vertical CDR in children. In children with disc suspect parents, there were significant correlations between IOP and average RNFL thickness and vertical CDR.

]]>
<![CDATA[Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects]]> https://www.researchpad.co/article/5989dac5ab0ee8fa60bb259c

Purpose

To investigate macular ganglion cell–inner plexiform layer (mGCIPL) thickness in glaucomatous eyes with visible localized retinal nerve fiber layer (RNFL) defects on stereophotographs.

Methods

112 healthy and 149 glaucomatous eyes from the Diagnostic Innovations in Glaucoma Study (DIGS) and the African Descent and Glaucoma Evaluation Study (ADAGES) subjects had standard automated perimetry (SAP), optical coherence tomography (OCT) imaging of the macula and optic nerve head, and stereoscopic optic disc photography. Masked observers identified localized RNFL defects by grading of stereophotographs.

Result

47 eyes had visible localized RNFL defects on stereophotographs. Eyes with visible localized RNFL defects had significantly thinner mGCIPL thickness compared to healthy eyes (68.3 ± 11.4 μm versus 79.2 ± 6.6 μm respectively, P<0.001) and similar mGCIPL thickness to glaucomatous eyes without localized RNFL defects (68.6 ± 11.2 μm, P = 1.000). The average mGCIPL thickness in eyes with RNFL defects was 14% less than similarly aged healthy controls. For 29 eyes with a visible RNFL defect in just one hemiretina (superior or inferior) mGCIPL was thinnest in the same hemiretina in 26 eyes (90%). Eyes with inferior-temporal RNFL defects also had significantly thinner inferior-temporal mGCIPL (P<0.001) and inferior mGCIPL (P = 0.030) compared to glaucomatous eyes without a visible RNFL defect.

Conclusion

The current study indicates that presence of a localized RNFL defect is likely to indicate significant macular damage, particularly in the region of the macular that topographically corresponds to the location of the RNFL defect.

]]>
<![CDATA[The Effect of Diurnal Fluctuation in Intraocular Pressure on the Evaluation of Risk Factors of Progression in Normal Tension Glaucoma]]> https://www.researchpad.co/article/5989dadaab0ee8fa60bb98ba

Purpose

To investigate whether diurnal fluctuation in intraocular pressure (IOP) can influence the result of the correlations between IOP-related factors and progression of normal tension glaucoma (NTG).

Methods

Glaucoma progression was defined as visual field (VF) progression and changes in the optic disc and/or retinal nerve fiber layer (RNFL). Two different methods were used to evaluate the impact of the diurnal fluctuation in IOP. ‘Conventional method’ used in previous studies included all IOP measurements during the follow up time. ‘Time adjusted method’ was used to adjust diurnal fluctuation in IOP with the preferred time. Mean IOP, long term IOP fluctuation and the difference between the lowest and highest IOP were calculated using both methods. Cox regression analyses were performed to evaluate the association between IOP-related factors and NTG progression.

Results

One hundred and forty eyes of 140 patients with NTG were included in this study. 41% (58 of 140 eyes) of eyes underwent NTG progression. Long term IOP variation calculated by conventional method was not a significant risk factor for NTG progression (hazard ratio[HR], 0.311; 95% confidence interval[CI], 0.056–1.717; P = 0.180). Long term IOP variation calculated by time adjusted method, however, was related to progression, with an HR of 5.260 (95% CI,1.191–23.232; P = 0.029).

Conclusion

Although having the same IOP-related factors, if diurnal fluctuation is included, different results may be found on the relationship between IOP-related factors and NTG progression. Based on our results, diurnal fluctuation in IOP should be considered when IOP-related factors are studied in the future.

]]>
<![CDATA[Measurements of the parapapillary atrophy zones in en face optical coherence tomography images]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc8da

Objective

To measure the parapapillary atrophy (PPA) area in en face images obtained with swept-source optical coherence tomography (SS-OCT), and to evaluate its relationship to glaucoma, myopia, and age in non-highly myopic subjects.

Design

Retrospective, cross-sectional study.

Participants

Fifty eyes of 30 subjects with open-angle glaucoma (G group) and forty-three eyes of 26 healthy control subjects (C group). Eyes with high myopia (spherical equivalent refractive error ≤ -8 diopters or axial length ≥ 26.5 mm) were excluded.

Methods

Mean age ± standard deviation was 59.9 ± 12.4 years. The beta zone and the gamma zone PPA areas were measured in en face images reconstructed from three-dimensional SS-OCT images. Relationship between the PPA areas and patient characteristics such as glaucoma, axial length, and age was statistically evaluated using multivariate mixed-effects models.

Main outcome measures

Areas of the beta zone and the gamma zone PPA measured on en face OCT images.

Results

Average ± standard deviation area of the beta and the gamma zone was 0.64 ± 0.79 and 0.16 ± 0.30 mm2, respectively. In multivariate models, the gamma zone significantly correlated with axial length (P = 0.001) but not with glaucoma (P = 0.944). In contrast, the beta zone significantly correlated with age (P = 0.0249) and glaucoma (P = 0.014).

Conclusions

En face images reconstructed from 3D SS-OCT data facilitated measurements of the beta and the gamma PPA zones even in eyes with optic disc distortion. The OCT-defined beta zone is associated with glaucoma and age, whereas the gamma zone correlated with myopia but not with glaucoma. This study confirmed the clinical usefulness of OCT-based classification of the PPA zones in distinguishing glaucomatous damage of the optic nerve from myopic damage in non-highly myopic eyes.

]]>
<![CDATA[Evaluation of Fundus Blood Flow in Normal Individuals and Patients with Internal Carotid Artery Obstruction Using Laser Speckle Flowgraphy]]> https://www.researchpad.co/article/5989dac7ab0ee8fa60bb2f85

Purpose

We investigated whether laser speckle flowgraphy (LSFG) results are comparable in both eyes and whether it is useful in the diagnosis of disparity in ocular ischemic syndrome (OIS) patients.

Methods

We compared the mean blur rate (MBR) value for various fundus regions in both eyes of 41 healthy subjects and 15 internal carotid artery occlusion (ICAO) cases. We calculated the standard value of the Laterality Index (LI), which was the MBR comparison of both eyes in each of the regions, in the control subjects. We then investigated the correlation between both eyes for the LIs in the entire fundus, the degree of ICAO and visual function.

Results

The disparity of the LIs in both eyes was least in the entire area of the fundus in control subjects and there was a significant correlation between both eyes of the 41 healthy individuals (P = 0.019). Significant correlations were found for the LI, visual acuity and degree of ICAO. The specificity and sensitivity of LI in the entire area was 93.8% and 100%, respectively.

Conclusions

LSFG revealed normal individuals have symmetrical fundus blood flow. LSFG could detect OIS and might be a useful tool for detecting disparities in fundus blood flow.

]]>
<![CDATA[Macular Ganglion Cell Imaging Study: Covariate Effects on the Spectral Domain Optical Coherence Tomography for Glaucoma Diagnosis]]> https://www.researchpad.co/article/5989dab4ab0ee8fa60bac56c

Purpose

To evaluate the effect of multiple covariates on the diagnostic performance of the Cirrus high-definition optical coherence tomography (HD-OCT) for glaucoma detection.

Methods

A prospective case-control study was performed and included 173 recently diagnosed glaucoma patients and 63 unaffected individuals from the Macular Ganglion Cell Imaging Study. Regression analysis of receiver operating characteristic were conducted to evaluate the influence of age, spherical equivalent, axial length, optic disc size, and visual field index on the macular ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (RNFL) measurements.

Results

Disease severity, as measured by visual field index, had a significant effect on the diagnostic performance of all Cirrus HD-OCT parameters. Age, axial length and optic disc size were significantly associated with diagnostic accuracy of average peripapillary RNFL thickness, whereas axial length had a significant effect on the diagnostic accuracy of average GCIPL thickness.

Conclusions

Diagnostic performance of the Cirrus HD-OCT may be more accurate in the advanced stages of glaucoma than at earlier stages. A smaller optic disc size was significantly associated with improved the diagnostic ability of average RNFL thickness measurements; however, GCIPL thickness may be less affected by age and optic disc size.

]]>
<![CDATA[Positional and Curvature Difference of Lamina Cribrosa According to the Baseline Intraocular Pressure in Primary Open-Angle Glaucoma: A Swept-Source Optical Coherence Tomography (SS-OCT) Study]]> https://www.researchpad.co/article/5989daeaab0ee8fa60bbebf0

Purpose

To investigate the variation of lamina cribrosa (LC) structure based on the baseline intraocular pressure (IOP) in eyes with primary open-angle glaucoma (POAG) and healthy individuals using swept-source optical coherence tomography.

Methods

A total of 108 eyes with POAG and 61 healthy eyes were recruited. Based on the baseline IOP, the POAG eyes were divided into higher-baseline IOP (HTG; baseline IOP > 21 mmHg, n = 38 eyes) and lower-baseline IOP (NTG; baseline IOP ≤ 21 mmHg, n = 70 eyes). The anterior laminar insertion depth (ALID), mean LC depth (mLCD), and the LC curvature index (mLCD–ALID) were measured, and compared among the three groups. The regional variation of LC structure was evaluated by vertical-horizontal ALID difference.

Results

The mLCD and LC curvature index were greatest in HTG eyes (520.3 ± 123.0 and 80.9 ± 30.7 μm), followed by NTG (463.2 ± 110.5 and 64.5 ± 30.7 μm) and healthy eyes (382.9 ± 107.6 and 47.6 ± 25.7 μm, all P < 0.001). However, there were no significant difference in ALID between HTG and NTG eyes. The vertical-horizontal ALID difference was larger in NTG eyes (72.8 ± 56.2 μm) than in HTG (32.7 ± 61.4 μm, P = 0.004) and healthy eyes (25.5 ± 34.8 μm, P < 0.001).

Conclusions

Lamina cribrosa position and curvature differed in POAG eyes with low and high IOP. This would support the theory that IOP induced biomechanical effects on the optic play a role on glaucoma.

]]>
<![CDATA[Glaucoma in high myopia and parapapillary delta zone]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc1f8

Purpose

To examine the prevalence of glaucomatous optic neuropathy (GON) in a medium myopic to highly myopic group of patients and its association with parapapillary gamma zone and parapapillary delta zone.

Methods

The retrospective observational hospital-based study included patients who had attended the Tokyo High Myopia Clinics within January 2012 and December 2012 and for whom fundus photographs were available. GON was defined based on the appearance of the optic nerve head on the fundus photographs.

Results

The study included 519 eyes (262 individuals) with a mean age of 62.0±14.3 years (range:13–89 years) and mean axial length of 29.5±2.2 mm (range:23.2–35.3mm). GON was present in 141 (27.2%; 95% confidence intervals (CI): 23.3, 31.0%) eyes. Prevalence of GON increased from 12.2% (1.7, 22.7) in eyes with an axial length of <26.5mm to 28.5% (24.4, 32.5) in eyes with an axial length of ≥26.5mm, to 32.6% (27.9, 37.2) in eyes with an axial length of ≥28mm, to 36.0% (30.5, 41.4) in eyes with an axial length of ≥29mm, and GON prevalence increased to 42.1% (35.5, 48.8) in eyes with an axial length of ≥30mm. In multivariate analysis, higher GON prevalence was associated (Nagelkerke r2: 0.28) with larger parapapillary delta zone diameter (P<0.001; odds ratio (OR):1.86;95%CI:1.33,2.61), longer axial length (P<0.001;OR:1.45;95%CI:1.26,1.67) and older age (P = 0.01;OR:1.03;95%CI:1.01,1.05). If parapapillary delta zone width was replaced by the vertical disc diameter, higher GON prevalence was associated (r2:0.24) with larger vertical optic disc diameter (P = 0.04;OR:1.70;95%CI:1.03,2.81), after adjusting for longer axial length (P<0.001;OR:1.44;95%CI:1.26,1.64) and older age (P<0.001;OR:1.04;95%CI:1.02,1.06).

Conclusions

Axial elongation associated increase in GON prevalence (mean: 28.1% in a medium to highly myopic study population) was associated with parapapillary delta zone as surrogate for an elongated peripapillary scleral flange and with larger optic disc size.

]]>
<![CDATA[Structural parameters associated with location of peaks of peripapillary retinal nerve fiber layer thickness in young healthy eyes]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be0027

The location of the peaks of the circumpapillary retinal nerve fiber layer (cpRNFL) thickness is affected by several ocular parameters. In this study, we have generated equations that can determine the peaks of the cpRNFL. This study was a prospective, observational, cross sectional study of 118 healthy right eyes. The axial length, optic disc tilt, superiortemporal (ST)- and inferiortemporal (IT)-peaks of the cpRNFL thickness, and angles of the ST and IT retinal arteries (RA) and veins (RV) were determined. The correlations between the location of the ST- and IT-peaks and ocular structural parameters and the sex, body height and weight were calculated. The best fit equations to generate the location of the ST/IT-peaks were determined using corrected-Akaike Information Criteria. The location of the ST-peak was 0.72+(0.40 x ST-RA)+(0.27 x ST-RV)+(0.14 x height)–(0.47 x papillo-macular-position)–(0.11 x disc tilt) with a coefficient of correlation of 0.61 (P<0.0001). The location of the IT-peak was 21.88+(0.53 x IT-RA)+(0.15 x IT-RV)+(0.041 x corneal thickness)-(1.00 x axial length) with a coefficient of correlation of 0.59 (P<0.0001). The location of ST/IT peaks is determined by different parameters of the ocular structure. These equations allow clinicians to obtain an accurate location of the peaks for a more accurate diagnosis of glaucoma.

]]>
<![CDATA[Correlation of choroidal thickness and ametropiain young adolescence]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc854

Choroid has been proposed to participate in the regulation of light refraction by changing its thickness. The present study aims to analyze the characteristics of choroidal thickness (CT), and its correlation with refractive error, axial length and age in young ametropia. A total of 51 subjects (102 eyes), aged from 5 to 18 years old (mean age 10.04 ±2.78 years), with ametropia were included in the study. Choroidal imaging was obtained by enhanced depth imaging (EDI) of spectral domain Optical Coherence Tomography (OCT). CT was horizontally measured at 5 locations in across fovea with 1mm interval. We found that the spherical equivalent refractive diopter was from -7.25D to 1.6D (mean, -1.61D±1.82D), the mean axial length was 24.14mm±1.14mm. The closer to the optic disc the thinner the choroid is. CT between fovea and disc showed better correlation with refractive error (p< 0,01), axial length (p<0.01) and age (P<0.05) than those temporal to fovea. Our results indicated that the choroid is least thick around the optic disc. Thickness between fovea and optic disc is significantly associated with refractive error, axial length and age in growing adolescences. This result may help us understand the function of choroid during ametropic progression.

]]>
<![CDATA[Circadian Patterns of Intraocular Pressure Fluctuation among Normal-Tension Glaucoma Optic Disc Phenotypes]]> https://www.researchpad.co/article/5989da95ab0ee8fa60ba19dd

Objective

To characterize the 24-h habitual-position intraocular pressure (IOP) patterns of optic disc phenotypes (ODPs) in untreated normal-tension glaucoma (NTG) and the relationships between nocturnal IOP elevation and various clinical factors.

Design

Prospective, cross-sectional, observational study.

Methods

Eighty-two NTG patients with focal ischemic (FI) ODP and 82 age- and disease severity-matched NTG patients with myopic glaucomatous (MG) ODP were recruited prospectively over 3 years. The IOP was recorded 11 times over a 24-hour (h) period by a single ophthalmologist using a hand-held tonometer (TonoPen®XL). A cosinor model was used to describe the 24-h IOP rhythm. Associations between nocturnal IOP elevation and both ocular and demographic variables were evaluated using the generalized estimating equation (GEE).

Results

Mean habitual-position IOP was significantly higher during nighttime than daytime in the FI group (16.44 vs. 14.23 mmHg, P < 0.001), but not in the MG group (15.91 vs. 15.70 mmHg, P = 0.82). The FI group also exhibited a significantly higher peak IOP during sleeping hours (P = 0.01) and lower trough IOP during the 24-h period than the MG group (P < 0.01). The MG group showed a significantly higher peak IOP during waking hours than the FI group (P < 0.01). Therefore, 24-h IOP fluctuation range was significantly higher in the FI group than the MG group (P = 0.013). In the FI group, peak habitual-position IOP and the highest frequency of IOP peaks occurred during sleeping hours (12 AM–6 AM). By contrast, IOP peaks in the MG group occurred during morning hours (8 AM–12 PM). The FI group showed an overall nocturnal acrophase in habitual-position IOP, with 45 patients (54.9%) having a nocturnal acrophase; 10 (12.2%), a diurnal acrophase; and 27 (32.9%), no evident acrophase. By contrast, the MG group showed no evident peak in habitual-position IOP, with 9 patients (10.9%) having a nocturnal acrophase; 43 (52.4%), a diurnal acrophase; and 30 (36.6%), no evident acrophase. In multivariate modeling using the GEE, ODP (P < 0.001) and spherical equivalent (SE, P = 0.001) were independently associated with nocturnal IOP elevation.

Conclusions

Based on 24-h habitual-position IOP data, FI is associated with significant nocturnal IOP elevation, while no such nocturnal IOP elevation is observed in MG ODP. In untreated NTG, there are also significant differences in the 24-h IOP pattern between FI and MG ODPs.

]]>
<![CDATA[Comparison of peripapillary choroidal thickness between healthy subjects and patients with Parkinson’s disease]]> https://www.researchpad.co/article/5989db5bab0ee8fa60bdfda9

Purpose

To study peripapillary choroidal thickness (PPCT) in healthy subjects using swept-source optical coherence tomography (SS-OCT), and to evaluate PPCT differences between Parkinson´s disease (PD) patients, and age- and sex-matched healthy controls.

Design

Case-control study

Methods

80 healthy subjects and 40 PD patients were consecutively recruited in this single institution study. The healthy subjects were divided into two populations: a teaching population (n = 40, used to establish choroidal zones) and a validating population (n = 40, used to compare measurements with PD patients). An optic disc 6.0×6.0 mm three-dimensional scan was obtained using Deep Range Imaging (DRI) OCT Triton. A 26×26 cube-grid centered on the optic disc was generated to automatically measure choroidal thickness. Five concentric choroidal zones were established and used to compare PPCT between healthy and PD patients.

Results

PPCT was significantly thicker in PD patients compared with controls in all four concentric zones evaluated (p≤0.0001). PPCT followed a similar pattern in controls and PD; it was thicker in the temporosuperior region, followed by the superior, temporal, nasal, and inferior regions.

Conclusion

PD patients presented with an increased PPCT in all zones surrounding the optic disc compared with healthy subjects. The peripapillary choroidal tissue showed a concentric pattern, with the thickness increasing with increasing distance from the optic nerve. SS-OCT could be useful for evaluating choroidal thinning in clinical practice.

]]>
<![CDATA[Age and axial length on peripapillary retinal nerve fiber layer thickness measured by optical coherence tomography in nonglaucomatous Taiwanese participants]]> https://www.researchpad.co/article/5989db5dab0ee8fa60be0486

Purpose

This study investigates the influence of age and axial length (AL) on the peripapillary retinal nerve fiber layer (RNFL) thickness, as measured by optical coherence tomography (OCT).

Methods

Healthy patients visiting an eye clinic at a county hospital were recruited. All participants underwent comprehensive ophthalmologic examinations, and their retinas were scanned using 3D OCT-1000. In total, 223 patients with 446 eyes were included. The mean age and AL were 42.07 ± 13.16 (21–76) years and 25.38 ± 1.73 (21.19–30.37) mm, respectively.

Results

The average RNFL thickness decreased by 2.71 μm for every 10-year increase in age (P < 0.001). Age-related RNFL thinning was more significant in participants older than 41 years (-0.24μm/year; P = 0.015). The earliest sector showing a significant decline in RNFL thickness was after 35 years of age (-0.70μm/year; P = 0.011) at the superior quadrant and at the 1–2 o’clock hour (-1.42μm/year; P = 0.009). Meanwhile, the maximal rate of age-associated RNFL decay was observed in these two regions as well. The reduction of RNFL with age progression did not differ in eyes with long AL (> 27 mm; -0.16μm/year) or those with short AL (< 25 mm; -0.22μm/year). For every 1-mm-greater AL, RNFL was thinner by 1.78 μm (P < 0.001). The inferior quadrant showed the greatest tendency of RNFL decline with longer AL (4.46 μm/mm; P < 0.001).

Conclusions

The factors of age and AL should be considered when interpreting the results. Significantly age-associated RNFL thinning was found in participants older than 41 years. Reduction of RNFL thickness with increasing age was not affected by AL. Topographic variations in RNFL thinning were observed in that the maximal decline of RNFL thickness with advancing age at the superior quadrant whereas with elongation of AL at the inferior quadrant.

]]>
<![CDATA[Choroidal change in acute anterior uveitis associated with human leukocyte antigen-B27]]> https://www.researchpad.co/article/5989db5fab0ee8fa60be127e

Purpose

To evaluate choroidal changes in eyes with acute anterior uveitis associated with human leukocyte antigen (HLA)-B27

Methods

In 44 patients with first-onset, unilateral, acute-onset (<1 week) anterior uveitis for which diagnostic work-ups revealed positivity only for HLA-B27, wide-field three-dimensional volumetric raster scan using swept-source optical coherence tomography was performed for both eyes. Choroidal thickness was measured by automated segmentation and thickness mapping and compared between eyes with uveitis and the fellow eyes at baseline. Choroidal thickness was compared before and after topical and/or systemic corticosteroid therapy. Relative choroidal thickening was defined as the choroidal thickness of the uveitic eye minus that of the corresponding eye and correlated with the degree of intraocular inflammation.

Results

Compared to the fellow eyes, eyes with acute anterior uveitis showed significant choroidal thickening on the subfoveal and parafoveal areas at baseline (all P <0.05). En face choroidal imaging showed dilation of large choroidal vessels on the macula. Relative choroidal thickening significantly correlated with the degree of anterior chamber inflammation at baseline (correlation coefficient = 0.341, P = 0.023). After treating inflammation, the choroid on the macula thinned significantly (from 262.1 ± 66.5 to 239.5 ± 61.0 μm in the subfoveal choroid, P<0.001).

Conclusions

Eyes with HLA-B27-associated anterior uveitis showed significant choroidal thickening at acute phase that subsequently decreased after treatment, indicating subclinical choroidal inflammation in the eyes. Choroidal thickness might indicate disease activity in acute anterior uveitis associated with HLA-B27.

]]>
<![CDATA[Repeatability Using Automatic Tracing with Canon OCT- HS100 and Zeiss Cirrus HD-OCT 5000]]> https://www.researchpad.co/article/5989dad9ab0ee8fa60bb9395

Background

Optical coherence tomography (OCT), can be used in clinical practice to provide high resolution cross-sectional images of the retina, optic disc and macula structure. These measurements can be useful for early detection, diagnosis, monitoring and treatment guidance for retinal diseases. Therefore, repeatability of measurements in OCT is of great importance.

Methods

Macula and optic disc parameters from the right eye of 30 healthy subjects were obtained twice with the Canon OCT-HS100 and Zeiss Cirrus HD-OCT 5000. Repeatability was evaluated by use of the coefficient of repeatability (CR) and the coefficient of repeatability as a percentage of the mean (CR%), and the obtained measurements were compared between the instruments.

Results

CR% of optic disc parameters ranged between 0.90 and 22.22% and 0.00 and 16.00% with the Canon and Zeiss OCT respectively. For macular parameters CR% ranged between 0.62 and 2.81% and 0.99 and 1.81% with the Canon and Zeiss OCT respectively. No statistical difference could be found when comparing the CR of all macular and disc measurements between the instruments. Compared to our previously published data repeatability has significantly improved with the inclusion of automatic tracking systems with both the Canon and Zeiss OCT.

Conclusion

Automatic tracking function improves repeatability in both Canon OCT-HS100 and Zeiss Cirrus HD-OCT 5000. However, measurements generated by the two instruments are still not interchangeable.

]]>
<![CDATA[Clinical Assessment of Lamina Cribrosa Curvature in Eyes with Primary Open-Angle Glaucoma]]> https://www.researchpad.co/article/5989da60ab0ee8fa60b90cdb

Purpose

Quantitative evaluation of lamina cribrosa (LC) posterior bowing in primary open-angle glaucoma (POAG) eyes using swept-source optical coherence tomography.

Methods

Patients with POAG (n = 123 eyes) and healthy individuals of a similar age (n = 92 eyes) were prospectively recruited. Anterior laminar insertion depth (ALID) was defined as the vertical distance between the anterior laminar insertion and a reference plane connecting the Bruch’s membrane openings (BMO). The mean LC depth (mLCD) was approximated by dividing the area enclosed by the anterior LC, the BMO reference plane, and the two vertical lines for ALID measurement by the length between those two vertical lines. The LC curvature index was defined as the difference between the mLCD and the ALID. The factors influencing the LC curvature index were evaluated.

Results

The ALID and mLCD were significantly larger in POAG eyes than in healthy controls (P < 0.05). The LC curvature index was significantly larger in POAG eyes than in healthy controls on both the horizontal (85.8 ± 34.1 vs. 68.2 ± 32.3 μm) and vertical meridians (49.8 ± 38.5 vs. 32.2 ± 31.1 μm, all P < 0.001). Multivariate regression showed significant associations of greater disc area (P < 0.001), vertical C/D ratio (P < 0.001) and mLCD (P < 0.001), smaller rim area (P = 0.001), thinner average RNFLT (P < 0.001), and myopic refraction (P = 0.049) with increased LC curvature index. There was no difference in the LC curvature index between mild (MD > –6 dB) and moderate-to-advanced glaucoma (MD < –6 dB, P = 0.95).

Conclusions

LC posterior bowing was increased in POAG eyes, and was significantly associated with structural optic nerve head (ONH) changes but not with functional glaucoma severity. Quantitative evaluation of LC curvature can facilitate assessment of glaucomatous ONH change.

]]>
<![CDATA[OCT-Based Quantification and Classification of Optic Disc Structure in Glaucoma Patients]]> https://www.researchpad.co/article/5989db03ab0ee8fa60bc74eb

Purpose

To objectively classify the optic discs of open-angle glaucoma (OAG) patients into Nicolela's four disc types, i.e., focal ischemic (FI), myopic (MY), senile sclerotic (SS), and generalized enlargement (GE), with swept-source optical coherence tomography (SS-OCT).

Methods

This study enrolled 113 eyes of 113 OAG patients (mean age: 62.5 ± 12.6; Humphrey field analyzer-measured mean deviation: -9.4 ± 7.3 dB). Newly developed software was used to quantify a total of 20 optic disc parameters in SS-OCT (DRI OCT-1, TOPCON) images of the optic disc. The most suitable reference plane (RP) above the plane of Bruch’s membrane opening was determined by comparing, at various RP heights, the SS-OCT-measured rim parameters and spectral-domain OCT-measured circumpapillary retinal nerve fiber layer thickness (cpRNFLT), with Pearson's correlation analysis. To obtain a discriminant formula for disc type classification, a training group of 72 eyes of 72 OAG patients and a validation group of 60 eyes of 60 OAG patients were set up.

Results

Correlation with cpRNFLT differed with disc type and RP height, but overall, a height of 120 μm minimized the influence of disc type. Six parameters were most significant for disc type discrimination: disc angle (horizontal), average cup depth, cup/disc ratio, rim-decentering ratio, average rim/disc ratio (upper and lower nasal). Classifying the validation group with these parameters returned an identification rate of 80.0% and a Cohen’s Kappa of 0.73.

Conclusion

Our new, objective SS-OCT-based method enabled us to classify glaucomatous optic discs with high reproducibility and accuracy.

]]>