ResearchPad - optical-materials https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[A Photonic crystal fiber with large effective refractive index separation and low dispersion]]> https://www.researchpad.co/article/elastic_article_14637 A photonic crystal fiber (PCF) structure with a ring-core and 5 well-ordered semiellipse air-holes has been creatively proposed. Through a comparison between the structures with a high refractive index (RI) ring-core and the structure without, it conclude that a PCF with a high RI ring-core can work better. Schott SF57 was elected as the substrate material of ring-core. This paper compares the effects of long-axis and short-axis changes on the PCF and selects the optimal solution. Especially TE0,1 mode’s dispersion is maintained between 0 and 3 ps / (nm · km) ranging from 1.45 μm to 1.65 μm. This property can be used to generate a supercontinuum with 200 μm long zero dispersion wavelength (ZDM). In addition, Δneff reaches up to 10−3, which enables the near -degeneracy of the eigenmodes to be almost neglected. The proposed PCF structure will have great application value in the field of optical communications.

]]>
<![CDATA[Multivariate multiple regression models of poly(ethylene-terephthalate) film degradation under outdoor and multi-stressor accelerated weathering exposures]]> https://www.researchpad.co/article/5c254560d5eed0c48442c622

Developing materials for use in photovoltaic (PV) systems requires knowledge of their performance over the warranted lifetime of the PV system. Poly(ethylene-terephthalate) (PET) is a critical component of PV module backsheets due to its dielectric properties and low cost. However, PET is susceptible to environmental stressors and degrades over time. Changes in the physical properties of nine PET grades were modeled after outdoor and accelerated weathering exposures to characterize the degradation process of PET and assess the influence of stabilizing additives and weathering factors. Multivariate multiple regression (MMR) models were developed to quantify changes in color, gloss, and haze of the materials. Natural splines were used to capture the non-linear relationship between predictors and responses. Model performance was evaluated via adjusted-R2 and root mean squared error values from leave-one-out cross validation analysis. All models described over 85% of the variation in the data with low relative error. Model coefficients were used to assess the influence of weathering stressors and material additives on the property changes of films. Photodose was found to be the primary degradation stressor and moisture was found to increase the degradation rate of PET. Direct moisture contact was found to impose more stress on the material than airbone moisture (humidity). Increasing the concentration of TiO2 was found to generally decrease the degradation rate of PET and mitigate hydrolytic degradation. MMR models were compared to physics-based models and agreement was found between the two modeling approaches. Cross-correlation of accelerated exposures to outdoor exposures was achieved via determination of cross-correlation scale factors. Cross-correlation revealed that direct moisture contact is a key factor for reliable accelerated weathering testing and provided a quantitative method to determine when accelerated exposure results can be made more aggressive to better approximate outdoor exposure conditions.

]]>
<![CDATA[Spectral analysis of layered sites using shaking table tests]]> https://www.researchpad.co/article/5c915fb7d5eed0c48420ae4c

The dynamic response analysis of horizontal and inclined layered sites using large-scale shaking table tests in various directions, including the dip direction, strike, vertical direction, slope direction and direction perpendicular to the interface of layered sites is conducted in this study. The Fourier spectrum and response spectrum characteristics in the horizontal site are first investigated in this study, and the dynamic responses of the inclined layered sites are then studied and compared to the corresponding responses of the horizontal layered site. The influence of dip angle on the response spectrum is also studied.

]]>
<![CDATA[Determining Drug Efficacy Using Plasmonically Enhanced Imaging of the Morphological Changes of Cells upon Death]]> https://www.researchpad.co/article/5bc23a5240307c1677f04393

jz-2014-01866g_0005.jpg

Recently, we utilized the optical properties of gold nanoparticles (AuNPs) for plasmonically enhanced Rayleigh scattering imaging spectroscopy (PERSIS), a new technique that enabled the direct observation of AuNP localization. In this study, we employ PERSIS by using AuNPs as light-scattering probes to compare the relative efficacy of three chemotherapeutic drugs on human oral squamous carcinoma cells. Although the drugs induced apoptotic cell death through differing mechanisms, morphological changes including cell membrane blebbing and shrinkage, accompanied by an increase in white light scattering, were visually evident. By utilizing the AuNPs to increase the cells’ inherent Rayleigh scattering, we have obtained the time profile of cell death from the anticancer drugs using a single sample of cells in real time, using inexpensive equipment available in any lab. From this time profile, we calculated cell death enhancement factors to compare the relative efficacies of the different drugs using our technique, which corresponded to those calculated from the commonly used XTT cell viability assay. Although this technique does not impart molecular insights into cell death, the ability to quantitatively correlate cell death to morphological changes suggests the potential use of this technique for the rapid screening of drug analogues to determine the most effective structure against a disease or cell line.

]]>