ResearchPad - paleobiology https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Unravelling the mystery of “Madagascar copal”: Age, origin and preservation of a Recent resin]]> https://www.researchpad.co/article/elastic_article_15728 The loss of biodiversity during the Anthropocene is a constant topic of discussion, especially in the top biodiversity hotspots, such as Madagascar. In this regard, the study of preserved organisms through time, like those included in "Madagascar copal", is of relevance. “Madagascar copal" originated from the leguminous tree Hymenaea verrucosa, which produced and produces resin abundantly. In the last 20 years, interest has focused on the scientific study of its biological inclusions, mainly arthropods, described in dozens of publications. The age and origin of the deposits of "Madagascar copal" have not yet been resolved. Our objectives are to determine its age and geographical origin, and thus increase its scientific value as a source of biological/palaeobiological information. Although Hymenaea was established in Madagascar during the Miocene, we did not find geological deposits of copal or amber in the island. It is plausible that the evolution of those deposits was negatively conditioned by the type of soil, by the climate, and by the development of soil/litter microorganisms, which inhibit preservation of the resin pieces in the litter and subsoil over 300 years. Our results indicate that "Madagascar copal" is a Recent resin, up to a few hundred years old, that originated from Hymenaea trees growing in the lowland coastal forests, one of the most endangered ecosystems in the world. The included and preserved biota is representative of that ecosystem today and during historical times. Inclusions in this Recent resin do not have the palaeontological significance that has been mistakenly attributed to them, but they do have relevant implications for studies regarding Anthropocene biodiversity loss in this hottest hotspot.

]]>
<![CDATA[The fast and the frugal: Divergent locomotory strategies drive limb lengthening in theropod dinosaurs]]> https://www.researchpad.co/article/elastic_article_14509 Limb length, cursoriality and speed have long been areas of significant interest in theropod paleobiology, since locomotory capacity, especially running ability, is critical in the pursuit of prey and to avoid becoming prey. The impact of allometry on running ability, and the limiting effect of large body size, are aspects that are traditionally overlooked. Since several different non-avian theropod lineages have each independently evolved body sizes greater than any known terrestrial carnivorous mammal, ~1000kg or more, the effect that such large mass has on movement ability and energetics is an area with significant implications for Mesozoic paleoecology. Here, using expansive datasets that incorporate several different metrics to estimate body size, limb length and running speed, we calculate the effects of allometry on running ability. We test traditional metrics used to evaluate cursoriality in non-avian theropods such as distal limb length, relative hindlimb length, and compare the energetic cost savings of relative hindlimb elongation between members of the Tyrannosauridae and more basal megacarnivores such as Allosauroidea or Ceratosauridae. We find that once the limiting effects of body size increase is incorporated there is no significant correlation to top speed between any of the commonly used metrics, including the newly suggested distal limb index (Tibia + Metatarsus/ Femur length). The data also shows a significant split between large and small bodied theropods in terms of maximizing running potential suggesting two distinct strategies for promoting limb elongation based on the organisms’ size. For small and medium sized theropods increased leg length seems to correlate with a desire to increase top speed while amongst larger taxa it corresponds more closely to energetic efficiency and reducing foraging costs. We also find, using 3D volumetric mass estimates, that the Tyrannosauridae show significant cost of transport savings compared to more basal clades, indicating reduced energy expenditures during foraging and likely reduced need for hunting forays. This suggests that amongst theropods, hindlimb evolution was not dictated by one particular strategy. Amongst smaller bodied taxa the competing pressures of being both a predator and a prey item dominant while larger ones, freed from predation pressure, seek to maximize foraging ability. We also discuss the implications both for interactions amongst specific clades and Mesozoic paleobiology and paleoecological reconstructions as a whole.

]]>
<![CDATA[Paleogenetic study on the 17th century Korean mummy with atherosclerotic cardiovascular disease]]> https://www.researchpad.co/article/5aafccf3463d7e7f05234537

While atherosclerotic cardiovascular disease (ASCVD) is known to be common among modern people exposed to various risk factors, recent paleopathological studies have shown that it affected ancient populations much more frequently than expected. In 2010, we investigated a 17th century Korean female mummy with presumptive ASCVD signs. Although the resulting report was a rare and invaluable conjecture on the disease status of an ancient East Asian population, the diagnosis had been based only on anatomical and radiological techniques, and so could not confirm the existence of ASCVD in the mummy. In the present study, we thus performed a paleogenetic analysis to supplement the previous conventional diagnosis of ASCVD. In aDNA extracted from the same Korean mummy, we identified the risk alleles of seven different SNPs (rs5351, rs10757274, rs2383206, rs2383207, rs10757278, rs4380028 and rs1333049) that had already been revealed to be the major risk loci of ASCVD in East Asian populations. The reliability of this study could be enhanced by cross-validation using two different analyses: Sanger and SNaPshot techniques. We were able to establish that the 17th century Korean female had a strong genetic predisposition to increased risk of ASCVD. The current paleogenetic diagnosis, the first of its kind outside Europe, re-confirms its utility as an adjunct modality for confirmatory diagnosis of ancient ASCVD.

]]>
<![CDATA[Advanced approach to analyzing calcareous protists for present and past pelagic ecology: Comprehensive analysis of 3D-morphology, stable isotopes, and genes of planktic foraminifers]]> https://www.researchpad.co/article/5c8acce4d5eed0c484990244

Marine protists play an important role in oceanic ecosystems and biogeochemical cycles. However, the difficulties in culturing pelagic protists indicate that their ecology and behavior remain poorly understood; phylogeographic studies based on single-cell genetic analyses have often shown that they are highly divergent at the biological species level, with variable geographic distributions. This indicates that their ecology could be complex. On the other hand, the biomineral (calcareous) shells of planktic foraminifers are widely used in geochemical analyses to estimate marine paleoenvironmental characteristics (i.e., temperature), because the shell chemical composition reflects ambient seawater conditions. Among the pelagic protists, planktic foraminifers are ideal study candidates to develop a combined approach of genetic, morphological, and geochemical methods, thus reflecting environmental and ecological characteristics. The present study precisely tested whether the DNA extraction process physically and chemically affects the shells of the planktic foraminifer Globigerinoides ruber. We used a nondestructive method for analyzing physical changes (micro-focus X-ray computed tomography (MXCT) scanning) to compare specimens at the pre- and post-DNA extraction stages. Our results demonstrate that DNA extraction has no significant effect on shell density and thickness. We measured stable carbon and oxygen isotopes on the shell of each individual in a negative control or one of two DNA-extracted groups and detected no significant differences in isotopic values among the three groups. Moreover, we evaluated isotopic variations at the biological species level with regard to their ecological characteristics such as depth habitat, life stages, and symbionts. Thus, our examination of the physiochemical effects on biomineral shells through DNA extraction shows that morphological and isotopic analyses of foraminifers can be combined with genetic analysis. These analytical methods are applicable to other shell-forming protists and microorganisms. In this study, we developed a powerful analytical tool for use in ecological and environmental studies of modern and past oceans.

]]>
<![CDATA[Long-term exposure to more frequent disturbances increases baseline carbon in some ecosystems: Mapping and quantifying the disturbance frequency-ecosystem C relationship]]> https://www.researchpad.co/article/5c785015d5eed0c484007c44

Disturbance regimes have a major influence on the baseline carbon that characterizes any particular ecosystem. Often regimes result in lower average regional baseline C (compared to those same systems if the disturbance processes were lessened/removed). However, in infrequently disturbed systems the role of disturbance as a “background” process that influences broad-scale, baseline C levels is often neglected. Long-term chronosequences suggest disturbances in these systems may serve to increase regional biomass C stocks by maintaining productivity. However, that inference has not been tested spatially. Here, the large forested system of southeast Alaska, USA, is utilized to 1) estimate baseline regional C stocks, 2) test the fundamental disturbance-ecosystem C relationship, 3) estimate the cumulative impact of disturbances on baseline C. Using 1491 ground points with carbon measurements and a novel way of mapping disturbance regimes, the relationship between total biomass C, disturbance exposure, and climate was analyzed statistically. A spatial model was created to determine regional C and compare different disturbance scenarios. In this infrequently disturbed ecosystem, higher disturbance exposure is correlated with higher biomass C, supporting the hypothesis that disturbances maintain productivity at broad scales. The region is estimated to potentially contain a baseline 1.21–1.52 Pg biomass C (when unmanaged). Removal of wind and landslides from the model resulted in lower net C stocks (-2 to -19% reduction), though the effect was heterogeneous on finer scales. There removal of landslides alone had a larger effect then landslide and wind combined removal. The relationship between higher disturbance exposure and higher biomass within the broad ecosystem (which, on average, has a very low disturbance frequency) suggest that disturbances can serve maintain higher levels of productivity in infrequently disturbed but very C dense ecosystems. Carbon research in other systems, especially those where disturbances are infrequent relative to successional processes, should consider the role of disturbances in maintaining baseline ecosystem productivity.

]]>
<![CDATA[Anatomy of the dinosaur Pampadromaeus barberenai (Saurischia—Sauropodomorpha) from the Late Triassic Santa Maria Formation of southern Brazil]]> https://www.researchpad.co/article/5c76fe1bd5eed0c484e5b4e9

Sauropodomorphs are the most abundant and diverse clade of Triassic dinosaurs, but the taxonomy of their earliest (Carnian) representatives is still poorly understood. One such taxon is Pampadromaeus barberenai, represented by a nearly complete disarticulated skeleton recovered from the upper part of the Santa Maria Formation of Rio Grande do Sul, Brazil. Here, the osteology of Pam. barberenai is fully described for the first time. Detailed comparisons with other Carnian sauropodomorphs reveal a unique anatomy, corroborating its status as a valid species. Potential autapomorphies of Pam. barberenai can be seen in the articulation of the sacral zygapophyses, the length of the pectoral epipodium, the shape of the distal articulation of the femur and the proximal articulation of metatarsal 1. A novel phylogenetic study shows that relationships among the Carnian sauropodomorphs are poorly constrained, possibly because they belong to a “zone of variability”, where homoplasy abounds. Yet, there is some evidence that Pam. barberenai may nest within Saturnaliidae, along with Saturnalia tupiniquim and Chromogisaurus novasi, which represents the sister group to the larger sauropodomorphs, i.e. Bagualosauria.

]]>
<![CDATA[The braincase of Malawisaurus dixeyi (Sauropoda: Titanosauria): A 3D reconstruction of the brain endocast and inner ear]]> https://www.researchpad.co/article/5c6dca27d5eed0c48452a84d

A braincase of the Cretaceous titanosaurian sauropod Malawisaurus dixeyi, complete except for the olfactory region, was CT scanned and a 3D rendering of the endocast and inner ear was generated. Cranial nerves appear in the same configuration as in other sauropods, including derived features that appear to characterize titanosaurians, specifically, an abducens nerve canal that passes lateral to the pituitary fossa rather than entering it. Furthermore, the hypoglossal nerve exits the skull via a single foramen, consistent with most titanosaurians, while other saurischians, including the basal titanosauriform, Giraffatitan, contain multiple rootlets. The size of the vestibular labyrinth is smaller than in Giraffatitan, but larger than in most derived titanosaurians. Similar to the condition found in Giraffatitan, the anterior semicircular canal is larger than the posterior semicircular canal. This contrasts with more derived titanosaurians that contain similarly sized anterior and posterior semicircular canals, congruent with the interpretation of Malawisaurus as a basal titanosaurian. Measurements of the humerus of Malawisaurus provide a body mass estimate of 4.7 metric tons. Comparison of body mass to radius of the semicircular canals of the vestibular labyrinth reveals that Malawisaurus fits the allometric relationship found in previous studies of extant mammals and Giraffatitan brancai. As in Giraffatitan, the anterior semicircular canal is significantly larger than is predicted by the allometric relationship suggesting greater sensitivity and slower movement of the head in the sagittal plane.

]]>
<![CDATA[Plant leaf tooth feature extraction]]> https://www.researchpad.co/article/5c6dc9b6d5eed0c48452a077

Leaf tooth can indicate several systematically informative features and is extremely useful for circumscribing fossil leaf taxa. Moreover, it can help discriminate species or even higher taxa accurately. Previous studies extract features that are not strictly defined in botany; therefore, a uniform standard to compare the accuracies of various feature extraction methods cannot be used. For efficient and automatic retrieval of plant leaves from a leaf database, in this study, we propose an image-based description and measurement of leaf teeth by referring to the leaf structure classification system in botany. First, image preprocessing is carried out to obtain a binary map of plant leaves. Then, corner detection based on the curvature scale-space (CSS) algorithm is used to extract the inflection point from the edges; next, the leaf tooth apex is extracted by screening the convex points; then, according to the definition of the leaf structure, the characteristics of the leaf teeth are described and measured in terms of number of orders of teeth, tooth spacing, number of teeth, sinus shape, and tooth shape. In this manner, data extracted from the algorithm can not only be used to classify plants, but also provide scientific and standardized data to understand the history of plant evolution. Finally, to verify the effectiveness of the extraction method, we used simple linear discriminant analysis and multiclass support vector machine to classify leaves. The results show that the proposed method achieves high accuracy that is superior to that of other methods.

]]>
<![CDATA[A new African Titanosaurian Sauropod Dinosaur from the middle Cretaceous Galula Formation (Mtuka Member), Rukwa Rift Basin, Southwestern Tanzania]]> https://www.researchpad.co/article/5c6dca2ad5eed0c48452a874

The African terrestrial fossil record has been limited in its contribution to our understanding of both regional and global Cretaceous paleobiogeography, an interval of significant geologic and macroevolutionary change. A common component in Cretaceous African faunas, titanosaurian sauropods diversified into one of the most specious groups of dinosaurs worldwide. Here we describe the new titanosaurian Mnyamawamtuka moyowamkia gen. et sp. nov. from the Mtuka Member of the Galula Formation in southwest Tanzania. The new specimen preserves teeth, elements from all regions of the postcranial axial skeleton, parts of both appendicular girdles, and portions of both limbs including a complete metatarsus. Unique traits of M. moyowamkia include the lack of an interpostzygapophyseal lamina in posterior dorsal vertebrae, pronounced posterolateral expansion of middle caudal centra, and an unusually small sternal plate. Phylogenetic analyses consistently place M. moyowamkia as either a close relative to lithostrotian titanosaurians (e.g., parsimony, uncalibrated Bayesian analyses) or as a lithostrotian and sister taxon to Malawisaurus dixeyi from the nearby Aptian? Dinosaur Beds of Malawi (e.g., tip-dating Bayesian analyses). M. moyowamkia shares a few features with M. dixeyi, including semi-spatulate teeth and a median lamina between the neural canal and interpostzygapophyseal lamina in anterior dorsal vertebrae. Both comparative morphology and phylogenetic analyses support Mnyamawamtuka as a distinct and distant relative to Rukwatitan bisepultus and Shingopana songwensis from the younger Namba Member of the Galula Formation with these results largely congruent with newly constrained ages for the Mtuka Member (Aptian–Cenomanian) and Namba Member (Campanian). Coupled with recent discoveries from the Dahkla Oasis, Egypt (e.g., Mansourasaurus shahinae) and other parts of continental Afro-Arabia, the Tanzania titanosaurians refine perspectives on the development of African terrestrial faunas throughout the Cretaceous—a critical step in understanding non-marine paleobiogeographic patterns of Africa that have remained elusive until the past few years.

]]>
<![CDATA[A new baby oviraptorid dinosaur (Dinosauria: Theropoda) from the Upper Cretaceous Nemegt Formation of Mongolia]]> https://www.researchpad.co/article/5c648cf4d5eed0c484c81b9d

Recent discoveries of new oviraptorosaurs revealed their high diversity from the Cretaceous Period in Asia and North America. Particularly, at the family level, oviraptorids are among the most diverse theropod dinosaurs in the Late Cretaceous of Mongolia and China. A new oviraptorid dinosaur Gobiraptor minutus gen. et sp. nov. from the Upper Cretaceous Nemegt Formation is described here based on a single holotype specimen that includes incomplete cranial and postcranial elements. The most prominent characters of Gobiraptor are its thickened rostrodorsal end of the mandibular symphysis and a rudimentary lingual shelf on each side of the dentary. Each lingual shelf is lined with small occlusal foramina and demarcated by a weakly developed lingual ridge. This mandibular morphology of Gobiraptor is unique among oviraptorids and likely to be linked to a specialized diet that probably included hard materials, such as seeds or bivalves. The osteohistology of the femur of the holotype specimen indicates that the individual was fairly young at the time of its death. Phylogenetic analysis recovers Gobiraptor as a derived oviraptorid close to three taxa from the Ganzhou region in southern China, but rather distantly related to other Nemegt oviraptorids which, as the results of recent studies, are also not closely related to each other. Gobiraptor increases diversity of oviraptorids in the Nemegt Formation and its presence confirms the successful adaptation of oviraptorids to a mesic environment.

]]>
<![CDATA[Tracing long-term demographic changes: The issue of spatial scales]]> https://www.researchpad.co/article/5c3667edd5eed0c4841a6986

This paper deals with the analysis of long-term changes in population densities at the regional and macro-regional scale and in the density of metapopulations. The following issues concerning estimations are addressed: chronological resolution of demographic changes, estimation of the weight of values for population density in order to transform the initial values included in the sample into the values that may be compared with each other at the regional scale, calibration of the transformed values into real population densities, and the estimation of the weight of values for population density at the scales of macro-regions and for the density of metapopulations. The proposed methods are tested on demographic changes in Central Europe, Southern Scandinavia, Southeastern Europe, and the Near East. The obtained results represent major trends in demographic development, while the proposed methodology could also be applied in other wide-scale demographic analyses.

]]>
<![CDATA[Seasonality modulates the predictive skills of diatom based salinity transfer functions]]> https://www.researchpad.co/article/5bfdb3a2d5eed0c4845cb072

The value of diatoms as bioindicators in contemporary and palaeolimnological studies through transfer function development has increased in the last decades. While such models represent a tremendous advance in (palaeo) ecology, they leave behind important sources of uncertainties that are often ignored. In the present study we tackle two of the most important sources of uncertainty in the development of diatom salinity inference models: the effect of secondary variables associated to seasonality and the comparison of conventional cross-validation methods with a validation based on independent datasets. Samples (diatoms and environmental variables) were taken in spring, summer and autumn in the freshwater and brackish ditches of the province of North Holland in 1993. Different locations of the same province were sampled again in 2008–2010 to validate the models. We found that the abundance of the dominant species significantly changed between the seasons, leading to inconsistent estimates of species optima and tolerances. A model covering intra-annual variability (all seasons combined) provides averages of species optima and tolerances, reduces the effect of secondary variables due to the seasonality effects, thus providing the strongest relationship between salinity and diatom species. In addition, the ¨all-season¨ model also reduces the edge effects usually found in all unimodal-based calibration methods. While based on cross-validation all four models seem to perform relatively well, a validation with an independent dataset emphasizes the importance of using models covering intra-annual variability to perform realistic reconstructions.

]]>
<![CDATA[Wood Anatomy Reveals High Theoretical Hydraulic Conductivity and Low Resistance to Vessel Implosion in a Cretaceous Fossil Forest from Northern Mexico]]> https://www.researchpad.co/article/5989d9d4ab0ee8fa60b652fe

The Olmos Formation (upper Campanian), with over 60 angiosperm leaf morphotypes, is Mexico's richest Cretaceous flora. Paleoclimate leaf physiognomy estimates indicate that the Olmos paleoforest grew under wet and warm conditions, similar to those present in modern tropical rainforests. Leaf surface area, tree size and climate reconstructions suggest that this was a highly productive system. Efficient carbon fixation requires hydraulic efficiency to meet the evaporative demands of the photosynthetic surface, but it comes at the expense of increased risk of drought-induced cavitation. Here we tested the hypothesis that the Olmos paleoforest had high hydraulic efficiency, but was prone to cavitation. We characterized the hydraulic properties of the Olmos paleoforest using theoretical conductivity (Ks), vessel composition (S) and vessel fraction (F), and measured drought resistance using vessel implosion resistance and the water potential at which there is 50% loss of hydraulic conductivity (P50). We found that the Olmos paleoforest had high hydraulic efficiency, similar to that present in several extant tropical-wet or semi-deciduous forest communities. Remarkably, the fossil flora had the lowest , which, together with low median P50 (−1.9 MPa), indicate that the Olmos paleoforest species were extremely vulnerable to drought-induced cavitation. Our findings support paleoclimate inferences from leaf physiognomy and paleoclimatic models suggesting it represented a highly productive wet tropical rainforest. Our results also indicate that the Olmos Formation plants had a large range of water conduction strategies, but more restricted variation in cavitation resistance. These straightforward methods for measuring hydraulic properties, used herein for the first time, can provide useful information on the ecological strategies of paleofloras and on temporal shifts in ecological function of fossil forests chronosequences.

]]>
<![CDATA[If Dung Beetles (Scarabaeidae: Scarabaeinae) Arose in Association with Dinosaurs, Did They Also Suffer a Mass Co-Extinction at the K-Pg Boundary?]]> https://www.researchpad.co/article/5989d9f0ab0ee8fa60b6e0f4

The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed “out of Africa” hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of scarabaeine dung beetles and provide examples.

]]>
<![CDATA[An archosauromorph dominated ichnoassemblage in fluvial settings from the late Early Triassic of the Catalan Pyrenees (NE Iberian Peninsula)]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc90d

The vertebrate recovery after the end-Permian mass extinction can be approached through the ichnological record, which is much more abundant than body fossils. The late Olenekian (Early Triassic) tetrapod ichnoassemblage of the Catalan Pyrenean Basin is the most complete and diverse of this age from Western Tethys. This extensional basin, composed of several depocenters, was formed in the latest phases of the Variscan orogeny (Pangea breakup) and was infilled by braided and meandering fluvial systems of the red-beds Buntsandstein facies. Abundant and diverse tetrapod ichnites are recorded in these facies, including Prorotodactylus mesaxonichnus isp. nov. (tracks possibly produced by euparkeriids), cf. Rotodactylus, at least two large chirotheriid morphotypes (archosauriform trackmakers), Rhynchosauroides cf. schochardti, two other undetermined Rhynchosauroides forms, an undetermined Morphotype A (archosauromorph trackmakers) and two types of Characichnos isp. (swimming traces, here associated to archosauromorph trackmakers). The Pyrenean ichnoassemblage suggests a relatively homogeneous ichnofaunal composition through the late Early Triassic of Central Pangea, characterized by the presence of Prorotodactylus and Rotodactylus. Small archosauromorph tracks dominate and present a wide distribution through the different fluviatile facies of the Triassic Pyrenean Basin, with large archosaurian footprints being present in a lesser degree. Archosauromorphs radiated and diversified through the Triassic vertebrate recovery, which ultimately lead to the archosaur and dinosaur dominance of the Mesozoic.

]]>
<![CDATA[The bat community of Haiti and evidence for its long-term persistence at high elevations]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be02c4

Accurate accounts of both living and fossil mammal communities are critical for creating biodiversity inventories and understanding patterns of changing species diversity through time. We combined data from from14 new fossil localities with literature accounts and museum records to document the bat biodiversity of Haiti through time. We also report an assemblage of late-Holocene (1600–600 Cal BP) bat fossils from a montane cave (Trouing Jean Paul, ~1825m) in southern Haiti. The nearly 3000 chiropteran fossils from Trouing Jean Paul represent 15 species of bats including nine species endemic to the Caribbean islands. The fossil bat assemblage from Trouing Jean Paul is dominated by species still found on Hispaniola (15 of 15 species), much as with the fossil bird assemblage from the same locality (22 of 23 species). Thus, both groups of volant vertebrates demonstrate long-term resilience, at least at high elevations, to the past 16 centuries of human presence on the island.

]]>
<![CDATA[Similar Associations of Tooth Microwear and Morphology Indicate Similar Diet across Marsupial and Placental Mammals]]> https://www.researchpad.co/article/5989db3eab0ee8fa60bd5d3c

Low-magnification microwear techniques have been used effectively to infer diets within many unrelated mammalian orders, but the extent to which patterns are comparable among such different groups, including long extinct mammal lineages, is unknown. Microwear patterns between ecologically equivalent placental and marsupial mammals are found to be statistically indistinguishable, indicating that microwear can be used to infer diet across the mammals. Microwear data were compared to body size and molar shearing crest length in order to develop a system to distinguish the diet of mammals. Insectivores and carnivores were difficult to distinguish from herbivores using microwear alone, but combining microwear data with body size estimates and tooth morphology provides robust dietary inferences. This approach is a powerful tool for dietary assessment of fossils from extinct lineages and from museum specimens of living species where field study would be difficult owing to the animal’s behavior, habitat, or conservation status.

]]>
<![CDATA[Cranial Growth and Variation in Edmontosaurs (Dinosauria: Hadrosauridae): Implications for Latest Cretaceous Megaherbivore Diversity in North America]]> https://www.researchpad.co/article/5989da3bab0ee8fa60b88033

The well-sampled Late Cretaceous fossil record of North America remains the only high-resolution dataset for evaluating patterns of dinosaur diversity leading up to the terminal Cretaceous extinction event. Hadrosaurine hadrosaurids (Dinosauria: Ornithopoda) closely related to Edmontosaurus are among the most common megaherbivores in latest Campanian and Maastrichtian deposits of western North America. However, interpretations of edmontosaur species richness and biostratigraphy have been in constant flux for almost three decades, although the clade is generally thought to have undergone a radiation in the late Maastrichtian. We address the issue of edmontosaur diversity for the first time using rigorous morphometric analyses of virtually all known complete edmontosaur skulls. Results suggest only two valid species, Edmontosaurus regalis from the late Campanian, and E. annectens from the late Maastrichtian, with previously named taxa, including the controversial Anatotitan copei, erected on hypothesized transitional morphologies associated with ontogenetic size increase and allometric growth. A revision of North American hadrosaurid taxa suggests a decrease in both hadrosaurid diversity and disparity from the early to late Maastrichtian, a pattern likely also present in ceratopsid dinosaurs. A decline in the disparity of dominant megaherbivores in the latest Maastrichtian interval supports the hypothesis that dinosaur diversity decreased immediately preceding the end Cretaceous extinction event.

]]>
<![CDATA[A New Genus of Aplodontid Rodent (Mammalia, Rodentia) from the Late Oligocene of Northern Junggar Basin, China]]> https://www.researchpad.co/article/5989daffab0ee8fa60bc5dd2

A new genus and species of aplodontid rodent, Proansomys dureensis, from the late Oligocene of the northern Junggar Basin of China is described. The new genus is referred to as Ansomyinae because the ectoloph on the upper cheek teeth, although not fully crested, has attained the same characteristic bucket-handle-shaped configuration as other members of the subfamily. It represents the earliest record of the subfamily yet discovered in Asia and is more plesiomorphic than species of the genus Ansomys in having a partly crested ectoloph, a lower degree of lophodonty, and less complex tooth basins (lacking accessory lophules). Proansomys has transitional features between Prosciurus and Ansomys, suggesting that the Ansomyinae derived from a group of aplodontids related to Prosciurus, as did other advanced aplodontid rodents. This provides new light on the paleobiogeography of the Ansomyinae.

]]>
<![CDATA[Redescription and Phylogenetic Analysis of the Mandible of an Enigmatic Pennsylvanian (Late Carboniferous) Tetrapod from Nova Scotia, and the Lability of Meckelian Jaw Ossification]]> https://www.researchpad.co/article/5989da30ab0ee8fa60b844ac

The lower jaw of an unidentified Pennsylvanian (Late Carboniferous) tetrapod from Nova Scotia – the “Parrsboro jaw”- is redescribed in the light of recent tetrapod discoveries and work on evolution of tetrapod mandibular morphology and placed for the first time in a numerical cladistics analysis. All phylogenetic analyses place the jaw in a crownward polytomy of baphetids, temnospondyls, and embolomeres. Several features resemble baphetids and temnospondyls including dermal ornamentation, absence of coronoid teeth, and presence of coronoid shagreen. Dentary dentition is most similar to Baphetes. An adsymphysial toothplate may not preclude temnospondyl affinity. An apparent large exomeckelian fenestra, with the dorsal foraminal margins formed by an unossified element, echoes the morphology of the stem tetrapod Sigournea and is unusually primitive given the other features of the jaw. The jaw may thus provide an example of an intermediate stage in Meckelian element evolution.

]]>