ResearchPad - oviposition https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Sublethal and transgenerational effects of sulfoxaflor on the demography and feeding behaviour of the mirid bug <i>Apolygus lucorum</i>]]> https://www.researchpad.co/article/elastic_article_14540 Sulfoxaflor, the first commercially available sulfoximine insecticide, has been used for the control of sap-feeding insect pests such as plant bugs and aphids on a variety of crops. However, its sublethal effects on the mirid bug Apolygus lucorum, one of the key insect pests of Bt cotton and fruit trees in China, have not been fully examined. Here, we evaluated the demography and feeding behaviour of A. lucorum exposed to sulfoxaflor. The leaf-dipping bioassay showed that the LC10 and LC30 of sulfoxaflor against 3rd-instar nymphs of this insect were 1.23 and 8.37 mg L-1, respectively. The LC10 significantly extended the nymphal duration and decreased the oviposition period by 5.29 days and female fecundity by 56.99% in the parent generation (F0). The longer duration of egg, 5th-instar nymphs, preadult, and male adult longevity were observed in the F1 generation (F1) at LC10. At the LC30, the duration of egg and 1st-instar nymph, female adult longevity, and oviposition period of the F1 were significantly shorter, while the nymphal duration in the F0 and duration of 5th-instar nymphs, preadult survival rate, and male adult longevity in the F1 significantly increased. The net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) in the F1 were not significantly affected by these two concentrations, whereas the mean generation time (T) was lower at the LC30. Additionally, the probe counts and cells mixture feeding time were markedly lengthened by the LC10 and LC30, respectively, when A. lucorum nymphs exposed to sulfoxaflor fed on Bt cotton plants without insecticides. These results clearly indicate that sulfoxaflor causes sublethal effects on A. lucorum and the transgenerational effects depend on the tested concentrations.

]]>
<![CDATA[Epigenetic inheritance of telomere length in wild birds]]> https://www.researchpad.co/article/5c6f14b0d5eed0c48467a620

Telomere length (TL) predicts health and survival across taxa. Variation in TL between individuals is thought to be largely of genetic origin, but telomere inheritance is unusual, because zygotes already express a TL phenotype, the TL of the parental gametes. Offspring TL changes with paternal age in many species including humans, presumably through age-related TL changes in sperm, suggesting an epigenetic inheritance mechanism. However, present evidence is based on cross-sectional analyses, and age at reproduction is confounded with between-father variation in TL. Furthermore, the quantitative importance of epigenetic TL inheritance is unknown. Using longitudinal data of free-living jackdaws Corvus monedula, we show that erythrocyte TL of subsequent offspring decreases with parental age within individual fathers, but not mothers. By cross-fostering eggs, we confirmed the paternal age effect to be independent of paternal age dependent care. Epigenetic inheritance accounted for a minimum of 34% of the variance in offspring TL that was explained by paternal TL. This is a minimum estimate, because it ignores the epigenetic component in paternal TL variation and sperm TL heterogeneity within ejaculates. Our results indicate an important epigenetic component in the heritability of TL with potential consequences for offspring fitness prospects.

]]>
<![CDATA[Toxicity and oviposition deterrence of essential oils of Clinopodium nubigenum and Lavandula angustifolia against the myiasis-inducing blowfly Lucilia sericata]]> https://www.researchpad.co/article/5c76fe5ad5eed0c484e5b930

Cutaneous myiasis is a severe worldwide medical and veterinary issue. In this trial the essential oil (EO) of the Andean medicinal plant species Clinopodium nubigenum (Kunth) Kuntze was evaluated for its bioactivity against the myiasis-inducing blowfly Lucilia sericata (Meigen) (Diptera Calliphoridae) and compared with that of the well-known medicinal plant species Lavandula angustifolia Mill. The EOs were analysed and tested in laboratory for their oviposition deterrence and toxicity against L. sericata adults. The physiology of EO toxicity was evaluated by enzymatic inhibition tests. The antibacterial and antifungal properties of the EOs were tested as well. At 0.8 μL cm-2, both EOs completely deterred L. sericata oviposition up to 3 hours. After 24 h, the oviposition deterrence was still 82.7% for L. angustifolia and the 89.5% for C. nubigenum. The two EOs were also toxic to eggs and adults of L. sericata. By contact/fumigation, the EOs, the LC50 values against the eggs were 0.07 and 0.48 μL cm-2 while, by topical application on the adults, LD50 values were 0.278 and 0.393 μL per individual for C. nubigenum and L. angustifolia EOs, respectively. Inhibition of acetylcholine esterase of L. sericata by EOs (IC50 = 67.450 and 79.495 mg L-1 for C. nubigenum and L. angustifolia, respectively) suggested that the neural sites are targets of the EO toxicity. Finally, the observed antibacterial and antifungal properties of C. nubigenum and L. angustifolia EOs suggest that they could also help prevent secondary infections.

]]>
<![CDATA[Leafflower–leafflower moth mutualism in the Neotropics: Successful transoceanic dispersal from the Old World to the New World by actively-pollinating leafflower moths]]> https://www.researchpad.co/article/5c5b529ed5eed0c4842bccc2

In the Old World tropics, several hundred species of leafflowers (Phyllanthus sensu lato; Phyllanthaceae) are engaged in obligate mutualisms with species-specific leafflower moths (Epicephala; Gracillariidae) whose adults actively pollinate flowers and larvae consume the resulting seeds. Considerable diversity of Phyllanthus also exists in the New World, but whether any New World Phyllanthus is pollinated by Epicephala is unknown. We studied the pollination biology of four woody Phyllanthus species occurring in Peru over a period of four years, and found that each species is associated with a species-specific, seed-eating Epicephala moth, here described as new species. Another Epicephala species found associated with herbaceous Phyllanthus is also described. This is the first description of Epicephala from the New World. Field-collected female moths of the four Epicephala species associated with woody Phyllanthus all carried pollen on the proboscises, and active pollination behavior was observed in at least two species. Thus, Epicephala moths also pollinate New World Phyllanthus. However, not all of these Epicephala species may be mutualistic with their hosts, because we occasionally observed females laying eggs in developing fruits without pollinating. Also, the flowers of some Phyllanthus species were visited by pollen-bearing thrips or gall midges, which potentially acted as co-pollinators or primary pollinators. Phylogenetic analysis showed that the New World Epicephala associated with woody Phyllanthus are nested within lineages of Old World active pollinators. Thus, actively-pollinating Epicephala moths, which originated in the Old World, successfully colonized the New World probably across the Pacific and established mutualisms with resident Phyllanthus species, although whether any of the relationships are obligate requires further study. There is likely a major radiation of Epicephala still to be found in the New World.

]]>
<![CDATA[Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion]]> https://www.researchpad.co/article/5c3e5090d5eed0c484d8308d

Background

Traditional vector control approaches such as source reduction and insecticide spraying have limited effect on reducing Aedes aegypti population. The endosymbiont Wolbachia is pointed as a promising tool to mitigate arbovirus transmission and has been deployed worldwide. Models predict a rapid increase on the frequency of Wolbachia-positive Ae. aegypti mosquitoes in local settings, supported by cytoplasmic incompatibility (CI) and high maternal transmission rate associated with the wMelBr strain.

Methodology/principle findings

Wolbachia wMelBr strain was released for 20 consecutive weeks after receiving >87% approval of householders of the isolated community of Tubiacanga, Rio de Janeiro. wMelBr frequency plateued~40% during weeks 7–19, peaked 65% but dropped as releases stopped. A high (97.56%) maternal transmission was observed. Doubling releases and deploying mosquitoes with large wing length and low laboratory mortality produced no detectable effects on invasion trend. By investigating the lab colony maintenance procedures backwardly, pyrethroid resistant genotypes in wMelBr decreased from 68% to 3.5% after 17 generations. Therefore, we initially released susceptible mosquitoes in a local population highly resistant to pyrethroids which, associated with the over use of insecticides by householders, ended jeopardizing Wolbachia invasion. A new strain (wMelRio) was produced after backcrossing wMelBr females with males from field to introduce mostly pyrethroid resistance alleles. The new strain increased mosquito survival but produced relevant negative effects on Ae. aegypti fecundity traits, reducing egg clutche size and egg hatch. Despite the cost on fitness, wMelRio successful established where wMelBr failed, revealing that matching the local population genetics, especially insecticide resistance background, is critical to achieve invasion.

Conclusions/significance

Local householders support was constantly high, reaching 90% backing on the second release (wMelRio strain). Notwithstanding the drought summer, the harsh temperature recorded (daily average above 30°C) did not seem to affect the expression of maternal transmission of wMel on a Brazilian background. Wolbachia deployment should match the insecticide resistance profile of the wild population to achieve invasion. Considering pyrethroid-resistance is a widely distributed phenotype in natural Ae. aegypti populations, future Wolbachia deployments must pay special attention in maintaining insecticide resistance in lab colonies for releases.

]]>
<![CDATA[Identification and characterization of a mosquito-specific eggshell organizing factor in Aedes aegypti mosquitoes]]> https://www.researchpad.co/article/5c3e4ff5d5eed0c484d7ad7c

Mosquito-borne diseases are responsible for several million human deaths annually around the world. One approach to controlling mosquito populations is to disrupt molecular processes or antagonize novel metabolic targets required for the production of viable eggs. To this end, we focused our efforts on identifying proteins required for completion of embryonic development that are mosquito selective and represent potential targets for vector control. We performed bioinformatic analyses to identify putative protein-coding sequences that are specific to mosquito genomes. Systematic RNA interference (RNAi) screening of 40 mosquito-specific genes was performed by injecting double-stranded RNA (dsRNA) into female Aedes aegypti mosquitoes. This experimental approach led to the identification of eggshell organizing factor 1 (EOF1, AAEL012336), which plays an essential role in the formation and melanization of the eggshell. Eggs deposited by EOF1-deficient mosquitoes have nonmelanized fragile eggshells, and all embryos are nonviable. Scanning electron microscopy (SEM) analysis identified that exochorionic eggshell structures are strongly affected in EOF1-deficient mosquitoes. EOF1 is a potential novel target, to our knowledge, for exploring the identification and development of mosquito-selective and biosafe small-molecule inhibitors.

]]>
<![CDATA[Methyl benzoate exhibits insecticidal and repellent activities against Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae)]]> https://www.researchpad.co/article/5c1028e8d5eed0c48424871b

Methyl benzoate (MB) is a plant-derived volatile organic compound with insecticidal properties, but such activity has not been evaluated against the sweetpotato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), a major crop pest. In this study, we tested methyl benzoate control efficacy on B. tabaci infecting tomato plants in a greenhouse, specifically measuring contact and fumigant toxicity, as well as repellent activity. For direct spray applications of 0% (control), 0.1%, 0.25%, 0.5%, 1%, 2% MB onto tomato leaves infested with adults of B. tabaci (< 5-d-old), 2% MB showed the highest corrected mortality (100%) at 24 h post-treatment. For residual toxicity in which the same MB solutions were sprayed onto tomato leaves and allowed to dry for 2 h before < 5-d-old adults were released, the 2% MB also showed the highest corrected mortality (100%) at 48 h post-treatment. The lethal median concentration (LC50) for eggs, fourth-instar nymphs, and adults were 0.3%, 0.2%, and 0.2%, respectively. In pot culture experiments, 1% MB concentration was found more effective at killing nymphs and preventing adult eclosion than all other concentrations, and gave 100 percent population reduction compared with the control. MB repelled adult whiteflies and caused 96.5% fumigant toxicity within 10 h post-treatment. Repellency and anti-oviposition rates against B. tabaci had median effective doses of 0.24% and 0.16%, respectively. Our results suggest that MB has strong potential as an environmentally friendly biopesticide for control of B. tabaci but field trials and further greenhouse studies are required to establish efficacy under more natural conditions.

]]>
<![CDATA[Leaf Morphological Characters Can Be a Factor for Intra-Varietal Preference of Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) among Eggplant Varieties]]> https://www.researchpad.co/article/5989d9faab0ee8fa60b71a4b

The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1, is considered a serious pest of horticultural and many other crops. While eggplant (Solanum melongena) is one of the most favored host plants, the whiteflies exhibit preferences among different varieties. We hypothesized that certain morphological leaf characteristics of different varieties, like leaf trichome density, trichome length, leaf lamina thickness and leaf color, may affect whitefly landing, feeding and oviposition. In this study, we investigated the variation in leaf morphological characters among selected eggplant varieties and evaluated the effect of these leaf characteristics in rendering eggplant varieties either susceptible or resistant to B. tabaci. We evaluated eight eggplant varieties in choice feeding tests, and we found that the varieties JinSheng Zilongchangqie (JSZ) and H149 were the highly preferred varieties with the highest numbers of whitefly adults and eggs. Significantly lower numbers of whitefly adult eggs were found on the resistant variety Tuo Lu Bamu (TLB). The varieties JinGuangbo Luqie (JGL), JinGuangbo Ziquanqie (JGZ), DaYang Ziguanqie (DYZ), QinXing Ziguanqie (QXZ), and QinXing Niuxinqie (QXN) were moderately favored by B. tabaci. Leaf trichome density, trichome length and leaf lamina thickness were positively correlated with numbers of whitefly adults and eggs. B. tabaci was less attracted to the leaves that reflect long and middle wavelength light (higher R and G values) than to the bright green leaves (medium G value), but the short wavelength light (higher B value) had no significant effect on whitefly preference. The degree of hue had a positive effect, and saturation and brightness had a negative effect on whitefly attraction.

]]>
<![CDATA[Impact of sublethal exposure to a pyrethroid-neonicotinoid insecticide on mating, fecundity and development in the bed bug Cimex lectularius L. (Hemiptera: Cimicidae)]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf6a0

Sublethal exposure to an insecticide may alter insect feeding, mating, oviposition, fecundity, development, and many other life history parameters. Such effects may have population-level consequences that are not apparent in traditional dose-mortality evaluations. Earlier, we found that a routinely used combination insecticide that includes a pyrethroid and a neonicotinoid (Temprid® SC) had deleterious effects on multiple bed bug (Cimex lectularius, L.) behaviors. Here, we demonstrate that sublethal exposure impacts physiology and reproduction as well. We report that sublethal exposure to Temprid SC has variable aberrant effects on bed bugs depending on the strain, including: a reduction in male mating success and delayed oviposition by females. However, after sublethal exposure, egg hatch rate consistently declined in every strain tested, anywhere from 34%-73%. Conversely, impact on fifth instar eclosion time was not significant. While the strains that we tested varied in their respective magnitude of sublethal effects, taken together, these effects could reduce bed bug population growth. These changes in bed bug behavior and fecundity could lead to improved efficacy of Temprid SC in the field, but recovery of impacted bugs must be considered in future studies. Sublethal effects should not be overlooked when evaluating insecticide efficacy, as it is likely that other products may also have indirect effects on population dynamics that could either aid or inhibit successful management of pest populations.

]]>
<![CDATA[Vision-mediated exploitation of a novel host plant by a tephritid fruit fly]]> https://www.researchpad.co/article/5989db51ab0ee8fa60bdc440

Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion.

]]>
<![CDATA[Interspecific Interactions and the Scope for Parent-Offspring Conflict: High Mite Density Temporarily Changes the Trade-Off between Offspring Size and Number in the Burying Beetle, Nicrophorus vespilloides]]> https://www.researchpad.co/article/5989da28ab0ee8fa60b81545

Parents have a limited amount of resources to invest in reproduction and commonly trade-off how much they invest in offspring size (or quality) versus brood size. A negative relationship between offspring size and number has been shown in numerous taxa and it underpins evolutionary conflicts of interest between parents and their young. For example, previous work on vertebrates shows that selection favours mothers that produce more offspring, at the expense of individual offspring size, yet favours offspring that have relatively few siblings and therefore attain a greater size at independence. Here we analyse how this trade-off is temporarily affected by stochastic variation in the intensity of interspecific interactions. We examined the effect of the mite Poecilochirus carabi on the relationship between offspring size and number in the burying beetle, Nicrophorus vespilloides. We manipulated the initial number of mites in the reproductive event (by introducing either no mites, 4 mites, 10 mites, or 16 mites), and assessed the effect on the brood. We found a similar trade-off between offspring size and number in all treatments, except in the '16 mite' treatment where the correlation between offspring number and size flattened considerably. This effect arose because larvae in small broods failed to attain a high mass by dispersal. Our results show that variation in the intensity of interspecific interactions can temporarily change the strength of the trade-off between offspring size and number. In this study, high densities of mites prevented individual offspring from attaining their optimal weight, thus potentially temporarily biasing the outcome of parent-offspring conflict in favour of parents.

]]>
<![CDATA[Reproductive Incompatibility Involving Senegalese Aedes aegypti (L) Is Associated with Chromosome Rearrangements]]> https://www.researchpad.co/article/5989da5fab0ee8fa60b909d2

Aedes aegypti, the primary vector of dengue, yellow fever and Zika flaviviruses, consists of at least two subspecies. Aedes aegypti (Aaa) is light in color, has pale scales on the first abdominal tergite, oviposits in artificial containers, and preferentially feeds on humans. Aedes aegypti formosus (Aaf), has a dark cuticle, is restricted to sub-Saharan Africa, has no pale scales on the first abdominal tergite and frequently oviposits in natural containers. Scale patterns correlate with cuticle color in East Africa but not in Senegal, West Africa where black cuticle mosquitoes display a continuum of scaling patterns and breed domestically indoors. An earlier laboratory study did not indicate any pre- or postzygotic barriers to gene flow between Aaa and Aaf in East Africa. However, similar attempts to construct F1 intercross families between Aaa laboratory strains and Senegal Ae. aegypti (SenAae) failed due to poor F1 oviposition and low F2 egg-to-adult survival. Insemination and assortative mating experiments failed to identify prezygotic mating barriers. Backcrosses were performed to test for postzygotic isolation patterns consistent with Haldane’s rule modified for species, like Aedes, that have an autosomal sex determining locus (SDL). Egg-pupal survival was predicted to be low in females mated to hybrid F1 males but average when a male mates with a hybrid F1 female. Survival was in fact significantly reduced when females mated to hybrid males but egg-pupal survival was significantly increased when males were mated to hybrid F1 females. These observations are therefore inconclusive with regards to Haldane’s rule. Basic cytogenetic analyses and Fluorescent In Situ Hybridization (FISH) experiments were performed to compare SenAae strains with the IB12 strain of Aaa that was used for genome sequencing and physical mapping. Some SenAae strains had longer chromosomes than IB12 and significantly different centromeric indices on chromosomes 1 and 3. DAPI staining was used to identify AT-rich regions, chromomycin A3 following pretreatment with barium hydroxide stained for GC-rich regions and stained the ribosomal RNA locus and YOYO-1 was used to test for differential staining. Chromosome patterns in SenAae strains revealed by these three stains differed from those in IB12. For FISH, 40 BAC clones previously physically mapped on Aaa chromosomes were used to test for chromosome rearrangements in SenAae relative to IB12. Differences in the order of markers identified two chromosomal rearrangements between IB12 and SenAae strains. The first rearrangement involves two overlapping pericentric (containing the centromere) inversions in chromosome 3 or an insertion of a large fragment into the 3q arm. The second rearrangement is close to the centromere on the p arm of chromosome 2. Linkage analysis of the SDL and the white-eye locus identified a likely chromosomal rearrangement on chromosome 1. The reproductive incompatibility observed within SenAae and between SenAae and Aaa may be generally associated with chromosome rearrangements on all three chromosomes and specifically caused by pericentric inversions on chromosomes 2 and 3.

]]>
<![CDATA[Gravid Spot Predicts Developmental Progress and Reproductive Output in a Livebearing Fish, Gambusia holbrooki]]> https://www.researchpad.co/article/5989dad5ab0ee8fa60bb7cbb

In most livebearing fish, the gravid spot is an excellent marker to identify brooding females, however its use to predict progress of embryonic development, brood size, timing of parturition and overall reproductive potential of populations remain unexplored. Therefore, to understand these relationships, this study quantified visual attributes (intensity and size) of the gravid spot in relation to key internal development in Gambusia holbrooki. Observations show that the colour of the gravid spot arises from progressive melanisation on the surface of the ovarian sac at its hind margin, rather than melanisation of the developing embryos or the skin of the brooding mother. More importantly, the gravid spot intensity and size were closely linked with both developmental stages and clutch size, suggesting their reliable use as external surrogates of key internal developmental in the species. Using predictive consistency of the gravid spot, we also determined the effect of rearing temperature (23°C and 25°C) on gestation period and parturition behaviour. The results show that gestation period was significantly reduced (F = 364.58; df = 1,48; P˃0.05) at 25°C. However there was no significant difference in average number of fry parturated in the two temperature groups (P<0.05), reaffirming that gravid spot intensity is a reliable predictor of reproductive output. The parturition in the species occurred predominantly in the morning and in contrast to earlier reports, tails of the fry emerged first with a few exceptions of head-first, twin and premature births. This study demonstrates utility of the gravid spot for downstream reproductive investigations in a live-bearing fish both in the field and laboratory. The reproducibility of the relationships (intensity with both developmental stage and clutch size), imply that they are also relevant to wild populations that experience varying temperature climes and stressors, significant deviations of which may serve as indicators of environmental health and climate variability.

]]>
<![CDATA[Reproductive Ecology of the Giant African Snail in South Florida: Implications for Eradication Programs]]> https://www.researchpad.co/article/5989dad6ab0ee8fa60bb801e

Giant African snail (Achatina fulica (Bowdich, 1822)), an important invasive snail, was recently found in South Florida, USA. An extensive eradication effort was initiated consisting of pesticide applications, debris removal and hand collections. We studied the reproduction capacity and population dynamics of snails collected from 22 populations for two years to help evaluate the likely success of the eradication program. A total of 23,890 snails, ranging from 25–131 mm, were measured, dissected and the number of eggs in each snail counted. Gravid snails ranged from 48–128 mm. Only 5% of snails had eggs, which were found year round. As the snails increased in size, they were more likely to include reproducing individuals. However, the percentage of gravid snails peaked when snails were approximately 90 mm. Although more prevalent, small (<65 mm) adults contributed fewer eggs to the population than the larger snails. We evaluated the effect of control measures on six populations having >1000 adult snails and used data from the two largest populations to investigate how environmental factors (temperature, humidity, and rainfall) interacted with population dynamics and control measures. More snails were collected in weeks with high humidity and more gravid snails were collected when the temperature was higher. The addition of metaldehyde pesticides had the greatest impact on population dynamics by reducing snail numbers. In populations with fewer snails, their numbers were already declining before the use of metaldehyde, although the new treatment accelerated the process. As a consequence of the eradication program, egg-producing snails were no longer collected from most populations by the end of the study. The aggressive and persistent control efforts apparently lead to reduced populations of egg producing snails, eventually resulting in local extinctions of this important pest.

]]>
<![CDATA[Culex pipiens Development Is Greatly Influenced by Native Bacteria and Exogenous Yeast]]> https://www.researchpad.co/article/5989daf7ab0ee8fa60bc3634

Culex pipiens is the most cosmopolitan mosquito of the Pipiens Assemblage. By studying the nature of interactions between this species and microorganisms common to its breeding environment we can unravel important pitfalls encountered during development. We tested the survival rate of larval stages, pupae and adults of a Cx. pipiens colony exposed to a variety of microorganisms in laboratory conditions and assessed the transmission to offspring (F1) by those organisms that secured development up to adulthood. Three complementary experiments were designed to: 1) explore the nutritional value of yeasts and other microorganisms during Cx. pipiens development; 2) elucidate the transstadial transmission of yeast to the host offspring; and 3) to examine the relevance of all these microorganisms in female choice for oviposition-substratum. The yeast Saccharomyces cerevisiae proved to be the most nutritional diet, but despite showing the highest survival rates, vertical transmission to F1 was never confirmed. In addition, during the oviposition trials, none of the gravid females was attracted to the yeast substratum. Notably, the two native bacterial strains, Klebsiella sp. and Aeromonas sp., were the preferred oviposition media, the same two bacteria that managed to feed neonates until molting into 2nd instar larvae. Our results not only suggest that Klebsiella sp. or Aeromonas sp. serve as attractants for oviposition habitat selection, but also nurture the most fragile instar, L1, to assure molting into a more resilient stage, L2, while yeast proves to be the most supportive diet for completing development. These experiments unearthed survival traits that might be considered in the future development of strategies of Cx. pipiens control. These studies can be extended to other members of the Pipiens Assemblage.

]]>
<![CDATA[Costs and Tradeoffs of Resistance and Tolerance to Belowground Herbivory in Potato]]> https://www.researchpad.co/article/5989db3eab0ee8fa60bd5ce5

The success of sustainable crop production depends on our ability to select or create varieties that can allocate resources to both growth and defence. However, breeding efforts have emphasized increases in yields but have partially neglected defence traits against pests. Estimating the costs of multiple defences against tuber herbivores and the tradeoffs among them, as well as understanding the relationship between yield and multiple defences is still unknown but relevant to both basic and applied ecology. Using twenty commercial potato varieties available in Colombia and the tuber herbivore Tecia solanivora, we tested whether high yielding varieties show a reduction in three types of defence: constitutive and induced resistance, as well as tolerance. Specifically, we determined (1) the costs in terms of yield of all three defences, (2) the possible tradeoffs among them, and (3) if oviposition preference was related to the expression of these defences. We detected no costs in terms of yield of constitutive and induced resistance to tuber damage. We did, however, find evidence of costs of being able to tolerate tuber herbivory. While we found no tradeoffs among any of the estimated defences, there was a positive correlation between aboveground compensatory growth and tolerance in terms of tuber production, suggesting that after damage there are no shifts in the allocation of resources from aboveground to belowground biomass. Finally, we found that females laid more eggs on those varieties with the lowest level of constitutive resistance. In conclusion our findings suggest that in potatoes, breeding for higher yields has not caused any reduction in constitutive or induced resistance to tuber damage. This is not the case for tolerance where those varieties with higher yields are also less likely to tolerate tuber damage. Given the high incidence of tuber pests in Colombia, selecting for higher tolerance could allow for high productivity in the presence of herbivores. Finding mechanisms to decouple the tolerance response from yield should be a new priority in potato breeding in Colombia to guarantee a higher yield in both the presence and absence of herbivores.

]]>
<![CDATA[Suitability of eastern pines for oviposition and survival of Sirex noctilio F.]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc0e6

The European woodwasp, Sirex noctilio F., is a pest of pines in many areas around the world. Since its introduction to North America, the distribution of S. noctilio overlaps with a known host (Pinus sylvestris) and hosts native to North America. Direct comparisons of suitability for oviposition and larval survival among these pines have not been made. We tested the relative suitability of four common pine species in northeastern North America (P. sylvestris, P. resinosa, P. banksiana, and P. strobus) as hosts for S. noctilio in a controlled, but in situ experiment. In a mixed pine forest in northern Ontario, we caged S. noctilio mating pairs on 10 freshly cut pine logs of each species, and estimated oviposition, counted adult S. noctilio (F1 generation) that emerged from logs, and calculated survivorship from egg to adult. Pinus sylvestris and P. resinosa were optimal hosts according to all three metrics of S. noctilio performance. Pinus strobus was a suitable larval host, but was not perceived as such by females, as evidenced by lower oviposition. Pinus banksiana was perceived as a suitable host by females, but was the least suitable larval host. Our results suggest that P. sylvestris and P. resinosa are more suitable hosts, at least in cut logs, than P. strobus and P. banksiana for S. noctilio in eastern North America.

]]>
<![CDATA[Attraction, Oviposition and Larval Survival of the Fungus Gnat, Lycoriella ingenua, on Fungal Species Isolated from Adults, Larvae, and Mushroom Compost]]> https://www.researchpad.co/article/5989da82ab0ee8fa60b9b145

We previously showed that the females of the mushroom sciarid, Lycoriella ingenua (Dufour, 1839) (Diptera: Sciaridae), one of the most severe pests of the cultivated white button mushroom, Agaricus bisporus (J.E. Lange) Emil J. Imbach (Agaricales: Agaricaceae), are attracted to the mushroom compost that mushrooms are grown on and not to the mushrooms themselves. We also showed that females are attracted to the parasitic green mold, Trichoderma aggressivum. In an attempt to identify what is in the mushroom compost that attracts female L. ingenua, we isolated several species of fungi from adult males and females, third instar larvae, and mushroom compost itself. We then analyzed the attraction of females to these substrates using a static-flow two choice olfactometer, as well as their oviposition tendencies in another type of assay under choice and no-choice conditions. We also assessed the survival of larvae to adulthood when first instar larvae were placed on each of the isolated fungal species. We found that female flies were attracted most to the mycoparasitic green mold, T. aggressivum, to Penicilium citrinum isolated from adult female bodies, and to Scatylidium thermophilium isolated from the mushroom compost. Gravid female flies laid the most eggs on T. aggressivum, Aspergillus flavus isolated from third instar larval frass, Aspergillus fumigatus isolated from adult male bodies, and on P. citrinum. This egg-laying trend remained consistent under no-choice conditions as females aged. First instar larvae developed to adulthood only on S. thermophilium and Chaetomium sp. isolated from mushroom compost, and on P. citrinum. Our results indicate that the volatiles from a suite of different fungal species act in tandem in the natural setting of mushroom compost, with some first attracting gravid female flies and then others causing them to oviposit. The ecological context of these findings is important for creating an optimal strategy for using possible semiochemicals isolated from these fungal species to better monitor and control this pestiferous mushroom fly species.

]]>
<![CDATA[The Odour of Sex: Sex-Related Differences in Volatile Compound Composition among Barn Swallow Eggs Carrying Embryos of Either Sex]]> https://www.researchpad.co/article/5989d9f5ab0ee8fa60b6ffd2

Avian communication has been traditionally believed to be mainly mediated by visual and auditory channels. However, an increasing number of studies are disclosing the role of olfaction in the interaction of birds with their social environment and with other species, as well as in other behaviors such as nest recognition, food location and navigation. Olfaction has also been suggested to play a role in parent-offspring communication not only in the post- but also in the pre-hatching period. Volatile compounds produced during embryogenesis and passively released through the eggshell pores may indeed represent the only cue at parents’ disposal to assess offspring quality, including the sex composition of their clutch before hatching. In turn, sex identification before hatching may mediate adaptive strategies of allocation to either sex. In the present study, we analyzed odour composition of barn swallow eggs incubated in their nest in order to identify any sex-related differences in volatile compounds emitted. For the first time in any bird species, we also investigated whether odour composition is associated with relatedness. The evidence of differences in odour composition among eggs containing embryos of either sex indicates that parents have a cue to identify their brood sex composition even before hatching which can be used to modulate their behavior accordingly. Moreover, odour similarity within nests may represent the prerequisite for kin recognition in this species.

]]>
<![CDATA[Temperature effects on development and fecundity of Brachmia macroscopa (Lepidoptera: Gelechiidae)]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc65a

The current study investigated the impacts of temperature on the development and reproductivity of the sweet potato leaf folder, Brachmia macroscopa (Lepidoptera: Gelechiidae), in sweet potato leaves under laboratory conditions. We determined developmental time of B. macroscopa larval, pupal, and pre-adult stage at different temperatures. Male and female longevity, male and female lifespan, mortality of immature stages, oviposition period of B. macroscopa were also investigated under six constant temperatures (21°C, 24°C, 27°C, 30°C, 33°C, 36°C), based on age-stage, two-sex life tables. The results revealed that eggs in 36°C were unable to hatch. At temperatures between 21°C -33°C, the duration of the pre-adult period, as well as the adult lifespan both for males and females, were shortened by increasing temperatures. The lowest larval mortality rate (15.33%) occurred at 27°C. The age-stage-specific fecundity rates with the greatest number were, in order, 30°C, 27°C, 21°C, 24°C and 33°C. The results show that B. macroscopa population levels could reach highest at the temperature of 27℃.

]]>