ResearchPad - peroxidases https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat]]> https://www.researchpad.co/article/elastic_article_14475 Heat stress along with low water availability at reproductive stage (terminal growth phase of wheat crop) is major contributing factor towards less wheat production in tropics and sub-tropics. Flag leaf plays a pivotal role in assimilate partitioning and stress tolerance of wheat during terminal growth phase. However, limited is known about biochemical response of flag leaf to combined and individual heat and drought stress during terminal growth phase. Therefore, current study investigated combined and individual effect of terminal drought and heat stress on water relations, photosynthetic pigments, osmolytes accumulation and antioxidants defense mechanism in flag leaf of bread wheat. Experimental treatments comprised of control, terminal drought stress alone (50% field capacity during reproductive phase), terminal heat stress alone (wheat grown inside plastic tunnel during reproductive phase) and terminal drought stress + terminal heat stress. Individual and combined imposition of drought and heat stresses significantly (p≤0.05) altered water relations, osmolyte contents, soluble proteins and sugars along with activated antioxidant defensive system in terms of superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX). Turgor potential, POD and APX activities were lowest under individual heat stress; however, these were improved when drought stress was combined with heat stress. It is concluded that combined effect of drought and heat stress was more detrimental than individual stresses. The interactive effect of both stresses was hypo-additive in nature, but for some traits (like turgor potential and APX) effect of one stress neutralized the other. To best of our knowledge, this is the first report on physiological and biochemical response of flag leaf of wheat to combine heat and drought stress. These results will help future studies dealing with improved stress tolerance in wheat. However, detailed studies are needed to fully understand the genetic mechanisms behind these physiological and biochemical changes in flag leaf in response to combined heat and drought stress.

]]>
<![CDATA[Heme peroxidase HPX-2 protects Caenorhabditis elegans from pathogens]]> https://www.researchpad.co/article/5c59fefdd5eed0c484135895

Heme-containing peroxidases are important components of innate immunity. Many of them functionally associate with NADPH oxidase (NOX)/dual oxidase (DUOX) enzymes by using the hydrogen peroxide they generate in downstream reactions. Caenorhabditis elegans encodes for several heme peroxidases, and in a previous study we identified the ShkT-containing peroxidase, SKPO-1, as necessary for pathogen resistance. Here, we demonstrated that another peroxidase, HPX-2 (Heme-PeroXidase 2), is required for resistance against some, but not all pathogens. Tissue specific RNA interference (RNAi) revealed that HPX-2 functionally localizes to the hypodermis of the worm. In congruence with this observation, hpx-2 mutant animals possessed a weaker cuticle structure, indicated by higher permeability to a DNA dye, but exhibited no obvious morphological defects. In addition, fluorescent labeling of HPX-2 revealed its expression in the pharynx, an organ in which BLI-3 is also present. Interestingly, loss of HPX-2 increased intestinal colonization of E. faecalis, suggesting its role in the pharynx may limit intestinal colonization. Moreover, disruption of a catalytic residue in the peroxidase domain of HPX-2 resulted in decreased survival on E. faecalis, indicating its peroxidase activity is required for pathogen resistance. Finally, RNA-seq analysis of an hpx-2 mutant revealed changes in genes encoding for cuticle structural components under the non-pathogenic conditions. Under pathogenic conditions, genes involved in infection response were differentially regulated to a greater degree, likely due to increased microbial burden. In conclusion, the characterization of the heme-peroxidase, HPX-2, revealed that it contributes to C. elegans pathogen resistance through a role in generating cuticle material in the hypodermis and pharynx.

]]>
<![CDATA[Linkage mapping of yeast cross protection connects gene expression variation to a higher-order organismal trait]]> https://www.researchpad.co/article/5c032de1d5eed0c4844f88ad

Gene expression variation is extensive in nature, and is hypothesized to play a major role in shaping phenotypic diversity. However, connecting differences in gene expression across individuals to higher-order organismal traits is not trivial. In many cases, gene expression variation may be evolutionarily neutral, and in other cases expression variation may only affect phenotype under specific conditions. To understand connections between gene expression variation and stress defense phenotypes, we have been leveraging extensive natural variation in the gene expression response to acute ethanol in laboratory and wild Saccharomyces cerevisiae strains. Previous work found that the genetic architecture underlying these expression differences included dozens of “hotspot” loci that affected many transcripts in trans. In the present study, we provide new evidence that one of these expression QTL hotspot loci affects natural variation in one particular stress defense phenotype—ethanol-induced cross protection against severe doses of H2O2. A major causative polymorphism is in the heme-activated transcription factor Hap1p, which we show directly impacts cross protection, but not the basal H2O2 resistance of unstressed cells. This provides further support that distinct cellular mechanisms underlie basal and acquired stress resistance. We also show that Hap1p-dependent cross protection relies on novel regulation of cytosolic catalase T (Ctt1p) during ethanol stress in a wild oak strain. Because ethanol accumulation precedes aerobic respiration and accompanying reactive oxygen species formation, wild strains with the ability to anticipate impending oxidative stress would likely be at an advantage. This study highlights how strategically chosen traits that better correlate with gene expression changes can improve our power to identify novel connections between gene expression variation and higher-order organismal phenotypes.

]]>
<![CDATA[Application of a Novel Alkali-Tolerant Thermostable DyP-Type Peroxidase from Saccharomonospora viridis DSM 43017 in Biobleaching of Eucalyptus Kraft Pulp]]> https://www.researchpad.co/article/5989daa7ab0ee8fa60ba7e86

Saccharomonospora viridis is a thermophilic actinomycete that may have biotechnological applications because of its dye decolorizing activity, though the enzymatic oxidative system responsible for this activity remains elusive. Bioinformatic analysis revealed a DyP-type peroxidase gene in the genome of S. viridis DSM 43017 with sequence similarity to peroxidase from dye-decolorizing microbes. This gene, svidyp, consists of 1,215 bp encoding a polypeptide of 404 amino acids. The gene encoding SviDyP was cloned, heterologously expressed in Escherichia coli, and then purified. The recombinant protein could efficiently decolorize several triarylmethane dyes, anthraquinonic and azo dyes under neutral to alkaline conditions. The optimum pH and temperature for SviDyP was pH 7.0 and 70°C, respectively. Compared with other DyP-type peroxidases, SviDyP was more active at high temperatures, retaining>63% of its maximum activity at 50–80°C. It also showed broad pH adaptability (>35% activity at pH 4.0–9.0) and alkali-tolerance (>80% activity after incubation at pH 5–10 for 1 h at 37°C), and was highly thermostable (>60% activity after incubation at 70°C for 2 h at pH 7.0). SviDyP had an accelerated action during the biobleaching of eucalyptus kraft pulp, resulting in a 21.8% reduction in kappa number and an increase of 2.98% (ISO) in brightness. These favorable properties make SviDyP peroxidase a promising enzyme for use in the pulp and paper industries.

]]>
<![CDATA[T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation]]> https://www.researchpad.co/article/5989db19ab0ee8fa60bcdd84

Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO’s single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO’s unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO.

]]>
<![CDATA[A Novel Reaction of Peroxiredoxin 4 towards Substrates in Oxidative Protein Folding]]> https://www.researchpad.co/article/5989d9daab0ee8fa60b675b8

Peroxiredoxin 4 (Prx4) is the only endoplasmic reticulum localized peroxiredoxin. It functions not only to eliminate peroxide but also to promote oxidative protein folding via oxidizing protein disulfide isomerase (PDI). In Prx4-mediated oxidative protein folding we discovered a new reaction that the sulfenic acid form of Prx4 can directly react with thiols in folding substrates, resulting in non-native disulfide cross-linking and aggregation. We also found that PDI can inhibit this reaction by exerting its reductase and chaperone activities. This discovery discloses an off-pathway reaction in the Prx4-mediated oxidative protein folding and the quality control role of PDI.

]]>
<![CDATA[Flood-Induced Changes in Soil Microbial Functions as Modified by Plant Diversity]]> https://www.researchpad.co/article/5989d9f9ab0ee8fa60b71232

Flooding frequency is predicted to increase during the next decades, calling for a better understanding of impacts on terrestrial ecosystems and for developing strategies to mitigate potential damage. Plant diversity is expected to buffer flooding effects by providing a broad range of species’ responses. Here we report on the response of soil processes to a severe summer flood in 2013, which affected major parts of central Europe. We compared soil microbial respiration, biomass, nutrient limitation and enzyme activity in a grassland biodiversity experiment in Germany before flooding, one week and three months after the flood. Microbial biomass was reduced in the severely flooded plots at high, but not at low plant functional group richness. Flooding alleviated microbial nitrogen limitation, presumably due the input of nutrient-rich sediments. Further, the activity of soil enzymes including 1,4-β-N-acetylglucosaminidase, phenol oxidase and peroxidase increased with flooding severity, suggesting increased chitin and lignin degradation as a consequence of the input of detritus in sediments. Flooding effects were enhanced at higher plant diversity, indicating that plant diversity temporarily reduces stability of soil processes during flooding. The long-term impacts, however, remain unknown and deserve further investigation.

]]>
<![CDATA[Lignin-degrading peroxidases in white-rot fungus Trametes hirsuta 072. Absolute expression quantification of full multigene family]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdc019

Ligninolytic heme peroxidases comprise an extensive family of enzymes, which production is characteristic for white-rot Basidiomycota. The majority of fungal heme peroxidases are encoded by multigene families that differentially express closely related proteins. Currently, there were very few attempts to characterize the complete multigene family of heme peroxidases in a single fungus. Here we are focusing on identification and characterization of peroxidase genes, which are transcribed and secreted by basidiomycete Trametes hirsuta 072, an efficient lignin degrader. The T. hirsuta genome contains 18 ligninolytic peroxidase genes encoding 9 putative lignin peroxidases (LiP), 7 putative short manganese peroxidases (MnP) and 2 putative versatile peroxidases (VP). Using ddPCR method we have quantified the absolute expression of the 18 peroxidase genes under different culture conditions and on different growth stages of basidiomycete. It was shown that only two genes (one MnP and one VP) were prevalently expressed as well as secreted into cultural broth under all conditions investigated. However their transcriptome and protein profiles differed in time depending on the effector used. The expression of other peroxidase genes revealed a significant variability, so one can propose the specific roles of these enzymes in fungal development and lifestyle.

]]>
<![CDATA[Effectiveness Factors and Conversion in a Biocatalytic Membrane Reactor]]> https://www.researchpad.co/article/5989db0aab0ee8fa60bc9d4b

Analytical expressions of the effectiveness factor of a biocatalytic membrane reactor, and its asymptote as the Thiele modulus becomes large, are presented. The evaluation of the effectiveness factor is based on the solution of the governing equations for solute transport in the two regions of the reactor, i.e. the lumen and the matrix (with the biofilm immobilized in the matrix). The lumen solution accounts for both axial diffusion and radial convective flow, while the matrix solution is based on Robin-type boundary conditions. The effectiveness factor is shown to be a function of the Thiele modulus, the partition coefficient, the Sherwood number, the Peclet number, and membrane thickness. Three regions of Thiele moduli are defined in the effectiveness factor graphs. These correspond with reaction rate limited, internal-diffusion limited, and external mass transfer limited solute transport. Radial convective flows were shown to only improve the effectiveness factor in the region of internal diffusion limitation. The assumption of first order kinetics is shown to be applicable only in the Thiele modulus regions of internal and external mass transfer limitation. An iteration scheme is also presented for estimating the effectiveness factor when the solute fractional conversion is known. The model is validated with experimental data from a membrane gradostat reactor immobilised with Phanerochaete chrysosporium for the production of lignin and manganese peroxidases. The developed model and experimental data allow for the determination of the Thiele modulus at which the effectiveness factor and fractional conversion are optimal.

]]>
<![CDATA[Glutathione Peroxidase 5 Is Expressed by the Entire Pig Male Genital Tract and Once in the Seminal Plasma Contributes to Sperm Survival and In Vivo Fertility]]> https://www.researchpad.co/article/5989da26ab0ee8fa60b80c60

Glutathione peroxidase-5 (GPX5) is an H2O2-scavenging enzyme identified in boar seminal plasma (SP). This study attempted to clarify its origin and role on sperm survival and fertility after artificial insemination (AI). GPX5 was expressed (Western blot and immunocytochemistry using a rabbit primary polyclonal antibody) in testes, epididymis and accessory sex glands (6 boars). SP-GPX5 concentration differed among boars (11 boars, P < 0.001), among ejaculates within boar (44 ejaculates, P < 0.001) and among portions within ejaculate (15 ejaculates). The first 10 mL of the sperm rich fraction (SRF, sperm-peak portion) had a significantly lower concentration (8.87 ± 0.78 ng/mL) than the rest of the SRF and the post-SRF (11.66 ± 0.79 and 12.37 ± 0.79 ng/mL, respectively, P < 0.005). Sperm motility of liquid-stored semen AI-doses (n = 44, at 15–17°C during 72h) declined faster in AI-doses with low concentrations of SP-GPX5 compared to those with high-levels. Boars (n = 11) with high SP-GPX5 showed higher farrowing rates and litter sizes than those with low SP-GPX5 (a total of 5,275 inseminated sows). In sum, GPX5 is widely expressed in the boar genital tract and its variable presence in SP shows a positive relationship with sperm quality and fertility outcomes of liquid-stored semen AI-doses.

]]>
<![CDATA[Independent Evolution of Six Families of Halogenating Enzymes]]> https://www.researchpad.co/article/5989dab0ab0ee8fa60baafb7

Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity.

]]>
<![CDATA[Selection of Reference Genes for qRT-PCR Analysis of Gene Expression in Stipa grandis during Environmental Stresses]]> https://www.researchpad.co/article/5989da5aab0ee8fa60b8fa6a

Stipa grandis P. Smirn. is a dominant plant species in the typical steppe of the Xilingole Plateau of Inner Mongolia. Selection of suitable reference genes for the quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) is important for gene expression analysis and research into the molecular mechanisms underlying the stress responses of S. grandis. In the present study, 15 candidate reference genes (EF1 beta, ACT, GAPDH, SamDC, CUL4, CAP, SNF2, SKIP1, SKIP5, SKIP11, UBC2, UBC15, UBC17, UCH, and HERC2) were evaluated for their stability as potential reference genes for qRT-PCR under different stresses. Four algorithms were used: GeNorm, NormFinder, BestKeeper, and RefFinder. The results showed that the most stable reference genes were different under different stress conditions: EF1beta and UBC15 during drought and salt stresses; ACT and GAPDH under heat stress; SKIP5 and UBC17 under cold stress; UBC15 and HERC2 under high pH stress; UBC2 and UBC15 under wounding stress; EF1beta and UBC17 under jasmonic acid treatment; UBC15 and CUL4 under abscisic acid treatment; and HERC2 and UBC17 under salicylic acid treatment. EF1beta and HERC2 were the most suitable genes for the global analysis of all samples. Furthermore, six target genes, SgPOD, SgPAL, SgLEA, SgLOX, SgHSP90 and SgPR1, were selected to validate the most and least stable reference genes under different treatments. Our results provide guidelines for reference gene selection for more accurate qRT-PCR quantification and will promote studies of gene expression in S. grandis subjected to environmental stress.

]]>
<![CDATA[Inhibition of Myeloperoxidase Activity in Cystic Fibrosis Sputum by Peptide Inhibitor of Complement C1 (PIC1)]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdb85c

Myeloperoxidase is the major peroxidase enzyme in neutrophil granules and implicated in contributing to inflammatory lung damage in cystic fibrosis. Free myeloperoxidase is present in cystic fibrosis lung fluid and generates hypochlorous acid. Here we report a new inhibitor of myeloperoxidase activity, Peptide Inhibitor of Complement C1 (PIC1). Using TMB as the oxidizing substrate, PIC1 inhibited myeloperoxidase activity in cystic fibrosis sputum soluble fractions by an average of a 3.4-fold decrease (P = 0.02). PIC1 also dose-dependently inhibited myeloperoxidase activity in a neutrophil lysate or purified myeloperoxidase by up to 28-fold (P < 0.001). PIC1 inhibited myeloperoxidase activity similarly, on a molar basis, as the specific myeloperoxidase inhibitor 4-Aminobenzoic acid hydrazide (ABAH) for various oxidizing substrates. PIC1 was able to protect the heme ring of myeloperoxidase from destruction by NaOCl, assayed by spectral analysis. PIC1 incubated with oxidized TMB reversed the oxidation state of TMB, as measured by absorbance at 450 nm, with a 20-fold reduction in oxidized TMB (P = 0.02). This result was consistent with an antioxidant mechanism for PIC1. In summary, PIC1 inhibits the peroxidase activity of myeloperoxidase in CF sputum likely via an antioxidant mechanism.

]]>
<![CDATA[The Prevalence, Incidence and Natural Course of Positive Antithyroperoxidase Antibodies in a Population-Based Study: Tehran Thyroid Study]]> https://www.researchpad.co/article/5989d9d4ab0ee8fa60b6569d

Objective

Thyroid peroxidase antibody (TPOAb), the most common antibody frequently measured in population surveys is a protein expressed in the thyroid gland. We conducted the present study to analyze the prevalence and incidence of thyroid auto immunity and natural course of TPOAb in a population based study.

Material and Methods

This prospective study was conducted within the framework of the Tehran Thyroid Study (TTS) on 5783 (2376 men and 3407 women) individuals aged ≥ 20 years who had thyroid function tests at baseline and were followed up for median 9.1 year with TPOAb measurements at approximately every 3 years.

Results

The mean age of total population at baseline was 40.04±14.32. At baseline, of the 5783 participants, 742 (12.8%) were TPOAb positive, with higher prevalence among women than in men (16.0 vs. 8.5%, p = 0.001). The prevalence of TPOAb positivity in the total population was 11.9, 14.9 and 13.6% in the young, middle age and elderly respectively. The total incidence rate (95%CI) of TPOAb positivity in the total population (5020) was 7.1 (6.36–7.98) per 1000 person-years of follow-up, with higher incidence of TPOAb positivity among young participants, i.e. 8.5 (7.5–9.7) per 1000 person-years. Sex specific incidence rate demonstrated that TPOAb positivity was higher in women, 9.3 (8.2–10.7) per 1000 person-years. The Cox's proportional hazard model analysis showed that the hazard ratio of developing TPOAb positivity was higher in women than men (P<0.0001) and tended to increase slightly with serum TSH levels (P<0.0001) but declined with increasing age (P<0.0001) in the total population. Our findings demonstrate that individuals, who became TPOAb positive in each phase, had significant elevation of TSH levels at the phase of seroconversion, compared to baseline values.

Conclusion

Gender, age and elevated serum TSH were found to be risk factors for developing TPOAb positivity. Furthermore, compared to baseline a significant elevation of TSH levels during seroconversion phase was observed in TPOAb positive individuals.

]]>
<![CDATA[Methods for Isolation and Purification of Murine Liver Sinusoidal Endothelial Cells: A Systematic Review]]> https://www.researchpad.co/article/5989da82ab0ee8fa60b9b231

To study the biological functions of liver sinusoidal endothelial cells (LSEC) and to identify their interplay with blood or liver cells, techniques allowing for the isolation and purification of LSEC have been developed over the last decades. The objective of the present review is to summarize and to compare the efficiency of existing methods for isolating murine LSEC. Toward this end, the MEDLINE database was searched for all original articles describing LSEC isolation from rat and mouse livers. Out of the 489 publications identified, 23 reported the main steps and outcomes of the procedure and were included in our review. Here, we report and analyse the technical details of the essential steps of the techniques used for LSEC isolation. The correlations between the prevalence of some steps and the efficiency of LSEC isolation were also identified. We found that centrifugal elutriation, selective adherence and, more recently, magnetic-activated cell sorting were used for LSEC purification. Centrifugal elutriation procured high yields of pure LSEC (for rats 30–141.9 million cells for 85–98% purities; for mice 9–9.25 million cells for >95% purities), but the use of this method remained limited due to its high technical requirements. Selective adherence showed inconsistent results in terms of cell yields and purities in rats (5–100 million cells for 73.7–95% purities). In contrast, magnetic-activated cell sorting allowed for the isolation of highly pure LSEC, but overall lower cell yields were reported (for rats 10.7 million cells with 97.6% purity; for mice 0.5–9 million cells with 90–98% purities). Notably, the controversies regarding the accuracy of several phenotypic markers for LSEC should be considered and their use for both magnetic sorting and characterization remain doubtful. It appears that more effort is needed to refine and standardize the procedure for LSEC isolation, with a focus on the identification of specific antigens. Such a procedure is required to identify the molecular mechanisms regulating the function of LSEC and to improve our understanding of their role in complex cellular processes in the liver.

]]>
<![CDATA[The Role of Reactive Oxygen Species in Modulating the Caenorhabditis elegans Immune Response]]> https://www.researchpad.co/article/5989db0aab0ee8fa60bc9c7b ]]> <![CDATA[Virulence of Mycobacterium tuberculosis after Acquisition of Isoniazid Resistance: Individual Nature of katG Mutants and the Possible Role of AhpC]]> https://www.researchpad.co/article/5989da76ab0ee8fa60b96c11

In the last decade, there were 10 million new tuberculosis cases per year globally. Around 9.5% of these cases were caused by isoniazid resistant (INHr) Mycobacterium tuberculosis (Mtb) strains. Although isoniazid resistance in Mtb is multigenic, mutations in the catalase-peroxidase (katG) gene predominate among the INHr strains. The effect of these drug-resistance-conferring mutations on Mtb fitness and virulence is variable. Here, we assessed differences in bacterial growth, immune response and pathology induced by Mtb strains harboring mutations at the N-terminus of the katG gene. We studied one laboratory and one clinically isolated Mtb clonal pair from different genetic lineages. The INHr strain in each pair had one and two katG mutations with significantly reduced levels of the enzyme and peroxidase activity. Both strains share the V1A mutation, while the double mutant clinical INHr had also the novel E3V katG mutation. Four groups of C57BL/6 mice were infected with one of the Mtb strains previously described. We observed a strong reduction in virulence (reduced bacterial growth), lower induction of proinflammatory cytokines and significantly reduced pathology scores in mice infected with the clinical INHr strain compared to the infection caused by its INHs progenitor strain. On the other hand, there was a subtle reduction of bacteria growth without differences in the pathology scores in mice infected with the laboratory INHr strain. Our results also showed distinct alkyl-hydroperoxidase C (AhpC) levels in the katG mutant strains, which could explain the difference in the virulence profile observed. The difference in the AhpC levels between clonal strains was not related to a genetic defect in the gene or its promoter. Cumulatively, our results indicate that the virulence, pathology and fitness of INHr strains could be negatively affected by multiple mutations in katG, lack of the peroxidase activity and reduced AhpC levels.

]]>
<![CDATA[New function of aldoxime dehydratase: Redox catalysis and the formation of an expected product]]> https://www.researchpad.co/article/5989db53ab0ee8fa60bdcc6a

In general, hemoproteins are capable of catalyzing redox reactions. Aldoxime dehydratase (OxdA), which is a unique heme-containing enzyme, catalyzes the dehydration of aldoximes to the corresponding nitriles. Its reaction is a rare example of heme directly activating an organic substrate, unlike the utilization of H2O2 or O2 as a mediator of catalysis by other heme-containing enzymes. While it is unknown whether OxdA catalyzes redox reactions or not, we here for the first time detected catalase activity (which is one of the redox activities) of wild-type OxdA, OxdA(WT). Furthermore, we constructed a His320 → Asp mutant of OxdA [OxdA(H320D)], and found it exhibits catalase activity. Determination of the kinetic parameters of OxdA(WT) and OxdA(H320D) revealed that their Km values for H2O2 were similar to each other, but the kcat value of OxdA(H320D) was 30 times higher than that of OxdA(WT). Next, we examined another redox activity and found it was the peroxidase activity of OxdAs. While both OxdA(WT) and OxdA(H320D) showed the activity, the activity of OxdA(H320D) was dozens of times higher than that of OxdA(WT). These findings demonstrated that the H320D mutation enhances the peroxidase activity of OxdA. OxdAs (WT and H320D) were found to catalyze another redox reaction, a peroxygenase reaction. During this reaction of OxdA(H320D) with 1-methoxynaphthalene as a substrate, surprisingly, the reaction mixture changed to a color different from that with OxdA(WT), which was due to the known product, Russig’s blue. We purified and identified the new product as 1-methoxy-2-naphthalenol, which has never been reported as a product of the peroxygenase reaction, to the best of our knowledge. These findings indicated that the H320D mutation not only enhanced redox activities, but also significantly altered the hydroxylation site of the substrate.

]]>
<![CDATA[Serum Malondialdehyde Concentration and Glutathione Peroxidase Activity in a Longitudinal Study of Gestational Diabetes]]> https://www.researchpad.co/article/5989da82ab0ee8fa60b9b374

Aims

The main goal of this study was to evaluate the presence of oxidative damage and to quantify its level in gestational diabetes.

Methods

Thirty-six healthy women and thirty-six women with gestational diabetes were studied in the three trimesters of pregnancy regarding their levels of oxidative stress markers. These women were diagnosed with diabetes in the second trimester of pregnancy. Blood glucose levels after 100g glucose tolerance test were higher than 190, 165 or 145 mg/dl, 1, 2 or 3 hours after glucose intake.

Results

The group of women with gestational diabetes had higher serum malondialdehyde levels, with significant differences between groups in the first and second trimester. The mean values of serum glutathione peroxidase activity in the diabetic women were significantly lower in the first trimester. In the group of women with gestational diabetes there was a negative linear correlation between serum malondialdehyde concentration and glutathione peroxidase activity in the second and third trimester.

Conclusions

In this observational and longitudinal study in pregnant women, the alterations attributable to oxidative stress were present before the biochemical detection of the HbA1c increase. Usual recommendations once GD is detected (adequate metabolic control, as well as any other normally proposed to these patients) lowered the concentration of malondialdehyde at the end of pregnancy to the same levels of the healthy controls. Serum glutathione peroxidase activity in women with gestational diabetes increased during the gestational period.

]]>
<![CDATA[The Salinity Responsive Mechanism of a Hydroxyproline-Tolerant Mutant of Peanut Based on Digital Gene Expression Profiling Analysis]]> https://www.researchpad.co/article/5989dad4ab0ee8fa60bb760b

Soil salinity seriously limits plant growth and yield. Strategies have been developed for plants to cope with various environmental stresses during evolution. To screen for the broad-spectrum genes and the molecular mechanism about a hydroxyproline-tolerant mutant of peanut with enhanced salinity resistance under salinity stress, digital gene expression (DGE) sequencing was performed in the leaves of salinity-resistant mutant (S2) and Huayu20 as control (S4) under salt stress. The results indicate that major transcription factor families linked to salinity stress responses (NAC, bHLH, WRKY, AP2/ERF) are differentially expressed in the leaves of peanut under salinity stress. In addition, genes related to cell wall loosening and stiffening (xyloglucan endotransglucosylase/hydrolases, peroxidases, lipid transfer protein, expansin, extension), late embryogenesis abundant protein family, fatty acid biosynthesis and metabolism (13-lipoxygenase omega-6 fatty acid desaturase, omega-3 fatty acid desaturase) and some previously reported stress-related genes encoding proteins such as defensin, universal stress protein, metallothionein, peroxidase etc, and some other known or unknown function stress related genes, have been identified. The information from this study will be useful for further research on the mechanism of salinity resistance and will provide a useful genomic resource for the breeding of salinity resistance variety in peanut.

]]>