ResearchPad - parasitemia https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[ICOS signaling promotes a secondary humoral response after re-challenge with <i>Plasmodium chabaudi chabaudi</i> AS]]> https://www.researchpad.co/article/elastic_article_7745 Malaria, which is caused by the protozoan parasite Plasmodium, remains a major global health problem, as over 400,000 people die from this disease every year. Further understanding of the mechanisms that contribute to protective immunity against this parasite will serve to promote the development of an effective vaccine. Here, we describe the importance of the co-stimulatory molecule ICOS during secondary infection with the rodent parasite Plasmodium chabaudi chabaudi AS. We show that ICOS promotes the expansion of memory T cells, their acquisition of a secondary follicular helper T (Tfh) cell phenotype, and their ability to provide help to MBCs after reinfection. While ICOS deficient mice control the initial parasite load after re-challenge, the absence of ICOS leads to higher relapsing parasitemia compared to wild-type mice. We establish that the lack of expansion of effector cells with a Tfh cell phenotype in Icos-/- mice prevents germinal center formation after secondary infection. Thus, we show that ICOS signaling in T cells promotes an effective memory T cell response and suggests that the enhancement of this co-stimulatory pathway during vaccination may enhance protective immunity to blood-stage Plasmodium infection.

]]>
<![CDATA[Citrulline protects mice from experimental cerebral malaria by ameliorating hypoargininemia, urea cycle changes and vascular leak]]> https://www.researchpad.co/article/5c8c194bd5eed0c484b4d370

Clinical and model studies indicate that low nitric oxide (NO) bioavailability due in part to profound hypoargininemia contributes to cerebral malaria (CM) pathogenesis. Protection against CM pathogenesis may be achieved by altering the diet before infection with Plasmodium falciparum infection (nutraceutical) or by administering adjunctive therapy that decreases CM mortality (adjunctive therapy). This hypothesis was tested by administering citrulline or arginine in experimental CM (eCM). We report that citrulline injected as prophylaxis immediately post infection (PI) protected virtually all mice by ameliorating (i) hypoargininemia, (ii) urea cycle impairment, and (iii) disruption of blood brain barrier. Citrulline prophylaxis inhibited plasma arginase activity. Parasitemia was similar in citrulline- and vehicle control-groups, indicating that protection from pathogenesis was not due to decreased parasitemia. Both citrulline and arginine administered from day 1 PI in the drinking water significantly protected mice from eCM. These observations collectively indicate that increasing dietary citrulline or arginine decreases eCM mortality. Citrulline injected ip on day 4 PI with quinine-injected ip on day 6 PI partially protected mice from eCM; citrulline plus scavenging of superoxide with pegylated superoxide dismutase and pegylated catalase protected all recipients from eCM. These findings indicate that ameliorating hypoargininemia with citrulline plus superoxide scavenging decreases eCM mortality.

]]>
<![CDATA[A therapeutic preconceptional vaccine against Chagas disease: A novel indication that could reduce congenital transmission and accelerate vaccine development]]> https://www.researchpad.co/article/5c5ca2c5d5eed0c48441eaa0 ]]> <![CDATA[Cytomegalovirus vectors expressing Plasmodium knowlesi antigens induce immune responses that delay parasitemia upon sporozoite challenge]]> https://www.researchpad.co/article/5c521823d5eed0c4847974fd

The development of a sterilizing vaccine against malaria remains one of the highest priorities for global health research. While sporozoite vaccines targeting the pre-erythrocytic stage show great promise, it has not been possible to maintain efficacy long-term, likely due to an inability of these vaccines to maintain effector memory T cell responses in the liver. Vaccines based on human cytomegalovirus (HCMV) might overcome this limitation since vectors based on rhesus CMV (RhCMV), the homologous virus in rhesus macaques (RM), elicit and indefinitely maintain high frequency, non-exhausted effector memory T cells in extralymphoid tissues, including the liver. Moreover, RhCMV strain 68–1 elicits CD8+ T cells broadly recognizing unconventional epitopes exclusively restricted by MHC-II and MHC-E. To evaluate the potential of these unique immune responses to protect against malaria, we expressed four Plasmodium knowlesi (Pk) antigens (CSP, AMA1, SSP2/TRAP, MSP1c) in RhCMV 68–1 or in Rh189-deleted 68–1, which additionally elicits canonical MHC-Ia-restricted CD8+ T cells. Upon inoculation of RM with either of these Pk Ag expressing RhCMV vaccines, we obtained T cell responses to each of the four Pk antigens. Upon challenge with Pk sporozoites we observed a delayed appearance of blood stage parasites in vaccinated RM consistent with a 75–80% reduction of parasite release from the liver. Moreover, the Rh189-deleted RhCMV/Pk vectors elicited sterile protection in one RM. Once in the blood, parasite growth was not affected. In contrast to T cell responses induced by Pk infection, RhCMV vectors maintained sustained T cell responses to all four malaria antigens in the liver post-challenge. The delayed appearance of blood stage parasites is thus likely due to a T cell-mediated inhibition of liver stage parasite development. As such, this vaccine approach can be used to efficiently test new T cell antigens, improve current vaccines targeting the liver stage and complement vaccines targeting erythrocytic antigens.

]]>
<![CDATA[Anilinoquinoline based inhibitors of trypanosomatid proliferation]]> https://www.researchpad.co/article/5c059ddad5eed0c4849c9531

We recently reported the medicinal chemistry re-optimization of a series of compounds derived from the human tyrosine kinase inhibitor, lapatinib, for activity against Plasmodium falciparum. From this same library of compounds, we now report potent compounds against Trypanosoma brucei brucei (which causes human African trypanosomiasis), T. cruzi (the pathogen that causes Chagas disease), and Leishmania spp. (which cause leishmaniasis). In addition, sub-micromolar compounds were identified that inhibit proliferation of the parasites that cause African animal trypanosomiasis, T. congolense and T. vivax. We have found that this set of compounds display acceptable physicochemical properties and represent progress towards identification of lead compounds to combat several neglected tropical diseases.

]]>
<![CDATA[The usefulness of C-reactive protein in predicting malaria parasitemia in a sub-Saharan African region]]> https://www.researchpad.co/article/5b8685e340307c7363ff63b4

Background

Malaria remains a leading cause of childhood mortality in sub-Saharan Africa. Identifying patients who are at risk for severe manifestations at presentation still remains challenging. This study examines whether a semi-quantitative test on C-Reactive Protein (CRP) could be useful for rapidly predicting the presence or absence of malarial parasitemia in febrile children.

Method

Data were collected from children with fever or a history of fever at the Agogo Presbyterian Hospital in the Ashanti Region of Ghana. Haematological measurements, microscopic detection of plasmodium species and semi-quantitative CRP measurements with a membrane–based immunoassay for whole blood were performed. CRP was classified as positive when the measured level was ≥ 10 mg/l.

Results

During 548 visits, thick blood film results could be obtained from 541 patients, 270 (49.3%) yielded parasitemia with Plasmodium spp. Whereas malaria parasites were detected in only a few patients (7.1%) with normal CRP levels (< 10mg/l), more than a half of patients with an increased CRP concentration (≥ 10 mg/l) were parasite positive (OR 14.5 [CI 4.4–47.6], p<0.001). Patients with increased CRP levels had more than an eight-fold likelihood for parasitemia after correction for other parameters (adjusted OR 8.7 [CI 2.5–30.5], p<0.001). Sensitivity, specificity as well as positive predictive and negative predictive values of CRP for malaria were 99.3% (CI 96.2%-100%), 9.2% (CI 6.4%-12.8%), 31.7% (CI 27.4%-36.1%) and 97.0% (CI 84.2%-99.9%), respectively.

Conclusion

The semi-quantitative method of measuring CRP is cheap, rapid and easy to perform but not useful in predicting parasitemia and malaria. However, due to its high negative predictive value, it could have a role in identifying those patients unlikely to be presenting with clinical malaria.

]]>
<![CDATA[Promotion of Expansion and Differentiation of Hematopoietic Stem Cells by Interleukin-27 into Myeloid Progenitors to Control Infection in Emergency Myelopoiesis]]> https://www.researchpad.co/article/5989daf6ab0ee8fa60bc30c4

Emergency myelopoiesis is inflammation-induced hematopoiesis to replenish myeloid cells in the periphery, which is critical to control the infection with pathogens. Previously, pro-inflammatory cytokines such as interferon (IFN)-α and IFN-γ were demonstrated to play a critical role in the expansion of hematopoietic stem cells (HSCs) and myeloid progenitors, leading to production of mature myeloid cells, although their inhibitory effects on hematopoiesis were also reported. Therefore, the molecular mechanism of emergency myelopoiesis during infection remains incompletely understood. Here, we clarify that one of the interleukin (IL)-6/IL-12 family cytokines, IL-27, plays an important role in the emergency myelopoiesis. Among various types of hematopoietic cells in bone marrow, IL-27 predominantly and continuously promoted the expansion of only LineageSca-1+c-Kit+ (LSK) cells, especially long-term repopulating HSCs and myeloid-restricted progenitor cells with long-term repopulating activity, and the differentiation into myeloid progenitors in synergy with stem cell factor. These progenitors expressed myeloid transcription factors such as Spi1, Gfi1, and Cebpa/b through activation of signal transducer and activator of transcription 1 and 3, and had enhanced potential to differentiate into migratory dendritic cells (DCs), neutrophils, and mast cells, and less so into macrophages, and basophils, but not into plasmacytoid DCs, conventional DCs, T cells, and B cells. Among various cytokines, IL-27 in synergy with the stem cell factor had the strongest ability to augment the expansion of LSK cells and their differentiation into myeloid progenitors retaining the LSK phenotype over a long period of time. The experiments using mice deficient for one of IL-27 receptor subunits, WSX-1, and IFN-γ revealed that the blood stage of malaria infection enhanced IL-27 expression through IFN-γ production, and the IL-27 then promoted the expansion of LSK cells, differentiating and mobilizing them into spleen, resulting in enhanced production of neutrophils to control the infection. Thus, IL-27 is one of the limited unique cytokines directly acting on HSCs to promote differentiation into myeloid progenitors during emergency myelopoiesis.

]]>
<![CDATA[Still Searching for a Suitable Molecular Test to Detect Hidden Plasmodium Infection: A Proposal for Blood Donor Screening in Brazil]]> https://www.researchpad.co/article/5989dac5ab0ee8fa60bb24e0

Background

Efforts have been made to establish sensitive diagnostic tools for malaria screening in blood banks in order to detect malaria asymptomatic carriers. Microscopy, the malaria reference test in Brazil, is time consuming and its sensitivity depends on microscopist experience. Although molecular tools are available, some aspects need to be considered for large-scale screening: accuracy and robustness for detecting low parasitemia, affordability for application to large number of samples and flexibility to perform on individual or pooled samples.

Methodology

In this retrospective study, we evaluated four molecular assays for detection of malaria parasites in a set of 56 samples previously evaluated by expert microscopy. In addition, we evaluated the effect of pooling samples on the sensitivity and specificity of the molecular assays. A well-characterized cultured sample with 1 parasite/μL was included in all the tests evaluated. DNA was extracted with QIAamp DNA Blood Mini Kit and eluted in 50 μL to concentrate the DNA. Pools were assembled with 10 samples each. Molecular protocols targeting 18S rRNA, included one qPCR genus specific (Lima-genus), one duplex qPCR genus/Pf (PET-genus, PET-Pf) and one duplex qPCR specie-specific (Rougemont: Roug-Pf/Pv and Roug-Pm/Po). Additionally a nested PCR protocol specie-specific was used (Snou-Pf, Snou-Pv, Snou-Pm and Snou-Po).

Results

The limit of detection was 3.5 p/μL and 0.35p/μl for the PET-genus and Lima-genus assays, respectively. Considering the positive (n = 13) and negative (n = 39) unpooled individual samples according to microscopy, the sensitivity of the two genus qPCR assays was 76.9% (Lima-genus) and 72.7% (PET-genus). The Lima-genus and PET-genus showed both sensitivity of 86.7% in the pooled samples. The genus protocols yielded similar results (Kappa value of 1.000) in both individual and pooled samples.

Conclusions

Efforts should be made to improve performance of molecular tests to enable the detection of low-density parasitemia if these tests are to be utilized for blood transfusion screening.

]]>
<![CDATA[A portable image-based cytometer for rapid malaria detection and quantification]]> https://www.researchpad.co/article/5989db5dab0ee8fa60be0474

Increasing resistance by malaria parasites to currently used antimalarials across the developing world warrants timely detection and classification so that appropriate drug combinations can be administered before clinical complications arise. However, this is often challenged by low levels of infection (referred to as parasitemia) and presence of predominantly young parasitic forms in the patients’ peripheral blood. Herein, we developed a simple, inexpensive and portable image-based cytometer that detects and numerically counts Plasmodium falciparum infected red blood cells (iRBCs) from Giemsa-stained smears derived from infected blood. Our cytometer is able to classify all parasitic subpopulations by quantifying the area occupied by the parasites within iRBCs, with high specificity, sensitivity and negligible false positives (~ 0.0025%). Moreover, we demonstrate the application of our image-based cytometer in testing anti-malarial efficacy against a commercial flow cytometer and demonstrate comparable results between the two methods. Collectively, these results highlight the possibility to use our image-based cytometer as a cheap, rapid and accurate alternative for antimalarial testing without compromising on efficiency and minimal processing time. With appropriate filters applied into the algorithm, to rule out leukocytes and reticulocytes, our cytometer may also be used for field diagnosis of malaria.

]]>
<![CDATA[Macrophage Colony Stimulating Factor Derived from CD4+ T Cells Contributes to Control of a Blood-Borne Infection]]> https://www.researchpad.co/article/5989d9e6ab0ee8fa60b6b71e

Dynamic regulation of leukocyte population size and activation state is crucial for an effective immune response. In malaria, Plasmodium parasites elicit robust host expansion of macrophages and monocytes, but the underlying mechanisms remain unclear. Here we show that myeloid expansion during P. chabaudi infection is dependent upon both CD4+ T cells and the cytokine Macrophage Colony Stimulating Factor (MCSF). Single-cell RNA-Seq analysis on antigen-experienced T cells revealed robust expression of Csf1, the gene encoding MCSF, in a sub-population of CD4+ T cells with distinct transcriptional and surface phenotypes. Selective deletion of Csf1 in CD4+ cells during P. chabaudi infection diminished proliferation and activation of certain myeloid subsets, most notably lymph node-resident CD169+ macrophages, and resulted in increased parasite burden and impaired recovery of infected mice. Depletion of CD169+ macrophages during infection also led to increased parasitemia and significant host mortality, confirming a previously unappreciated role for these cells in control of P. chabaudi. This work establishes the CD4+ T cell as a physiologically relevant source of MCSF in vivo; probes the complexity of the CD4+ T cell response during type 1 infection; and delineates a novel mechanism by which T helper cells regulate myeloid cells to limit growth of a blood-borne intracellular pathogen.

]]>
<![CDATA[The Importance of Pathogen Load]]> https://www.researchpad.co/article/5989db4dab0ee8fa60bdb022 ]]> <![CDATA[Age, Spatial, and Temporal Variations in Hospital Admissions with Malaria in Kilifi County, Kenya: A 25-Year Longitudinal Observational Study]]> https://www.researchpad.co/article/5989daceab0ee8fa60bb52ef

Background

Encouraging progress has been seen with reductions in Plasmodium falciparum malaria transmission in some parts of Africa. Reduced transmission might lead to increasing susceptibility to malaria among older children due to lower acquired immunity, and this has implications for ongoing control strategies.

Methods and Findings

We conducted a longitudinal observational study of children admitted to Kilifi County Hospital in Kenya and linked it to data on residence and insecticide-treated net (ITN) use. This included data from 69,104 children aged from 3 mo to 13 y admitted to Kilifi County Hospital between 1 January 1990 and 31 December 2014. The variation in malaria slide positivity among admissions was examined in logistic regression models using the following predictors: location of the residence, calendar time, the child’s age, ITN use, and the enhanced vegetation index (a proxy for soil moisture). The proportion of malaria slide-positive admissions declined from 0.56 (95% confidence interval [CI] 0.54–0.58) in 1998 to 0.07 (95% CI 0.06–0.08) in 2009 but then increased again through to 0.24 (95% CI 0.22–0.25) in 2014. Older children accounted for most of the increase after 2009 (0.035 [95% CI 0.030–0.040] among young children compared to 0.22 [95% CI 0.21–0.23] in older children). There was a nonlinear relationship between malaria risk and prevalence of ITN use within a 2 km radius of an admitted child’s residence such that the predicted malaria positive fraction varied from ~0.4 to <0.1 as the prevalence of ITN use varied from 20% to 80%. In this observational analysis, we were unable to determine the cause of the decline in malaria between 1998 and 2009, which pre-dated the dramatic scale-up in ITN distribution and use.

Conclusion

Following a period of reduced transmission, a cohort of older children emerged who have increased susceptibility to malaria. Further reductions in malaria transmission are needed to mitigate the increasing burden among older children, and universal ITN coverage is a promising strategy to achieve this goal.

]]>
<![CDATA[Protective Efficacy of Plasmodium vivax Radiation-Attenuated Sporozoites in Colombian Volunteers: A Randomized Controlled Trial]]> https://www.researchpad.co/article/5989db04ab0ee8fa60bc7aa1

Background

Immunizing human volunteers by mosquito bite with radiation-attenuated Plasmodium falciparum sporozoites (RAS) results in high-level protection against infection. Only two volunteers have been similarly immunized with P. vivax (Pv) RAS, and both were protected. A phase 2 controlled clinical trial was conducted to assess the safety and protective efficacy of PvRAS immunization.

Methodology/Principal Findings

A randomized, single-blinded trial was conducted. Duffy positive (Fy+; Pv susceptible) individuals were enrolled: 14 received bites from irradiated (150 ± 10 cGy) Pv-infected Anopheles mosquitoes (RAS) and 7 from non-irradiated non-infected mosquitoes (Ctl). An additional group of seven Fy- (Pv refractory) volunteers was immunized with bites from non-irradiated Pv-infected mosquitoes. A total of seven immunizations were carried out at mean intervals of nine weeks. Eight weeks after last immunization, a controlled human malaria infection (CHMI) with non-irradiated Pv-infected mosquitoes was performed. Nineteen volunteers completed seven immunizations (12 RAS, 2 Ctl, and 5 Fy-) and received a CHMI. Five of 12 (42%) RAS volunteers were protected (receiving a median of 434 infective bites) compared with 0/2 Ctl. None of the Fy- volunteers developed infection by the seventh immunization or after CHMI. All non-protected volunteers developed symptoms 8–13 days after CHMI with a mean pre-patent period of 12.8 days. No serious adverse events related to the immunizations were observed. Specific IgG1 anti-PvCS response was associated with protection.

Conclusion

Immunization with PvRAS was safe, immunogenic, and induced sterile immunity in 42% of the Fy+ volunteers. Moreover, Fy- volunteers were refractory to Pv malaria.

Trial registration

Identifier: NCT01082341.

]]>
<![CDATA[Colorimetric Detection of Plasmodium vivax in Urine Using MSP10 Oligonucleotides and Gold Nanoparticles]]> https://www.researchpad.co/article/5989db38ab0ee8fa60bd3afe

Plasmodium vivax is the most prevalent cause of human malaria in the world and can lead to severe disease with high potential for relapse. Its genetic and geographic diversities make it challenging to control. P. vivax is understudied and to achieve control of malaria in endemic areas, a rapid, accurate, and simple diagnostic tool is necessary. In this pilot study, we found that a colorimetric system using AuNPs and MSP10 DNA detection in urine can provide fast, easy, and inexpensive identification of P. vivax. The test exhibited promising sensitivity (84%), high specificity (97%), and only mild cross-reactivity with P. falciparum (21%). It is simple to use, with a visible color change that negates the need for a spectrometer, making it suitable for use in austere conditions. Using urine eliminates the need for finger-prick, increasing both the safety profile and patient acceptance of this model.

]]>
<![CDATA[Efficacy of Chloroquine for the Treatment of Vivax malaria in Northwest Ethiopia]]> https://www.researchpad.co/article/5989da9aab0ee8fa60ba32e8

Background

Resistance to anti-malarials is a major challenge for effective malaria control in sub-Saharan Africa. This triggered a need for routine monitoring of the efficacy of the antimalarial drugs every two years in all malaria endemic countries. Chloroquine remained the drug of choice for the treatment of vivax malaria in Ethiopia. Though, a strong scientific evidence of chloroquine resistance to P.vivax that could have brought change of treatment regimen is yet to be established in Ethiopia, continuous and regular monitoring of drug’s efficacy is critical for establishing rational anti-malarial drug policies. This study therefore, assessed the therapeutic efficacy of Chloroquine (CQ) for the treatment of Plasmodium vivax infections in Northwestern Ethiopia.

Methods

An observational, 28- day therapeutic clinical efficacy study was conducted from August to December, 2014, in Northwest Ethiopia. Patients confirmed to have monoinfection of vivax malaria, aged above 6 months were included. All subjects were treated with standard chloroquine dose of 25 mg/kg for three (3) days. Parasitological and clinical outcomes of treated patients were then evaluated on days 1, 2, 3, 7, 14, 21, and 28 during the entire 28-day follow-up period. A portable spectrophotometer (HemoCue Hb 301 System, Sweden) was used to estimate hemoglobin concentration.

Results

A total of 69 subjects had completed follow up. Some 57/69 (82.6%) had fever at enrolment and the rest 12 patients 48 hours before enrollment. Out of total, 65/69 (94.2%) and 66/69 (95.6%) of the study subjects were free of fever by day 1 and day 2 respectively but fever was cleared in all subjects by day 3. At base line the mean asexual parasitemia was 3540 parasites/μL of blood. Parasite carriage on day 3 was 3%. The overall cure rate (an adequate and clinical parasitological response) was very high (97%) [(95% CI = 93.1–99.4)]. The time to parasite, fever and gametocyte clearance as expressed in mean (SD) was 35 (3), 25 (4.6), 28 (3.2) hours respectively. Mean hemoglobin was significantly increased (P<0.001) from 12.2 (7–15) g/dl at day 0 to 13.3 (10–16) g/dl on day 28.

Conclusions

In view of our findings, CQ remains efficacious for the treatment of vivax malaria in the study area. However, there is a need to monitor CQR regularly using molecular and or biochemical tools for better evaluation of treatment outcomes.

]]>
<![CDATA[Longitudinal analysis of antibody responses in symptomatic malaria cases do not mirror parasite transmission in peri-urban area of Cote d’Ivoire between 2010 and 2013]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcab8

Background

In the agenda towards malaria eradication, assessment of both malaria exposure and efficacy of anti-vectorial and therapeutic strategies is a key component of management and the follow-up of field interventions. The simultaneous use of several antigens (Ags) as serological markers has the potential for accurate evaluation of malaria exposure. Here we aimed to measure the longitudinal evolution of the background levels of immunity in an urban setting in confirmed clinical cases of malaria.

Methods

A retrospective serological cross-sectional study on was carried out using 234 samples taken from 2010 to 2013 in peri-urban sentinel facility of Cote d’Ivoire. Antibody responses to recombinant proteins or BSA-peptides, 8 Plasmodium falciparum (PfAMA1, PfMSP4, PfMSP1, PfEMP1-DBL1α1-PF13, PfLSA1-41, PfLSA3-NR2, PfGLURP and PfCSP), one P. malariae (PmCSP) and one Anopheles gambiae salivary (gSG6-P1) antigens were measured using magnetic bead-based multiplex immunoassay (MBA). Total anti- P. falciparum IgG responses against schizont lysate from african 07/03 strain (adapted to culture) and 3D7 strain was measured by ELISA.

Results

High prevalence (7–93%) and levels of antibody responses to most of the antigens were evidenced. However, analysis showed only marginal decreasing trend of Ab responses from 2010 to 2013 that did not parallel the reduction of clinical malaria prevalence following the implementation of intervention in this area. There was a significant inverse correlation between Ab responses and parasitaemia (P<10−3, rho = 0.3). The particular recruitment of asymptomatic individuals in 2011 underlined a high background level of immunity almost equivalent to symptomatic patients, possibly obscuring observable yearly variations.

Conclusion

The use of cross-sectional clinical malaria surveys and MBA can help to identify endemic sites where control measures have unequal impact providing relevant information about population immunity and possible decrease of transmission. However, when immunity is substantially boosted despite observable clinical decline, a larger cohort including asymptomatic recruitment is needed to monitor the impact of control measures on level of immunity.

]]>
<![CDATA[Use of a Chagas Urine Nanoparticle Test (Chunap) to Correlate with Parasitemia Levels in T. cruzi/HIV Co-infected Patients]]> https://www.researchpad.co/article/5989d9f7ab0ee8fa60b7084b

Background

Early diagnosis of reactivated Chagas disease in HIV patients could be lifesaving. In Latin America, the diagnosis is made by microscopical detection of the T. cruzi parasite in the blood; a diagnostic test that lacks sensitivity. This study evaluates if levels of T. cruzi antigens in urine, determined by Chunap (Chagas urine nanoparticle test), are correlated with parasitemia levels in T. cruzi/HIV co-infected patients.

Methodology/Principal Findings

T. cruzi antigens in urine of HIV patients (N = 55: 31 T. cruzi infected and 24 T. cruzi serology negative) were concentrated using hydrogel particles and quantified by Western Blot and a calibration curve. Reactivation of Chagas disease was defined by the observation of parasites in blood by microscopy. Parasitemia levels in patients with serology positive for Chagas disease were classified as follows: High parasitemia or reactivation of Chagas disease (detectable parasitemia by microscopy), moderate parasitemia (undetectable by microscopy but detectable by qPCR), and negative parasitemia (undetectable by microscopy and qPCR). The percentage of positive results detected by Chunap was: 100% (7/7) in cases of reactivation, 91.7% (11/12) in cases of moderate parasitemia, and 41.7% (5/12) in cases of negative parasitemia. Chunap specificity was found to be 91.7%. Linear regression analysis demonstrated a direct relationship between parasitemia levels and urine T. cruzi antigen concentrations (p<0.001). A cut-off of > 105 pg was chosen to determine patients with reactivation of Chagas disease (7/7). Antigenuria levels were 36.08 times (95% CI: 7.28 to 64.88) higher in patients with CD4+ lymphocyte counts below 200/mL (p = 0.016). No significant differences were found in HIV loads and CD8+ lymphocyte counts.

Conclusion

Chunap shows potential for early detection of Chagas reactivation. With appropriate adaptation, this diagnostic test can be used to monitor Chagas disease status in T. cruzi/HIV co-infected patients.

]]>
<![CDATA[Bead-based immunoassay allows sub-picogram detection of histidine-rich protein 2 from Plasmodium falciparum and estimates reliability of malaria rapid diagnostic tests]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdba29

Detection of histidine-rich protein 2 (HRP2) from the malaria parasite Plasmodium falciparum provides evidence for active or recent infection, and is utilized for both diagnostic and surveillance purposes, but current laboratory immunoassays for HRP2 are hindered by low sensitivities and high costs. Here we present a new HRP2 immunoassay based on antigen capture through a bead-based system capable of detecting HRP2 at sub-picogram levels. The assay is highly specific and cost-effective, allowing fast processing and screening of large numbers of samples. We utilized the assay to assess results of HRP2-based rapid diagnostic tests (RDTs) in different P. falciparum transmission settings, generating estimates for true performance in the field. Through this method of external validation, HRP2 RDTs were found to perform well in the high-endemic areas of Mozambique and Angola with 86.4% and 73.9% of persons with HRP2 in their blood testing positive by RDTs, respectively, and false-positive rates of 4.3% and 0.5%. However, in the low-endemic setting of Haiti, only 14.5% of persons found to be HRP2 positive by the bead assay were RDT positive. Additionally, 62.5% of Haitians showing a positive RDT test had no detectable HRP2 by the bead assay, likely indicating that these were false positive tests. In addition to RDT validation, HRP2 biomass was assessed for the populations in these different settings, and may provide an additional metric by which to estimate P. falciparum transmission intensity and measure the impact of interventions.

]]>
<![CDATA[Targeting Neutrophils to Prevent Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome in Mice]]> https://www.researchpad.co/article/5989da4bab0ee8fa60b8ccc1

Malaria remains one of the greatest burdens to global health, causing nearly 500,000 deaths in 2014. When manifesting in the lungs, severe malaria causes acute lung injury/acute respiratory distress syndrome (ALI/ARDS). We have previously shown that a proportion of DBA/2 mice infected with Plasmodium berghei ANKA (PbA) develop ALI/ARDS and that these mice recapitulate various aspects of the human syndrome, such as pulmonary edema, hemorrhaging, pleural effusion and hypoxemia. Herein, we investigated the role of neutrophils in the pathogenesis of malaria-associated ALI/ARDS. Mice developing ALI/ARDS showed greater neutrophil accumulation in the lungs compared with mice that did not develop pulmonary complications. In addition, mice with ALI/ARDS produced more neutrophil-attracting chemokines, myeloperoxidase and reactive oxygen species. We also observed that the parasites Plasmodium falciparum and PbA induced the formation of neutrophil extracellular traps (NETs) ex vivo, which were associated with inflammation and tissue injury. The depletion of neutrophils, treatment with AMD3100 (a CXCR4 antagonist), Pulmozyme (human recombinant DNase) or Sivelestat (inhibitor of neutrophil elastase) decreased the development of malaria-associated ALI/ARDS and significantly increased mouse survival. This study implicates neutrophils and NETs in the genesis of experimentally induced malaria-associated ALI/ARDS and proposes a new therapeutic approach to improve the prognosis of severe malaria.

]]>
<![CDATA[Aptamer-Based Detection of Disease Biomarkers in Mouse Models for Chagas Drug Discovery]]> https://www.researchpad.co/article/5989da2fab0ee8fa60b83ba4

Drug discovery initiatives, aimed at Chagas treatment, have been hampered by the lack of standardized drug screening protocols and the absence of simple pre-clinical assays to evaluate treatment efficacy in animal models. In this study, we used a simple Enzyme Linked Aptamer (ELA) assay to detect T. cruzi biomarker in blood and validate murine drug discovery models of Chagas disease. In two mice models, Apt-29 ELA assay demonstrated that biomarker levels were significantly higher in the infected group compared to the control group, and upon Benznidazole treatment, their levels reduced. However, biomarker levels in the infected treated group did not reduce to those seen in the non-infected treated group, with 100% of the mice above the assay cutoff, suggesting that parasitemia was reduced but cure was not achieved. The ELA assay was capable of detecting circulating biomarkers in mice infected with various strains of T. cruzi parasites. Our results showed that the ELA assay could detect residual parasitemia in treated mice by providing an overall picture of the infection in the host. They suggest that the ELA assay can be used in drug discovery applications to assess treatment efficacy in-vivo.

]]>