ResearchPad - original-work Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Acute Symptomatic Seizures in Critically Ill Patients with COVID-19: Is There an Association?]]> The coronavirus disease of 2019 (COVID-19) emerged as a global pandemic. Historically, the group of human coronaviruses can also affect the central nervous system leading to neurological symptoms; however, the causative mechanisms of the neurological manifestations of COVID-19 disease are not well known. Seizures have not been directly reported as a part of COVID-19 outside of patients with previously known brain injury or epilepsy. We report two cases of acute symptomatic seizures, in non-epileptic patients, associated with severe COVID-19 disease.Case PresentationsTwo advanced-age, non-epileptic, male patients presented to our northeast Ohio-based health system with concern for infection in Mid-March 2020. Both had a history of lung disease and during their hospitalization tested positive for SARS-CoV-2. They developed acute encephalopathy days into their hospitalization with clinical and electrographic seizures. Resolution of seizures was achieved with levetiracetam.DiscussionPatients with COVID-19 disease are at an elevated risk for seizures, and the mechanism of these seizures is likely multifactorial. Clinical (motor) seizures may not be readily detected in this population due to the expansive utilization of sedatives and paralytics for respiratory optimization strategies. Many of these patients are also not electrographically monitored for seizures due to limited resources, multifactorial risk for acute encephalopathy, and the risk of cross-contamination. Previously, several neurological symptoms were seen in patients with more advanced COVID-19 disease, and these were thought to be secondary to multi-system organ failure and/or disseminated intravascular coagulopathy-related brain injury. However, these patients may also have an advanced breakdown of the blood–brain barrier precipitated by pro-inflammatory cytokine reactions. The neurotropic effect and neuroinvasiveness of SARS-Coronavirus-2 have not been directly established.ConclusionsAcute symptomatic seizures are possible in patients with COVID-19 disease. These seizures are likely multifactorial in origin, including cortical irritation due to blood–brain barrier breakdown, precipitated by the cytokine reaction as a part of the viral infection. Patients with clinical signs of seizures or otherwise unexplained encephalopathy may benefit from electroencephalography monitoring and/or empiric anti-epileptic therapy. Further studies are needed to elucidate the risk of seizures and benefit of monitoring in this population. ]]> <![CDATA[A one-year cost–utility analysis of REBOA versus RTACC for non-compressible torso haemorrhage]]>


Major trauma is a leading cause of death and disability in young adults, especially from massive non-compressible torso haemorrhage. The standard technique to control distal haemorrhage and maximise central perfusion is resuscitative thoracotomy with aortic cross-clamping (RTACC). More recently, the minimally invasive technique of resuscitative endovascular balloon occlusion of the aorta (REBOA) has been developed to similarly limit distal haemorrhage without the morbidity of thoracotomy; cost–utility studies on this intervention, however, are still lacking. The aim of this study was to perform a one-year cost–utility analysis of REBOA as an intervention for patients with major traumatic non-compressible abdominal haemorrhage, compared to RTACC within the U.K.’s National Health Service.


A retrospective analysis of the outcomes following REBOA and RTACC was conducted based on the published literature of survival and complication rates after intervention. Utility was obtained from studies that used the EQ-5D index and from self-conducted surveys. Costs were calculated using 2016/2017 National Health Service tariff data and supplemented from further literature. A cost–utility analysis was then conducted.


A total of 12 studies for REBOA and 20 studies for RTACC were included. The mean injury severity scores for RTACC and REBOA were 34 and 39, and mean probability of death was 9.7 and 54%, respectively. The incremental cost-effectiveness ratio of REBOA when compared to RTACC was £44,617.44 per quality-adjusted life year. The incremental cost-effectiveness ratio, by exceeding the National Institute for Health and Clinical Effectiveness’s willingness-to-pay threshold of £30,000/quality-adjusted life year, suggests that this intervention is not cost-effective in comparison to RTACC. However, REBOA yielded a 157% improvement in utility with a comparatively small cost increase of 31.5%.


Although REBOA has not been found to be cost-effective when compared to RTACC, ultimately, clinical experience and expertise should be the main factor in driving the decision over which intervention to prioritise in the emergency context.