ResearchPad - organic-chemistry https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Collagen methionine sulfoxide and glucuronidine/LW-1 are markers of coronary artery disease in long-term survivors with type 1 diabetes. The Dialong study]]> https://www.researchpad.co/article/elastic_article_13877 Type 1 diabetes is a risk factor for coronary heart disease. The underlying mechanism behind the accelerated atherosclerosis formation is not fully understood but may be related to the formation of oxidation products and advanced glycation end-products (AGEs). We aimed to examine the associations between the collagen oxidation product methionine sulfoxide; the collagen AGEs methylglyoxal hydroimidazolone (MG-H1), glucosepane, pentosidine, glucuronidine/LW-1; and serum receptors for AGE (RAGE) with measures of coronary artery disease in patients with long-term type 1 diabetes.MethodsIn this cross-sectional study, 99 participants with type 1 diabetes of ≥ 45-year duration and 63 controls without diabetes had either established coronary heart disease (CHD) or underwent Computed Tomography Coronary Angiography (CTCA) measuring total, calcified and soft/mixed plaque volume. Skin collagen methionine sulfoxide and AGEs were measured by liquid chromatography-mass spectrometry and serum sRAGE/esRAGE by ELISA.ResultsIn the diabetes group, low levels of methionine sulfoxide (adjusted for age, sex and mean HbA1c) were associated with normal coronary arteries, OR 0.48 (95% CI 0.27–0.88). Glucuronidine/LW-1 was associated with established CHD, OR 2.0 (1.16–3.49). MG-H1 and glucuronidine/LW-1 correlated with calcified plaque volume (r = 0.23–0.28, p<0.05), while pentosidine correlated with soft/mixed plaque volume (r = 0.29, p = 0.008), also in the adjusted analysis.ConclusionsLow levels of collagen-bound methionine sulfoxide were associated with normal coronary arteries while glucuronidine/LW-1 was positively associated with established CHD in long-term type 1 diabetes, suggesting a role for metabolic and oxidative stress in the formation of atherosclerosis in diabetes. ]]> <![CDATA[Amino acids serve as an important energy source for adult flukes of <i>Clonorchis sinensis</i>]]> https://www.researchpad.co/article/elastic_article_13829 Clonorchiasis, closely related to cholangiocarcinoma and hepatocellular carcinoma, has led to a negative socioeconomic impact in global areas especially some Asian endemic regions. Owing to the emergence of drug resistance and hypersensitivity reactions after the massive and repeated use of praziquantel as well as the lack of effective vaccines, searching for new strategies that prevent and treat clonorchiasis has become an urgent matter. Clonorchis sinensis, the causative agent of clonorchiasis, long-term inhabits the microaerobic and limited-glucose environment of the bile ducts. Adequate nutrients are essential for adult flukes to resist the adverse condition and survive in the crowed habitat. Studies on energy metabolism of adult flukes are beneficial for further exploring host-parasite interactions and developing novel anti-parasitic drugs. Our results suggest that gluconeogenesis probably plays a vital role in energy metabolism of Clonorchis sinensis and exogenous amino acids might be an essential energy source for adult flukes to successfully survive in the host. Our foundational study opens a new avenue for explaining energy metabolism of Clonorchis sinensis and provides a valuable strategy that the gluconeogenesis pathway will be a potential and novel target for the prevention and treatment of clonorchiasis.

]]>
<![CDATA[Improvement of steatotic rat liver function with a defatting cocktail during <i>ex situ</i> normothermic machine perfusion is not directly related to liver fat content]]> https://www.researchpad.co/article/elastic_article_13803 There is a significant organ shortage in the field of liver transplantation, partly due to a high discard rate of steatotic livers from donors. These organs are known to function poorly if transplanted but make up a significant portion of the available pool of donated livers. This study demonstrates the ability to improve the function of steatotic rat livers using a combination of ex situ machine perfusion and a “defatting” drug cocktail. After 6 hours of perfusion, defatted livers demonstrated lower perfusate lactate levels and improved bile quality as demonstrated by higher bile bicarbonate and lower bile lactate. Furthermore, defatting was associated with decreased gene expression of pro-inflammatory cytokines and increased expression of enzymes involved in mitochondrial fatty acid oxidation. Rehabilitation of marginal or discarded steatotic livers using machine perfusion and tailored drug therapy can significantly increase the supply of donor livers for transplantation.

]]>
<![CDATA[A modified arginine-depleting enzyme NEI-01 inhibits growth of pancreatic cancer cells]]> https://www.researchpad.co/article/elastic_article_11227 Arginine deprivation cancer therapy targets certain types of malignancies with positive result in many studies and clinical trials. NEI-01 was designed as a novel arginine-depleting enzyme comprising an albumin binding domain capable of binding to human serum albumin to lengthen its half-life. In the present work, NEI-01 is shown to bind to serum albumin from various species, including mice, rat and human. Single intraperitoneal administration of NEI-01 to mice reduced plasma arginine to undetectable level for at least 9 days. Treatment of NEI-01 specifically inhibited cell viability of MIA PaCa-2 and PANC-1 cancer cell lines, which were ASS1 negative. Using a human pancreatic mouse xenograft model, NEI-01 treatment significantly reduced tumor volume and weight. Our data provides proof of principle for a cancer treatment strategy using NEI-01.

]]>
<![CDATA[Pooling individual participant data from randomized controlled trials: Exploring potential loss of information]]> https://www.researchpad.co/article/elastic_article_7838 Pooling individual participant data to enable pooled analyses is often complicated by diversity in variables across available datasets. Therefore, recoding original variables is often necessary to build a pooled dataset. We aimed to quantify how much information is lost in this process and to what extent this jeopardizes validity of analyses results.MethodsData were derived from a platform that was developed to pool data from three randomized controlled trials on the effect of treatment of cardiovascular risk factors on cognitive decline or dementia. We quantified loss of information using the R-squared of linear regression models with pooled variables as a function of their original variable(s). In case the R-squared was below 0.8, we additionally explored the potential impact of loss of information for future analyses. We did this second step by comparing whether the Beta coefficient of the predictor differed more than 10% when adding original or recoded variables as a confounder in a linear regression model. In a simulation we randomly sampled numbers, recoded those < = 1000 to 0 and those >1000 to 1 and varied the range of the continuous variable, the ratio of recoded zeroes to recoded ones, or both, and again extracted the R-squared from linear models to quantify information loss.ResultsThe R-squared was below 0.8 for 8 out of 91 recoded variables. In 4 cases this had a substantial impact on the regression models, particularly when a continuous variable was recoded into a discrete variable. Our simulation showed that the least information is lost when the ratio of recoded zeroes to ones is 1:1.ConclusionsLarge, pooled datasets provide great opportunities, justifying the efforts for data harmonization. Still, caution is warranted when using recoded variables which variance is explained limitedly by their original variables as this may jeopardize the validity of study results. ]]> <![CDATA[Synthesis of new asparagine-based glycopeptides for future scanning tunneling microscopy investigations]]> https://www.researchpad.co/article/elastic_article_7814 For investigations on the biological functions of oligosaccharides and peptidomimetics, new asparagine-based mono- and disaccharides containing glycopeptides were prepared in solution. The applicability of two common peptide coupling reagents, using an orthogonal Fmoc/t-Bu strategy along with acetyl protecting groups for the carbohydrate moiety, was studied. Thus, the prepared libraries of glycopeptides were designed as model systems of cell surfaces for future investigations by combined preparative mass spectroscopy and scanning tunneling microscopy (STM) using soft-landing electrospray beam deposition (ES-IBD), on metal surfaces.

]]>
<![CDATA[Bipyrrole boomerangs via Pd-mediated tandem cyclization–oxygenation. Controlling reaction selectivity and electronic properties]]> https://www.researchpad.co/article/elastic_article_7809 Boomerang-shaped bipyrroles containing donor–acceptor units were obtained through a tandem palladium-mediated reaction consisting of a cyclization step, involving double C–H bond activation, and a double α-oxygenation. The latter reaction can be partly suppressed for the least reactive systems, providing access to α-unsubstituted boomerangs for the first time. These “α-free” systems are highly efficient fluorophores, with emission quantum yields exceeding 80% in toluene. Preliminary measurements show that helicene-like boomerangs may be usable as circularly polarized luminescent materials.

]]>
<![CDATA[Cation-induced ring-opening and oxidation reaction of photoreluctant spirooxazine–quinolizinium conjugates]]> https://www.researchpad.co/article/elastic_article_8466 Two new spiroindolinonaphthoxazine derivatives with an electron-accepting styrylquinolizinium or styrylcoralyne unit, respectively, were synthesized, and the influence of such an arylvinyl substituent on the chemical and photochemical properties of the compounds was investigated. Specifically, these spirooxazines turned out to be resistant towards the photoinduced merocyanine formation, and the irradiation with light mainly led to photodegradation of the substrates. However, it was shown by colorimetric and fluorimetric screening assays as well as by detailed NMR spectroscopic and mass spectrometric studies that the addition of particular metal ions (Cu2+, Fe3+, and to a certain extent Hg2+) initially induced a ring-opening reaction that was irreversibly followed by a fast ring closure–deprotonation–oxidation sequence to give styryl-substituted naphthoxazole derivatives as the products quantitatively. For the quinolizinium-substituted spirooxazine derivative, the formation of the respective oxidation product caused the development of a broad absorption band between 425 nm and 500 nm and a new emission band at λfl = 628 nm, so that it may be employed as a selective chemosensor or chemodosimeter for the colorimetric and fluorimetric detection of Cu2+ and Fe3+.

]]>
<![CDATA[Diversity-oriented synthesis of 17-spirosteroids]]> https://www.researchpad.co/article/elastic_article_7807 A diversity-oriented synthesis (DOS) approach has been used to functionalize 17-ethynyl-17-hydroxysteroids through a one-pot procedure involving a ring-closing enyne metathesis (RCEYM) and a Diels–Alder reaction on the resulting diene, under microwave irradiations. Taking advantage of the propargyl alcohol moiety present on commercially available steroids, this classical strategy was applied to mestranol and lynestrenol, giving a collection of new complex 17-spirosteroids.

]]>
<![CDATA[Copper catalysis with redox-active ligands]]> https://www.researchpad.co/article/elastic_article_7799 Copper catalysis finds applications in various synthetic fields by utilizing the ability of copper to sustain mono- and bielectronic elementary steps. Further to the development of well-defined copper complexes with classical ligands such as phosphines and N-heterocyclic carbenes, a new and fast-expanding area of research is exploring the possibility of a complementing metal-centered reactivity with electronic participation by the coordination sphere. To achieve this electronic flexibility, redox-active ligands can be used to engage in a fruitful “electronic dialogue” with the metal center, and provide additional venues for electron transfer. This review aims to present the latest results in the area of copper-based cooperative catalysis with redox-active ligands.

]]>
<![CDATA[Fabclavine diversity in <i>Xenorhabdus</i> bacteria]]> https://www.researchpad.co/article/elastic_article_7796 The global threat of multiresistant pathogens has to be answered by the development of novel antibiotics. Established antibiotic applications are often based on so-called secondary or specialized metabolites (SMs), identified in large screening approaches. To continue this successful strategy, new sources for bioactive compounds are required, such as the bacterial genera Xenorhabdus or Photorhabdus. In these strains, fabclavines are widely distributed SMs with a broad-spectrum bioactivity. Fabclavines are hybrid SMs derived from nonribosomal peptide synthetases (NRPS), polyunsaturated fatty acid (PUFA), and polyketide synthases (PKS). Selected Xenorhabdus and Photorhabdus mutant strains were generated applying a chemically inducible promoter in front of the suggested fabclavine (fcl) biosynthesis gene cluster (BGC), followed by the analysis of the occurring fabclavines. Subsequently, known and unknown derivatives were identified and confirmed by MALDI–MS and MALDI–MS2 experiments in combination with an optimized sample preparation. This led to a total number of 22 novel fabclavine derivatives in eight strains, increasing the overall number of fabclavines to 32. Together with the identification of fabclavines as major antibiotics in several entomopathogenic strains, our work lays the foundation for the rapid fabclavine identification and dereplication as the basis for future work of this widespread and bioactive SM class.

]]>
<![CDATA[A method to determine the correct photocatalyst concentration for photooxidation reactions conducted in continuous flow reactors]]> https://www.researchpad.co/article/elastic_article_7792 When conducting a photooxidation reaction, the key question is what is the best amount of photocatalyst to be used in the reaction? This work demonstrates a fast and simple method to calculate a reliable concentration of the photocatalyst that will ensure an efficient reaction. The determination is based on shifting the calculation away from the concentration of the compound to be oxidized to utilizing the limitations on the total light dose that can be delivered to the catalyst. These limitations are defined by the photoflow setup, specifically the channel height and the emission peak of the light source. This method was tested and shown to work well for three catalysts with different absorption properties through using LEDs with emission maxima close to the absorption maximum of each catalyst.

]]>
<![CDATA[Juvenile hormone suppresses aggregation behavior through influencing antennal gene expression in locusts]]> https://www.researchpad.co/article/elastic_article_7742 A behavioral change from shy solitarious individuals to highly social gregarious individuals is critical to the formation of disastrous swarms of locusts. However, the underlying molecular mechanism of behavioral plasticity regulated by hormones is still largely unknown. Here, we investigated the effect of juvenile hormone (JH) on the behavioral transition in fourth-instar gregarious and solitarious locusts. We found that JH induced the behavioral shift of the gregarious locust from attraction to repulsion to the volatiles of gregarious locusts. The solitarious locust significantly decreased repulsion behavior after deprivation of JH by precocene or knockdown of JHAMT, a key enzyme to synthesize JH. JH application on gregarious locusts caused significant expression alteration of genes, especially the olfactory genes TO and CSP in the antennae. We further demonstrated that the JH signaling pathway suppressed aggregation behavior in gregarious locusts by increasing TO1 expression and decreasing CSP3 expression at the same time. Our results suggested that internal physiological factors can directly modulate periphery olfactory system to produce behavioral plasticity.

]]>
<![CDATA[Nutritional and physicochemical characteristics of purple sweet corn juice before and after boiling]]> https://www.researchpad.co/article/elastic_article_7720 Sweet corn juice is becoming increasingly popular in China. In order to provide valuable health-related information to consumers, the nutritional and physicochemical characteristics of raw and boiled purple sweet corn juices were herein investigated. Sugars, antinutrients, total free phenols, anthocyanins, and antioxidant activity were analyzed by conventional chemical methods. The viscosity and stability of juices were determined by Ubbelohde viscosity meter and centrifugation, respectively. Boiling process could elevate viscosity, stability and sugar content, and reduce antinutrients, total free phenols, anthocyanins, and antioxidant activity in corn juice. In addition, short time boiling efficiently reduced the degradation of anthocyanins during subsequent refrigeration. The content of amino acids, vitamin B1/B2 and E were detected by High Performance Liquid Chromatography. Gas Chromatography Mass Spectrometry was used for the analysis of fatty acids and aroma compounds. Several aroma compounds not previously reported in corn were identified, including 1-heptanol, 2-methyl-2-butenal, (Z)-3-nonen-1-ol, 3-ethyl-2-methyl-1,3-hexadiene, and 2,4-bis(1,1-dimethylethyl)phenol. Interestingly, the boiling process had no apparent effect on the amino acids profile, but it caused a 45.8% loss of fatty acids in the juice by promoting the retention of fatty acids in the corn residue. These results provide detailed information that could be used for increasing consumers’ knowledge of sweet corn juice, further development of sweet corn juice by food producers, and maize breeding programs.

]]>
<![CDATA[Digestibility of black soldier fly larvae (<i>Hermetia illucens</i>) fed to leopard geckos (<i>Eublepharis macularius</i>)]]> https://www.researchpad.co/article/elastic_article_7714 Black soldier fly (BSF) larvae have been marketed as an excellent choice for providing calcium to reptiles without the need of dusting or gut loading. However, previous studies have indicated that they have limited calcium digestibility and are deficient in fat soluble vitamins (A, D3, and E). In this feeding and digestibility trial, 24 adult male leopard geckos were fed one of three diets for 4 months: 1) whole, vitamin A gut loaded larvae; 2) needle pierced, vitamin A gut loaded larvae; or 3) whole, non-gut loaded larvae. Fecal output from the geckos was collected daily and apparent digestibility was calculated for dry matter, protein, fat, and minerals. There were no differences in digestibility coefficients among groups. Most nutrients were well digested by the leopard geckos when compared to previous studies, with the exception of calcium (digestibility co-efficient 43%), as the calcium-rich exoskeleton usually remained intact after passage through the GI tract. Biochemistry profiles revealed possible deficits occurring over time for calcium, sodium, and total protein. In regards to vitamin A digestibility, plasma and liver vitamin A concentrations were significantly higher in the supplemented groups (plasma- gut loaded groups: 33.38 ± 7.11 ng/ml, control group: 25.8 ± 6.72 ng/ml, t = 1.906, p = 0.04; liver- gut loaded groups: 28.67 ± 18.90 μg/g, control group: 14.13 ± 7.41 μg/g, t = 1.951, p = 0.03). While leopard geckos are able to digest most of the nutrients provided by BSF larvae, including those that have been gut loaded, more research needs to be performed to assess whether or not they provide adequate calcium in their non-supplemented form.

]]>
<![CDATA[Multipurpose chemical liquid sensing applications by microwave approach]]> https://www.researchpad.co/article/elastic_article_7700 In this work, a novel sensor based on printed circuit board (PCB) microstrip rectangular patch antenna is proposed to detect different ratios of ethanol alcohol in wines and isopropyl alcohol in disinfectants. The proposed sensor was designed by finite integration technique (FIT) based high-frequency electromagnetic solver (CST) and was fabricated by Proto Mat E33 machine. To implement the numerical investigations, dielectric properties of the samples were first measured by a dielectric probe kit then uploaded into the simulation program. Results showed a linear shifting in the resonant frequency of the sensor when the dielectric constant of the samples were changed due to different concentrations of ethanol alcohol and isopropyl alcohol. A good agreement was observed between the calculated and measured results, emphasizing the usability of dielectric behavior as an input sensing agent. It was concluded that the proposed sensor is viable for multipurpose chemical sensing applications.

]]>
<![CDATA[Abrogation of pathogenic attributes in drug resistant <i>Candida auris</i> strains by farnesol]]> https://www.researchpad.co/article/elastic_article_7651 Candida auris, a decade old Candida species, has been identified globally as a significant nosocomial multidrug resistant (MDR) pathogen responsible for causing invasive outbreaks. Biofilms and overexpression of efflux pumps such as Major Facilitator Superfamily and ATP Binding Cassette are known to cause multidrug resistance in Candida species, including C. auris. Therefore, targeting these factors may prove an effective approach to combat MDR in C. auris. In this study, 25 clinical isolates of C. auris from different hospitals of South Africa were used. All the isolates were found capable enough to form biofilms on 96-well flat bottom microtiter plate that was further confirmed by MTT reduction assay. In addition, these strains have active drug efflux mechanism which was supported by rhodamine-6-G extracellular efflux and intracellular accumulation assays. Antifungal susceptibility profile of all the isolates against commonly used drugs was determined following CLSI recommended guidelines. We further studied the role of farnesol, an endogenous quorum sensing molecule, in modulating development of biofilms and drug efflux in C. auris. The MIC for planktonic cells ranged from 62.5–125 mM, and for sessile cells was 125 mM (4h biofilm) and 500 mM (12h and 24h biofilm). Furthermore, farnesol (125 mM) also suppresses adherence and biofilm formation by C. auris. Farnesol inhibited biofilm formation, blocked efflux pumps and downregulated biofilm- and efflux pump- associated genes. Modulation of C. auris biofilm formation and efflux pump activity by farnesol represent a promising approach for controlling life threatening infections caused by this pathogen.

]]>
<![CDATA[Breath figure–derived porous semiconducting films for organic electronics]]> https://www.researchpad.co/article/N1215294b-77dc-45ec-8b56-9c4075319f1b

We show here that breath figure–derived semiconducting films are suitable and universal for porous organic electronics.

]]>
<![CDATA[Aspirin-triggered resolvin D1 attenuates PDGF-induced vascular smooth muscle cell migration via the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc0e7

Background and objectives

Resolvin D1 (RvD1) is a specialized pro-resolving lipid mediator that has been previously shown to attenuate vascular smooth muscle cell (VSMC) migration, a key process in the development of intimal hyperplasia. We sought to investigate the role of the cAMP/PKA pathway in mediating the effects of the aspirin-triggered epimer 17R-RvD1 (AT-RvD1) on VSMC migration.

Methods

VSMCs were harvested from human saphenous veins. VSMCs were analyzed for intracellular cAMP levels and PKA activity after exposure to AT-RvD1. Platelet-derived growth factor (PDGF)-induced migration and cytoskeletal changes in VSMCs were observed through scratch, Transwell, and cell shape assays in the presence or absence of a PKA inhibitor (Rp-8-Br-cAMP). Further investigation of the pathways involved in AT-RvD1 signaling was performed by measuring Rac1 activity, vasodilator stimulated phosphoprotein (VASP) phosphorylation and paxillin translocation. Finally, we examined the role of RvD1 receptors (GPR32 and ALX/FPR2) in AT-RvD1 induced effects on VSMC migration and PKA activity.

Results

Treatment with AT-RvD1 induced a significant increase in cAMP levels and PKA activity in VSMCs at 5 minutes and 30 minutes, respectively. AT-RvD1 attenuated PDGF-induced VSMC migration and cytoskeletal rearrangements. These effects were attenuated by the PKA inhibitor Rp-8-Br-cAMP, suggesting cAMP/PKA involvement. Treatment of VSMC with AT-RvD1 inhibited PDGF-stimulated Rac1 activity, increased VASP phosphorylation, and attenuated paxillin localization to focal adhesions; these effects were negated by the addition of Rp-8-Br-cAMP. The effects of AT-RvD1 on VSMC migration and PKA activity were attenuated by blocking ALX/FPR2, suggesting an important role of this G-protein coupled receptor.

Conclusions

Our results suggest that AT-RvD1 attenuates PDGF-induced VSMC migration via ALX/FPR2 and cAMP/PKA. Interference with Rac1, VASP and paxillin function appear to mediate the downstream effects of AT-RvD1 on VSMC migration.

]]>
<![CDATA[Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc122

Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections.

]]>