ResearchPad - oxidative-damage https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[A grape seed extract maternal dietary supplementation improves egg quality and reduces ovarian steroidogenesis without affecting fertility parameters in reproductive hens]]> https://www.researchpad.co/article/elastic_article_14599 In broiler hens, the genetic selection increased susceptibility to metabolic disorders and reproductive dysfunctions. In human ovarian cells, grape seed extracts (GSE) improved steroid production. Here, we investigated the effects of a GSE dietary supplementation on egg production and quality, fertility parameters, Reactive Oxygen Species (ROS) and steroid content in yolk egg associated to plasma adipokines in broiler hens. For this, we designed two in vivo experiments, the first one included three groups of hens: A (control), B and C (supplemented with GSE at 0.5% and 1% of the total diet composition, respectively, since week 4), and the second one used two groups of hens: A (control) and D (supplemented with GSE at 1% of the total diet composition since hatching). We assessed the egg production from 23th to 40th weeks and quality at 33th week. After artificial inseminations, the fertility parameters were calculated. In egg yolk, Reactive Oxygen Species (ROS) level and steroid production were evaluated by Ros-Glo H202 and ELISA assay, respectively. Expression of steroidogenic enzymes and adipokines and their receptors was determined by RT-qPCR in ovarian cells and plasma adipokines (RARRES2, ADIPOQ and NAMPT) were evaluated by specific ELISA assays. The fertility parameters and egg production were unaffected by GSE supplementation whatever the experiment (exp.). However, the rate of double-yolk eggs decreased for all GSE supplemented groups (exp. 1 P <0.01, exp.2, P<0.02). In exp.1, C group eggs were bigger and larger (P<0.0001) and the shell elasticity was higher for both B and C (P<0.0003) as compared to control. In the egg yolk, GSE supplementation in both exp. reduced ROS content and steroidogenesis consistent with a decrease in P450 aromatase and StAR mRNA expression and basal in vitro progesterone secretion in granulosa cells (P<0.001). Interestingly, in both exp. RARRES2 plasma levels were positively correlated while ADIPOQ and NAMPT plasma levels were negatively correlated, with steroids and ROS in yolk (P<0.0001). Taken together, maternal dietary GSE supplementation did not affect egg production and fertility parameters whereas it reduced ROS content and steroidogenesis in yolk egg. Furthermore, it ameliorated egg quality by decreasing the number of double-yolk eggs and by improving the size of normal eggs and the elasticity of the shell. Taken together, our data suggest the possibility of using dietary maternal GSE to improve egg quality.

]]>
<![CDATA[Melatonin decreases M1 polarization via attenuating mitochondrial oxidative damage depending on UCP2 pathway in prorenin-treated microglia]]> https://www.researchpad.co/article/5c6b266ad5eed0c484289a2f

Accumulating evidence suggests that neuroinflammation and oxidative stress in cardiovascular center contribute to the pathological processes underlying hypertension. Microglia activation triggers the inflammation and oxidative stress. Melatonin is a documented potent anti-inflammatory regent and antioxidant, the underlying roles of melatonin in regulating microglia activation via mitochondria remain unclear. In present study, we investigated the protective role of melatonin in decreasing M1 phenotype switching via attenuating mitochondrial oxidative damage in dependence on uncoupling protein 2 (UCP2) pathway in microglia. Prorenin (20 nmol/L; 24 hr) was used to induce inflammation in cultured microglia. Mitochondrial morphology was detected by transmission electron microscope. The reactive oxygen species (ROS) production by using DCFH-DA fluorescence imaging and mitochondrial membrane potential (MMP, ΔΨm) was evaluated by JC-1 staining. The indicator of the redox status as the ratio of the amount of total NADP+ to total NADPH, and the expression of 6 subunits of NADPH oxidase is measured. The pro-inflammatory cytokines releasing was measured by qPCR. UCP2 and activated AMPKα (p-AMPKα) expression were examined by immunoblot. Melatonin (100 μM) markedly alleviated the M1 microglia phenotype shifting and abnormal mitochondria morphology. Melatonin attenuated prorenin-induced ΔΨm increasing and ROS overproduction. Melatonin decreased the redox ratio (NADP+/NADPH) and the p47phox and gp91phox subunits of NADPH oxidase expression in prorenin-treated microglia. These effects were reversed in the presence of UCP2 siRNA. Our results suggested that the protective effect of melatonin against prorenin-induced M1 phenotype switching via attenuating mitochondrial oxidative damage depending on UCP2 upregulation in prorenin-treated microglia.

]]>
<![CDATA[The red pepper’s spicy ingredient capsaicin activates AMPK in HepG2 cells through CaMKKβ]]> https://www.researchpad.co/article/5c59fed8d5eed0c484135716

Capsaicin is a natural compound present in chili and red peppers and the responsible of their spicy flavor. It has recently provoked interest because of its antitumoral effects in many cell types although its action mechanism is not clearly understood. As metabolic dysregulation is one of the hallmarks of cancer cells and the key metabolic sensor in the AMP-activated kinase (AMPK), in this study we explored the ability of capsaicin to modulate AMPK activity. We found that capsaicin activated AMPK in HepG2 cells by increasing AMPK phosphorylation and its downstream target ACC. Mechanistically, we determined that capsaicin activated AMPK through the calcium/calmodulin-dependent protein kinase kinase β, CaMKKβ as either the CaMKK inhibitor STO-609 or CaMKK knock down with siRNA abrogated the activation of AMPK. Moreover, capsaicin decreased cell viability, inhibited Akt/mTOR pathway and increased reactive oxygen species (ROS) in HepG2 cells. AMPK activation was involved in the underpinning mechanism of capsaicin-induced cell death.

]]>
<![CDATA[Epicatechin modulates stress-resistance in C. elegans via insulin/IGF-1 signaling pathway]]> https://www.researchpad.co/article/5c58d64cd5eed0c484031b1e

The nematode Caenorhabditis elegans has been used to examine the influence of epicatechin (EC), an abundant flavonoid in the human diet, in some stress biomarkers (ROS production, lipid peroxidation and protein carbonylation). Furthermore, the ability of EC to modulate the expression of some key genes in the insulin/IGF-1 signaling pathway (IIS), involved in longevity and oxidative or heat shock stress response, has also been explored. The final aim was to contribute to the elucidation of the mechanisms involved in the biological effects of flavonoids. The results showed that EC-treated wild-type C. elegans exhibited increased survival and reduced oxidative damage of biomolecules when submitted to thermal stress. EC treatment led to a moderate elevation in ROS levels, which might activate endogenous mechanisms of defense protecting against oxidative insult. The enhanced stress resistance induced by EC was found to be mediated through the IIS pathway, since assays in daf-2, age-1, akt-1, akt-2, sgk-1, daf-16, skn-1 and hsf-1 loss of function mutant strains failed to show any heat-resistant phenotype against thermal stress when treated with EC. Consistently, EC treatment upregulated the expression of some stress resistance associated genes, such as gst-4, hsp-16.2 and hsp-70, which are downstream regulated by the IIS pathway.

]]>
<![CDATA[Blue light irradiation and its beneficial effect on Dupuytren’s fibroblasts]]> https://www.researchpad.co/article/5c42438ed5eed0c4845e05ab

Dupuytren’s contracture is a fibroproliferative disorder affecting the palmar fascia of the hand. Most affected are the ring fingers, and little fingers of middle-aged men. Symptomatic for this disease is the increased proliferation and differentiation of fibroblasts to myofibroblasts, which is accompanied by an elevated α-SMA expression. The present study evaluated the therapeutic benefit of blue light (λ = 453 nm, 38 mW/cm2, continuous radiance, spot size 10–12 cm2) as well as the molecular mechanism mediating this effect. It could be determined that blue light significantly diminished the induced α-SMA protein expression in both normal palmar fibroblasts and Duypuytren’s fibroblasts. The beneficial effect mediated by this irradiance, radiant exposure and wavelength was associated with an elevated reactive oxygen species generation. Furthermore, the data underlines the potential usefulness of blue light irradiation as a promising therapy option for Dupuytren’s disease, especially for relapse prevention, and may represent a useful strategy to treat further fibrotic diseases, such as keloids, hypertrophic scarring, and scleroderma.

]]>
<![CDATA[Ligand-activated PPARδ inhibits angiotensin II-stimulated hypertrophy of vascular smooth muscle cells by targeting ROS]]> https://www.researchpad.co/article/5c3e505ed5eed0c484d80f2b

We investigated the effect of peroxisome proliferator-activated receptor δ (PPARδ) on angiotensin II (Ang II)-triggered hypertrophy of vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand of PPARδ, significantly inhibited Ang II-stimulated protein synthesis in a concentration-dependent manner, as determined by [3H]-leucine incorporation. GW501516-activated PPARδ also suppressed Ang II-induced generation of reactive oxygen species (ROS) in VSMCs. Transfection of small interfering RNA (siRNA) against PPARδ significantly reversed the effects of GW501516 on [3H]-leucine incorporation and ROS generation, indicating that PPARδ is involved in these effects. By contrast, these GW501516-mediated actions were potentiated in VSMCs transfected with siRNA against NADPH oxidase (NOX) 1 or 4, suggesting that ligand-activated PPARδ elicits these effects by modulating NOX-mediated ROS generation. The phosphatidylinositol 3-kinase inhibitor LY294002 also inhibited Ang II-stimulated [3H]-leucine incorporation and ROS generation by preventing membrane translocation of Rac1. These observations suggest that PPARδ is an endogenous modulator of Ang II-triggered hypertrophy of VSMCs, and is thus a potential target to treat vascular diseases associated with hypertrophic changes of VSMCs.

]]>
<![CDATA[Carbonylation accumulation of the Hypsibius exemplaris anhydrobiote reveals age-associated marks]]> https://www.researchpad.co/article/5c2d2eaed5eed0c484d9b150

Together with nematodes and rotifers, tardigrade belong to micrometazoans that can cope with environmental extremes such as UV and solar radiations, dehydration, supercooling or overheating. Tardigrade can resist the harshest conditions by turning to cryptobiosis, an anhydrobiotic state that results from almost complete dehydration and is characterized by an ametabolic status. Although reports have challenged the molecular basis of the mechanisms underlying genomic injury resistance, little is yet known regarding the possible involvement of other tardigrade macromolecules in injury during a stress experience. In this report, we show that the tardigrade Hypsibius exemplaris can accumulate molecular damages by means of in situ detection of carbonyls. Furthermore, we demonstrate that living tardigrade can accumulate carbonylation. Finally, we reveal that anhydrobiotic tardigrade can be constitutively affected by carbonylation that marks aging in other metazoans.

]]>
<![CDATA[P38 MAPK inhibition prevents polybrene-induced senescence of human mesenchymal stem cells during viral transduction]]> https://www.researchpad.co/article/5c2d2ec1d5eed0c484d9b70f

The unique capacity of mesenchymal stem cells (MSCs) to migrate to the sites of damage, following intravenous transplantation, along with their proliferation and differentiation abilities make them promising candidates for MSC-based gene therapy. This therapeutic approach requires high efficacy delivery of stable transgenes to ensure their adequate expression in MSCs. One of the methods to deliver transgenes is via the viral transduction of MSCs. However, due to low transduction efficiency of MSCs, various polications are used to promote the association of viral particles with membranes of target cells. Among these polications polybrene is the most widely used one. Unfortunately, viral infection in presence of polybrene was shown to negatively affect proliferation rate of stem cells. The molecular mechanism underlying this effect is not yet uncovered. Therefore, the present study aimed to elucidate the mechanism of this phenomenon as well as to develop an effective approach to overcome the negative impact of polybrene on the properties of human endometrium-derived mesenchymal stem cells (hMESCs) during lentiviral infection. We found that the negative effect on proliferation observed during the viral infection in presence of polybrene is mediated by the polycation itself. Furthermore, we revealed that the treatment with polybrene alone led to the p38 MAPK-dependent premature senescence of hMESCs. These findings allowed us to develop an effective strategy to attenuate the negative polybrene impact on the hMESCs properties during lentiviral infection by inhibiting the activity of p38 MAPK. Importantly, the proposed approach did not attenuate the transduction efficiency of hMESCs, yet prevented polybrene-induced senescence and thereby restored the proliferation of the infected cells. These results provide the plausible means to reduce side effects of polybrene during the viral infection of primary cells, particularly MSCs.

]]>
<![CDATA[Supplementation of in vitro culture medium with FSH to grow follicles and mature oocytes can be replaced by extracts of Justicia insularis]]> https://www.researchpad.co/article/5c141eb3d5eed0c484d27d69

The present study evaluated the effect of supplementing in vitro culture medium with J. insularis compared to FSH on isolated secondary follicles and in vitro maturation of oocytes from those follicles. Secondary follicles were isolated from sheep ovaries and individually cultured for 18 days in α-MEM+ (Control), α-MEM+ supplemented with 100 ng/mL recombinant bovine follicle stimulating hormone (FSH) or with 0.3, 1.25, or 2.5 mg/mL of J. insularis extract (JI0.3, JI1.25, and JI2.5, respectively). Culture medium collected every 2 days was used to measure ROS levels. At the end of the culture period, cumulus oocytes complex (COCs) were collected and matured in vitro. Follicular walls were used for mRNA quantitation. JI0.3 led to a higher (P < 0.05) percentages of intact follicles than other groups after 18 days of culture. While follicular diameter remained unchanged from Day 6 onwards with JI0.3 and FSH, percentages of antral cavity formation were higher (P < 0.05) with JI0.3 at Day 6 than in all other treatments. No differences were observed between controls and treatment groups regarding ROS levels and mRNA expression of genes. Viability of resulting oocytes was higher (P < 0.05) in JI0.3 compared to FSH. Interestingly, in control experiment, supplementation of maturation medium with JI0.3 led to higher (P < 0.05) percentages of metaphase II compared to controls. Although more validations will be needed, it seems that this natural extract could be used as a cheap and easily available alternative to commercial FSH.

]]>
<![CDATA[Study of the ichthyotoxic microalga Heterosigma akashiwo by transcriptional activation of sublethal marker Hsp70b in Transwell co-culture assays]]> https://www.researchpad.co/article/5b6da1a5463d7e4dccc5fae5

Despite the advance of knowledge about the factors and potential mechanisms triggering the ichthyotoxicity in microalgae, these remain unclear or are controversial for several species (e.g. Heterosigma). Neither typical toxicity tests carried out with cell extracts nor direct exposure to harmful species were proved suitable to unravel the mechanism of harm. Ichthyotoxic species show a complex harmful effect on fish, which is mediated through various mechanisms depending on the species. In this work, we present a method to study sub-lethal effects triggered by reactive oxygen species of a population of harmful algae in vivo over a fish cell line. To that end, Transwell co-cultures in which causative and target species are separated by a 0.4 μm pore membrane were carried out. This allowed the evaluation of the effect of the released molecules by cells in a rapid and compact test. In our method, the harmful effect was sensed through the transcriptional activation of sub-lethal marker Hsp70b in the CHSE214 salmon cell line. The method was tested with the raphidophyte Heterosigma akashiwo and Dunaliella tertiolecta (as negative control). It was shown that superoxide intracellular content and its release are not linked in these species. The methodology allowed proving that reactive oxygen species produced by H. akashiwo are able to induce the transcriptional activation of sub-lethal marker Hsp70b. However, neither loss of viability nor apoptosis was observed in CHSE214 salmon cell line except when exposed to direct contact with the raphidophyte cells (or their extract). Consequently, ROS was not concluded to be the main cause of ichthyotoxicity in H. akashiwo.

]]>
<![CDATA[Potential involvement of the 18 kDa translocator protein and reactive oxygen species in apoptosis of THP-1 macrophages induced by sonodynamic therapy]]> https://www.researchpad.co/article/5b03d223463d7e6e6b5b78ed

Sonodynamic therapy (SDT) with exogenous protoporphyrin IX (PpIX) or endogenous PpIX derived from 5-aminolevulinic acid (ALA) has been carried out to produce apoptotic effects on macrophages, indicating a potential treatment methodology for atherosclerosis. Our previous studies have found that mitochondria damage by reactive oxygen species (ROS) plays a major role in the SDT-induced apoptosis. This study aimed at investigating the potential involvement of the mitochondrial 18 kDa translocator protein (TSPO) and ROS in the pro-apoptotic effects of SDT on THP-1 macrophages. THP-1 macrophages were divided into control and SDT groups, and went through pretreatment of the specific TSPO ligand PK11195 and ROS scavengers N-Acetyl Cysteine (NAC), then compared with groups without pretreatment. Application of PK11195 reduced intracellular accumulation of endogenous PpIX. PK11195 and NAC reduced the generation of intracellular ROS and oxidation of cardiolipin induced by SDT, respectively. PK11195 and NAC also reduced SDT-induced mitochondrial membrane potential (ΔΨm) loss, the translocation of cytochrome c and cell apoptosis. PpIX accumulation, ROS generation and cell apoptosis were also attenuated by siTSPO. Our findings indicate the pivotal role of TSPO and ROS in SDT-induced cardiolipin oxidation, ΔΨm collapse, cytochrome c translocation and apoptosis in THP-1 macrophages.

]]>
<![CDATA[Expression of TIP-1 Confers Radioresistance of Malignant Glioma Cells]]> https://www.researchpad.co/article/5989db3aab0ee8fa60bd45ae

Background

Malignant gliomas represent one group of tumors that poorly respond to ionizing radiation (IR) alone or combined with chemotherapeutic agents because of the intrinsic or acquired resistance. In this study, TIP-1 was identified as one novel protein that confers resistance of glioma cells to IR.

Methodology/Principal Findings

Meta-analysis indicated that high TIP-1 expression levels correlate with the poor prognosis of human malignant gliomas after radiotherapy. Studies with established human glioma cell lines demonstrated that TIP-1 depletion with specific shRNAs sensitized the cells to IR, whereas an ectopic expression of TIP-1 protected the glioma cells from the IR-induced DNA damage and cell death. Biochemical studies indicated that TIP-1 protein promoted p53 ubiquitination and resulted in a reduced p53 protein level. Furthermore, p53 and its ubiquitination are required for the TIP-1 regulated cellular response to IR. A yeast two-hybrid screening identified that TIP-1, through its single PDZ domain, binds to the carboxyl terminus of LZAP that has been studied as one tumor suppressor functioning through ARF binding and p53 activation. It was revealed that the presence of TIP-1 enhances the protein association between LZAP and ARF and modulates the functionality of ARF/HDM2 toward multi-ubiquitination of p53, while depleting TIP-1 rescued p53 from polyubiquitination and degradation in the irradiated glioma cells. Studies with a mouse xenograft model indicated that depleting TIP-1 within D54 cells improved the tumor growth control with IR.

Conclusions/Significance

This study provided the first evidence showing that TIP-1 modulates p53 protein stability and is involved in the radioresistance of malignant gliomas, suggesting that antagonizing TIP-1 might be one novel approach to sensitize malignant gliomas to radiotherapy.

]]>
<![CDATA[Angiotensin II-Induced Mitochondrial Nox4 Is a Major Endogenous Source of Oxidative Stress in Kidney Tubular Cells]]> https://www.researchpad.co/article/5989d9d4ab0ee8fa60b65610

Angiotensin II (Ang II)-induced activation of nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase leads to increased production of reactive oxygen species (ROS), an important intracellular second messenger in renal disease. Recent findings suggest that Ang II induces mitochondrial depolarization and further amplifies mitochondrial generation of ROS. We examined the hypothesis that ROS injury mediated by Ang II-induced mitochondrial Nox4 plays a pivotal role in mitochondrial dysfunction in tubular cells and is related to cell survival. In addition, we assessed whether angiotensin (1-7) peptide (Ang-(1-7)) was able to counteract Ang II-induced ROS-mediated cellular injury. Cultured NRK-52E cells were stimulated with 10−6 M Ang II for 24 h with or without Ang-(1-7) or apocynin. Ang II simulated mitochondrial Nox4 and resulted in the abrupt production of mitochondrial superoxide (O2) and hydrogen peroxide (H2O2). Ang II also induced depolarization of the mitochondrial membrane potential, and cytosolic secretion of cytochrome C and apoptosis-inducing factor (AIF). Ang-(1-7) attenuated Ang II-induced mitochondrial Nox4 expression and apoptosis, and its effect was comparable to that of the NAD(P)H oxidase inhibitor. These findings suggest that Ang II-induced activation of mitochondrial Nox4 is an important endogenous source of ROS, and is related to cell survival. The ACE2-Ang-(1-7)-Mas receptor axis should be investigated further as a novel target of Ang II-mediated ROS injury.

]]>
<![CDATA[Interaction of Caveolin-1 with Ku70 Inhibits Bax-Mediated Apoptosis]]> https://www.researchpad.co/article/5989da2fab0ee8fa60b83dbb

Caveolin-1, the structural protein component of caveolae, acts as a scaffolding protein that functionally regulates signaling molecules. We show that knockdown of caveolin-1 protein expression enhances chemotherapeutic drug-induced apoptosis and inhibits long-term survival of colon cancer cells. In vitro studies demonstrate that caveolin-1 is a novel Ku70-binding protein, as shown by the binding of the scaffolding domain of caveolin-1 (amino acids 82–101) to the caveolin-binding domain (CBD) of Ku70 (amino acids 471–478). Cell culture data show that caveolin-1 binds Ku70 after treatment with chemotherapeutic drugs. Mechanistically, we found that binding of caveolin-1 to Ku70 inhibits the chemotherapeutic drug-induced release of Bax from Ku70, activation of Bax, translocation of Bax to mitochondria and apoptosis. Potentiation of apoptosis by knockdown of caveolin-1 protein expression is greatly reduced in the absence of Bax expression. Finally, we found that overexpression of wild type Ku70, but not a mutant form of Ku70 that cannot bind to caveolin-1 (Ku70 Φ→A), limits the chemotherapeutic drug-induced Ku70/Bax dissociation and apoptosis. Thus, caveolin-1 acts as an anti-apoptotic protein in colon cancer cells by binding to Ku70 and inhibiting Bax-dependent cell death.

]]>
<![CDATA[Alpha-Synuclein Proteins Promote Pro-Inflammatory Cascades in Microglia: Stronger Effects of the A53T Mutant]]> https://www.researchpad.co/article/5989dae3ab0ee8fa60bbc4e6

Parkinson’s disease (PD) is histologically described by the deposition of α-synuclein, whose accumulation in Lewy bodies causes dopaminergic neuronal death. Although most of PD cases are sporadic, point mutations of the gene encoding the α-synuclein protein cause inherited forms of PD. There are currently six known point mutations that result in familial PD. Oxidative stress and neuroinflammation have also been described as early events associated with dopaminergic neuronal degeneration in PD. Though it is known that microglia are activated by wild-type α-synuclein, little is known about its mutated forms and the signaling cascades responsible for this microglial activation. The present study was designed to investigate consequences of wild-type and mutant α-synuclein (A53T, A30P and E46K) exposure on microglial reactivity. Interestingly, we described that α-synuclein-induced microglial reactivity appeared to be peptide-dependent. Indeed, the A53T protein activated more strongly microglia than the wild-type α-synuclein and other mutants. This A53T-induced microglial reactivity mechanism was found to depend on phosphorylation mechanisms mediated by MAPKs and on successive NFkB/AP-1/Nrf2 pathways activation. These results suggest that the microgliosis intensity during PD might depend on the type of α-synuclein protein implicated. Indeed, mutated forms are more potent microglial stimulators than wild-type α-synuclein. Based on these data, anti-inflammatory and antioxidant therapeutic strategies may be valid in order to reduce microgliosis but also to subsequently slow down PD progression, especially in familial cases.

]]>
<![CDATA[Pathogenicity of Salmonella enterica in Caenorhabditis elegans Relies on Disseminated Oxidative Stress in the Infected Host]]> https://www.researchpad.co/article/5989da40ab0ee8fa60b89a36

Feeding Caenorhabditis elegans with Salmonella enterica serovar Typhimurium significantly shortens the lifespan of the nematode. S. Typhimurium-infected C. elegans, stained with 2′,7′-dichlorodihydrofluorescein diacetate which fluoresces upon exposure to reactive oxygen species, revealed intestinal luminal staining that along with the time of infection progressed to a strong staining in the hypodermal tissues of the nematode. Still, we could not detect invasion beyond the nematode's intestinal epithelium at any stage of the infection. A similar dispersion of oxidative response was also noted in nematodes infected with S. Dublin, but not with non-pathogenic Escherichia coli or the defined pathogen Burkholderia thailandensis. Addition of catalase or the reductant ascorbic acid significantly restored the lifespan of S. Typhimurium-infected nematodes. Mutational inactivation of the bacterial thioredoxin 1 resulted in total ablation of the hypodermal oxidative response to infection, and in a strong attenuation of virulence. Virulence of the thioredoxin 1 mutant was restored by trans-complementation with redox-active variants of thioredoxin 1 or, surprisingly, by exposing the thioredoxin 1 mutant to sublethal concentrations of the disulphide catalyst copper chloride prior to infection. In summary, our observations define a new aspect in virulence of S. enterica that apparently does not involve the classical invasive or intracellular phenotype of the pathogen, but that depends on the ability to provoke overwhelming systemic oxidative stress in the host through the redox activity of bacterial thioredoxin 1.

]]>
<![CDATA[Mitochondrial Telomerase Protects Cancer Cells from Nuclear DNA Damage and Apoptosis]]> https://www.researchpad.co/article/5989daf3ab0ee8fa60bc1d99

Most cancer cells express high levels of telomerase and proliferate indefinitely. In addition to its telomere maintenance function, telomerase also has a pro-survival function resulting in an increased resistance against DNA damage and decreased apoptosis induction. However, the molecular mechanisms for this protective function remain elusive and it is unclear whether it is connected to telomere maintenance or is rather a non-telomeric function of the telomerase protein, TERT. It was shown recently that the protein subunit of telomerase can shuttle from the nucleus to the mitochondria upon oxidative stress where it protects mitochondrial function and decreases intracellular oxidative stress. Here we show that endogenous telomerase (TERT protein) shuttles from the nucleus into mitochondria upon oxidative stress in cancer cells and analyzed the nuclear exclusion patterns of endogenous telomerase after treatment with hydrogen peroxide in different cell lines. Cell populations excluded TERT from the nucleus upon oxidative stress in a heterogeneous fashion. We found a significant correlation between nuclear localization of telomerase and high DNA damage, while cells which excluded telomerase from the nucleus displayed no or very low DNA damage. We modeled nuclear and mitochondrial telomerase using organelle specific localization vectors and confirmed that mitochondrial localization of telomerase protects the nucleus from inflicted DNA damage and apoptosis while, in contrast, nuclear localization of telomerase correlated with higher amounts of DNA damage and apoptosis. It is known that nuclear DNA damage can be caused by mitochondrially generated reactive oxygen species (ROS). We demonstrate here that mitochondrial localization of telomerase specifically prevents nuclear DNA damage by decreasing levels of mitochondrial ROS. We suggest that this decrease of oxidative stress might be a possible cause for high stress resistance of cancer cells and could be especially important for cancer stem cells.

]]>
<![CDATA[Ozone-Induced Responses in Croton floribundus Spreng. (Euphorbiaceae): Metabolic Cross-Talk between Volatile Organic Compounds and Calcium Oxalate Crystal Formation]]> https://www.researchpad.co/article/5989d9deab0ee8fa60b68921

Here, we proposed that volatile organic compounds (VOC), specifically methyl salicylate (MeSA), mediate the formation of calcium oxalate crystals (COC) in the defence against ozone (O3) oxidative damage. We performed experiments using Croton floribundus, a pioneer tree species that is tolerant to O3 and widely distributed in the Brazilian forest. This species constitutively produces COC. We exposed plants to a controlled fumigation experiment and assessed biochemical, physiological, and morphological parameters. O3 induced a significant increase in the concentrations of constitutive oxygenated compounds, MeSA and terpenoids as well as in COC number. Our analysis supported the hypothesis that ozone-induced VOC (mainly MeSA) regulate ROS formation in a way that promotes the opening of calcium channels and the subsequent formation of COC in a fast and stable manner to stop the consequences of the reactive oxygen species in the tissue, indeed immobilising the excess calcium (caused by acute exposition to O3) that can be dangerous to the plant. To test this hypothesis, we performed an independent experiment spraying MeSA over C. floribundus plants and observed an increase in the number of COC, indicating that this compound has a potential to directly induce their formation. Thus, the tolerance of C. floribundus to O3 oxidative stress could be a consequence of a higher capacity for the production of VOC and COC rather than the modulation of antioxidant balance. We also present some insights into constitutive morphological features that may be related to the tolerance that this species exhibits to O3.

]]>
<![CDATA[Inhibition of Acute Lung Injury by TNFR-Fc through Regulation of an Inflammation-Oxidative Stress Pathway]]> https://www.researchpad.co/article/5989daabab0ee8fa60ba9348

Background

Acute lung injury (ALI), characterized by disruption of the lung alveolar-capillary membrane barrier and resultant pulmonary edema, and associated with a proteinaceous alveolar exudate, is a leading cause of morbidity and mortality. Currently, inflammation-oxidative stress interaction between TNF-α and NF-κB was identified as a key pathway of ALI. We hypothesized that a TNFR-Fc fusion protein would have beneficial effects in experimental ALI, and sought to test this idea in mice by blocking TNF-α.

Methods and Results

Intratracheal instillation of lipopolysaccharide (LPS) into the lungs of ALI mice led to histiocyte apoptosis, and detection of serum and bronchoalveolar lavage fluid (BALF) cytokines, feedback between NF-κB and TNF-α, lung albumin leakage, lung damage, IκB kinase (IKK) and NF-κB activation, I-κB degradation, and oxidative injury. LPS administration raised pulmonary inflammation as reflected by increased inflammatory cytokines, alveoli protein concentration, and ALI scores. IKK is phosphorylated following LPS challenge, leading to I-κB degradation and NF-κB p65 phosphorylation. Furthermore, NF-κB is translocated into the nucleus and up-regulates TNF-α gene transcription. Infusion of TNFR-Fc 24h before LPS challenge significantly abrogated the increase of inflammatory cytokines, especially serum TNF-α concentration, as well as pulmonary alveoli protein levels, and diminished IKK and NF-κB activation and I-κB degradation. The nuclear translocation of NF-κB was inhibited, following by down-regulation of TNF-α gene transcription. In addition, LPS intratracheal instillation induced marked oxidative damage, such as a decrease in total anti-oxidation products and an increase in malondialdehyde (MDA), as well as up-regulation of oxidation enzymes. Histologic analysis and apoptosis scores revealed that the extent of tissue lesions was significantly reduced, but not abrogated, by TNF-α blockade.

Conclusion

Treatment with LPS alone increased inflammation and oxidative stress in ALI mice, while administration of TNFR-Fc 24h before LPS challenge broke the feedback between NF-κB and TNF-α, resulting in decreased pulmonary inflammation/oxidative damage and tissue destruction. These results suggest a potential role for TNF-α therapy to treat clinical ALI.

]]>
<![CDATA[BRCA1 Regulates Follistatin Function in Ovarian Cancer and Human Ovarian Surface Epithelial Cells]]> https://www.researchpad.co/article/5989da17ab0ee8fa60b7b87a

Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells.

]]>