ResearchPad - phase-determination https://www.researchpad.co Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Spectral-power associations reflect amplitude modulation and within-frequency interactions on the sub-second timescale and cross-frequency interactions on the seconds timescale]]> https://www.researchpad.co/article/elastic_article_15765 We investigated the global structure of intrinsic cross-frequency dynamics by systematically examining power-based temporal associations among a broad range of oscillation frequencies both within and across EEG-based current sources (sites). We focused on power-based associations that could reveal unique timescale dependence independently of interacting frequencies. Large spectral-power fluctuations across all sites occurred at two characteristic timescales, sub-second and seconds, yielding distinct patterns of cross-frequency associations. On the fast sub-second timescale, within-site (local) associations were consistently between pairs of βγ frequencies differing by a constant Δf (particularly Δf ~ 10 Hz at posterior sites and Δf ~ 16 Hz at lateral sites) suggesting that higher-frequency oscillations are organized into Δf amplitude-modulated packets, whereas cross-site (long-distance) associations were all within-frequency (particularly in the >30 Hz and 6–12 Hz ranges, suggestive of feedforward and feedback interactions). On the slower seconds timescale, within-site (local) associations were characterized by a broad range of frequencies selectively associated with ~10 Hz at posterior sites and associations among higher (>20 Hz) frequencies at lateral sites, whereas cross-site (long-distance) associations were characterized by a broad range of frequencies at posterior sites selectively associated with ~10 Hz at other sites, associations among higher (>20 Hz) frequencies among lateral and anterior sites, and prevalent associations at ~10 Hz. Regardless of timescale, within-site (local) cross-frequency associations were weak at anterior sites indicative of frequency-specific operations. Overall, these results suggest that the fast sub-second-timescale coordination of spectral power is limited to local amplitude modulation and insulated within-frequency long-distance interactions (likely feedforward and feedback interactions), while characteristic patterns of cross-frequency interactions emerge on the slower seconds timescale. The results also suggest that the occipital α oscillations play a role in organizing higher-frequency oscillations into ~10 Hz amplitude-modulated packets to communicate with other regions. Functional implications of these timescale-dependent cross-frequency associations await future investigations.

]]>
<![CDATA[Deterministic response strategies in a trial-and-error learning task]]> https://www.researchpad.co/article/5c099460d5eed0c4842aeb73

Trial-and-error learning is a universal strategy for establishing which actions are beneficial or harmful in new environments. However, learning stimulus-response associations solely via trial-and-error is often suboptimal, as in many settings dependencies among stimuli and responses can be exploited to increase learning efficiency. Previous studies have shown that in settings featuring such dependencies, humans typically engage high-level cognitive processes and employ advanced learning strategies to improve their learning efficiency. Here we analyze in detail the initial learning phase of a sample of human subjects (N = 85) performing a trial-and-error learning task with deterministic feedback and hidden stimulus-response dependencies. Using computational modeling, we find that the standard Q-learning model cannot sufficiently explain human learning strategies in this setting. Instead, newly introduced deterministic response models, which are theoretically optimal and transform stimulus sequences unambiguously into response sequences, provide the best explanation for 50.6% of the subjects. Most of the remaining subjects either show a tendency towards generic optimal learning (21.2%) or at least partially exploit stimulus-response dependencies (22.3%), while a few subjects (5.9%) show no clear preference for any of the employed models. After the initial learning phase, asymptotic learning performance during the subsequent practice phase is best explained by the standard Q-learning model. Our results show that human learning strategies in the presented trial-and-error learning task go beyond merely associating stimuli and responses via incremental reinforcement. Specifically during initial learning, high-level cognitive processes support sophisticated learning strategies that increase learning efficiency while keeping memory demands and computational efforts bounded. The good asymptotic fit of the Q-learning model indicates that these cognitive processes are successively replaced by the formation of stimulus-response associations over the course of learning.

]]>
<![CDATA[Perceptual Stability of the Lissajous Figure Is Modulated by the Speed of Illusory Rotation]]> https://www.researchpad.co/article/5989d9f5ab0ee8fa60b6fcbf

Lissajous figures represent ambiguous structure-from-motion stimuli rotating in depth and have proven to be a versatile tool to explore the cognitive and neural mechanisms underlying bistable perception. They are generated by the intersection of two sinusoids with perpendicular axes and increasing phase-shift whose frequency determines the speed of illusory 3D rotation. Recently, we found that Lissajous figures of higher shifting frequencies elicited longer perceptual phase durations and tentatively proposed a “representational momentum” account. In this study, our aim was twofold. First, we aimed to gather more behavioral evidence related to the perceptual dynamics of the Lissajous figure by simultaneously varying its shifting frequency and size. Using a conventional analysis, we investigated the effects of our experimental manipulations on transition probability (i.e., the probability that the current percept will change at the next critical stimulus configuration). Second, we sought to test the impact of our experimental factors on the occurrence of transitions in bistable perception by means of a Bayesian approach that can be used to directly quantify the impact of contextual cues on perceptual stability. We thereby estimated the implicit prediction of perceptual stability and how it is modulated by experimental manipulations.

]]>
<![CDATA[A real-time traffic control method for the intersection with pre-signals under the phase swap sorting strategy]]> https://www.researchpad.co/article/5989db5cab0ee8fa60bdff31

To deal with the conflicts between left-turn and through traffic streams and increase the discharge capacity, this paper addresses the pre-signal which is implemented at a signalized intersection. Such an intersection with pre-signal is termed as a tandem intersection. For the tandem intersection, phase swap sorting strategy is deemed as the most effective phasing scheme in view of some exclusive merits, such as easier compliance of drivers, and shorter sorting area. However, a major limitation of the phase swap sorting strategy is not considered in previous studies: if one or more vehicle is left at the sorting area after the signal light turns to red, the capacity of the approach would be dramatically dropped. Besides, previous signal control studies deal with a fixed timing plan that is not adaptive with the fluctuation of traffic flows. Therefore, to cope with these two gaps, this paper firstly takes an in-depth analysis of the traffic flow operations at the tandem intersection. Secondly, three groups of loop detectors are placed to obtain the real-time vehicle information for adaptive signalization. The lane selection behavior in the sorting area is considered to set the green time for intersection signals. With the objective of minimizing the vehicle delay, the signal control parameters are then optimized based on a dynamic programming method. Finally, numerical experiments show that average vehicle delay and maximum queue length can be reduced under all scenarios.

]]>
<![CDATA[Efficacy, Safety, and Dose of Pafuramidine, a New Oral Drug for Treatment of First Stage Sleeping Sickness, in a Phase 2a Clinical Study and Phase 2b Randomized Clinical Studies]]> https://www.researchpad.co/article/5989da69ab0ee8fa60b92930

Background

Sleeping sickness (human African trypanosomiasis [HAT]) is caused by protozoan parasites and characterized by a chronic progressive course, which may last up to several years before death. We conducted two Phase 2 studies to determine the efficacy and safety of oral pafuramidine in African patients with first stage HAT.

Methods

The Phase 2a study was an open-label, non-controlled, proof-of-concept study where 32 patients were treated with 100 mg of pafuramidine orally twice a day (BID) for 5 days at two trypanosomiasis reference centers (Angola and the Democratic Republic of the Congo [DRC]) between August 2001 and November 2004. The Phase 2b study compared pafuramidine in 41 patients versus standard pentamidine therapy in 40 patients. The Phase 2b study was open-label, parallel-group, controlled, randomized, and conducted at two sites in the DRC between April 2003 and February 2007. The Phase 2b study was then amended to add an open-label sequence (Phase 2b-2), where 30 patients received pafuramidine for 10 days. The primary efficacy endpoint was parasitologic cure at 24 hours (Phase 2a) or 3 months (Phase 2b) after treatment completion. The primary safety outcome was the rate of occurrence of World Health Organization Toxicity Scale Grade 3 or higher adverse events. All subjects provided written informed consent.

Findings/Conclusion

Pafuramidine for the treatment of first stage HAT was comparable in efficacy to pentamidine after 10 days of dosing. The cure rates 3 months post-treatment were 79% in the 5-day pafuramidine, 100% in the 7-day pentamidine, and 93% in the 10-day pafuramidine groups. In Phase 2b, the percentage of patients with at least 1 treatment-emergent adverse event was notably higher after pentamidine treatment (93%) than pafuramidine treatment for 5 days (25%) and 10 days (57%). These results support continuation of the development program for pafuramidine into Phase 3.

]]>
<![CDATA[The effects of menstrual cycle phase on physical performance in female soccer players]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbe0b

Background

Female soccer has grown extensively in recent years, however differences in gender-specific physiology have rarely been considered. The female reproductive hormones which rise and fall throughout the menstrual cycle, are known to affect numerous cardiovascular, respiratory, thermoregulatory and metabolic parameters, which in turn, may have implications on exercise physiology and soccer performance. Therefore, the main aim of the present study was to investigate potential effects of menstrual cycle phase on performance in soccer specific tests.

Methods

Nine sub elite female soccer players, all of whom have menstrual cycles of physiological length; performed a series of physical performance tests (Yo-Yo Intermittent endurance test (Yo-Yo IET), counter movement jump (CMJ) and 3x30 m sprints). These were conducted at distinct time points during two main phases of the menstrual cycle (early follicular phase (FP) and mid luteal phase (LP)) where hormones contrasted at their greatest magnitude.

Results

Yo-Yo IET performance was considerably lower during the mid LP (2833±896 m) as compared to the early FP (3288±800 m). A trend towards significance was observed (p = 0.07) and the magnitude based inferences suggested probabilities of 0/61/39 for superiority/equality/inferiority of performance during the mid LP, leading to the inference of a possibly harmful effect. For CMJ (early FP, 20.0±3.9 cm; mid LP 29.6±3.0 cm, p = 0.33) and sprint (early FP, 4.7±0.1 s; mid LP, 4.7±0.1 s, p = 0.96) performances the results were unclear (8/24/68, 48/0/52, respectively).

Conclusion

The results of this study are in support of a reduction in maximal endurance performance during the mid LP of the menstrual cycle. However, the same effect was not observed for jumping and sprint performance. Therefore, consideration of cycle phase when monitoring a player’s endurance capacity may be worthwhile.

]]>
<![CDATA[Walking on a Vertically Oscillating Treadmill: Phase Synchronization and Gait Kinematics]]> https://www.researchpad.co/article/5989da39ab0ee8fa60b87196

Sensory motor synchronization can be used to alter gait behavior. This type of therapy may be useful in a rehabilitative setting, though several questions remain regarding the most effective way to promote and sustain synchronization. The purpose of this study was to describe a new technique for using synchronization to influence a person’s gait and to compare walking behavior under this paradigm with that of side by side walking. Thirty one subjects walked on a motorized treadmill that was placed on a platform that oscillated vertically at various frequencies and amplitudes. Synchronization with the platform and stride kinematics were recorded during these walking trials and compared with previously reported data from side by side walking. The results indicated that vertical oscillation of the treadmill surface at frequencies that matched subjects preferred stride or step frequency resulted in greater unintentional synchronization when compared with side by side walking data (up to 78.6±8.3% of the trial vs 59.2±17.4%). While intermittent phase locking was observed in all cases, periods of synchronization occurred more frequently and lasted longer while walking on the oscillating treadmill (mean length of periods of phase locking 11.85 steps vs 5.18 steps). Further, stride length, height and duration were altered by changing the frequency of treadmill oscillation. These results suggest that synchronization to a haptic signal may hold implications for use in a clinical setting.

]]>
<![CDATA[A generalized phase resetting method for phase-locked modes prediction]]> https://www.researchpad.co/article/5989db50ab0ee8fa60bdbf41

We derived analytically and checked numerically a set of novel conditions for the existence and the stability of phase-locked modes in a biologically relevant master-slave neural network with a dynamic feedback loop. Since neural oscillators even in the three-neuron network investigated here receive multiple inputs per cycle, we generalized the concept of phase resetting to accommodate multiple inputs per cycle. We proved that the phase resetting produced by two or more stimuli per cycle can be recursively computed from the traditional, single stimulus, phase resetting. We applied the newly derived generalized phase resetting definition to predicting the relative phase and the stability of a phase-locked mode that was experimentally observed in this type of master-slave network with a dynamic loop network.

]]>
<![CDATA[Wearable-Sensor-Based Classification Models of Faller Status in Older Adults]]> https://www.researchpad.co/article/5989daf3ab0ee8fa60bc1fe1

Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.

]]>
<![CDATA[Reduced Theta-Band Power and Phase Synchrony during Explicit Verbal Memory Tasks in Female, Non-Clinical Individuals with Schizotypal Traits]]> https://www.researchpad.co/article/5989daabab0ee8fa60ba93c8

The study of non-clinical individuals with schizotypal traits has been considered to provide a promising endophenotypic approach to understanding schizophrenia, because schizophrenia is highly heterogeneous, and a number of confounding factors may affect neuropsychological performance. Here, we investigated whether deficits in explicit verbal memory in individuals with schizotypal traits are associated with abnormalities in the local and inter-regional synchrony of brain activity. Memory deficits have been recognized as a core problem in schizophrenia, and previous studies have consistently shown explicit verbal memory impairment in schizophrenic patients. However, the mechanism of this impairment has not been fully revealed. Seventeen individuals with schizotypal traits and 17 age-matched, normal controls participated. Multichannel event-related electroencephalograms (EEGs) were recorded while the subjects performed a continuous recognition task. Event-related spectral perturbations (ERSPs) and inter-regional theta-band phase locking values (TPLVs) were investigated to determine the differences in local and global neural synchrony between the two subject groups. Additionally, the connection patterns of the TPLVs were quantitatively analyzed using graph theory measures. An old/new effect was found in the induced theta-band ERSP in both groups. However, the difference between the old and new was larger in normal controls than in schizotypal trait group. The tendency of elevated old/new effect in normal controls was observed in anterior-posterior theta-band phase synchrony as well. Our results suggest that explicit memory deficits observed in schizophrenia patients can also be found in non-clinical individuals with psychometrically defined schizotypal traits.

]]>
<![CDATA[Phasic Burst Stimulation: A Closed-Loop Approach to Tuning Deep Brain Stimulation Parameters for Parkinson’s Disease]]> https://www.researchpad.co/article/5989da55ab0ee8fa60b8ea82

We propose a novel, closed-loop approach to tuning deep brain stimulation (DBS) for Parkinson’s disease (PD). The approach, termed Phasic Burst Stimulation (PhaBS), applies a burst of stimulus pulses over a range of phases predicted to disrupt pathological oscillations seen in PD. Stimulation parameters are optimized based on phase response curves (PRCs), which would be measured from each patient. This approach is tested in a computational model of PD with an emergent population oscillation. We show that the stimulus phase can be optimized using the PRC, and that PhaBS is more effective at suppressing the pathological oscillation than a single phasic stimulus pulse. PhaBS provides a closed-loop approach to DBS that can be optimized for each patient.

]]>
<![CDATA[Top-down control of cortical gamma-band communication via pulvinar induced phase shifts in the alpha rhythm]]> https://www.researchpad.co/article/5989db5cab0ee8fa60be0380

Selective routing of information between cortical areas is required in order to combine different sources of information according to cognitive demand. Recent experiments have suggested that alpha band activity originating from the pulvinar coordinates this inter-areal cortical communication. Using a computer model we investigated whether top-down induced shifts in the relative alpha phase between two cortical areas could modulate cortical communication, quantified in terms of changes in gamma band coherence between them. The network model was comprised of two uni-directionally connected neuronal populations of spiking neurons, each representing a cortical area. We find that the phase difference of the alpha oscillations modulating the two neuronal populations strongly affected the interregional gamma-band neuronal coherence. We confirmed that a higher gamma band coherence also resulted in more efficient transmission of spiking information between cortical areas, thereby confirming the value of gamma coherence as a proxy for cortical information transmission. In a model where both neuronal populations were connected bi-directionally, the relative alpha phase determined the directionality of communication between the populations. Our results show the feasibility of a physiological realistic mechanism for routing information in the brain based on coupled oscillations. Our model results in a set of testable predictions regarding phase shifts in alpha oscillations under different task demands requiring experimental quantification of neuronal oscillations in different regions in e.g. attention paradigms.

]]>
<![CDATA[Zooming in: From spatially extended traveling waves to localized structures: The case of the Sine-Gordon equation in (1+3) dimensions]]> https://www.researchpad.co/article/5989db52ab0ee8fa60bdc993

The Sine-Gordon equation in (1+3) dimensions has N-traveling front (“kink”, “domain wall”)- solutions for all N ≥ 1. A nonlinear functional of the solution, which vanishes on a single-front, maps multi-front solutions onto sets of infinitely long, but laterally bounded, rods, which move in space. Each rod is localized in the vicinity of the intersection of two Sine-Gordon fronts. The rod systems are solutions of the linear wave equation, driven by a term that is constructed out of Sine-Gordon fronts. An additional linear operation maps multi-rod systems onto sets of blobs. Each blob is localized in the vicinity of rod intersection, and moves in space. The blob systems are solutions of the linear wave equation, driven by a term that is also constructed out of Sine-Gordon fronts. The temporal evolution of multi-blob solutions mimics elastic collisions of systems of spatially extended particles.

]]>
<![CDATA[Unbounded number line estimation as a measure of numerical estimation]]> https://www.researchpad.co/article/5c9405a0d5eed0c484538e7d

Number magnitude estimation has been investigated over the last decades using different tasks including non-symbolic numerosity but also number line estimation tasks. Recently, a bi-directional mapping process was suggested for numerosity estimation accounting for underestimation in a perception version of the task (i.e., indicating the number of non-symbolic dots in a set) and overestimation in the corresponding production task (i.e., produce the number of dots indicated by a symbolic number). In the present study, we evaluated the generalizability of these estimation biases in perception and production tasks to bounded and unbounded number line estimation. Importantly, target numbers were underestimated/overestimated by participants in the perception/production version of numerosity estimation as well as unbounded number line estimation. However, this pattern was reversed for bounded number line estimation. Thereby, the present data indicate a conceptual similarity of unbounded number line estimation and the established non-symbolic numerosity estimation task as a measure of numerical estimation. Accordingly, this corroborates the notion that unbounded number line estimation may reflect a purer measure of number magnitude representation than the bounded task version. Furthermore, our findings strengthen the bi-directional mapping hypothesis for numerical estimation by providing evidence for its generalizability to unbounded number line estimation for the first time.

]]>
<![CDATA[Clinical evaluation of new automatic coronary-specific best cardiac phase selection algorithm for single-beat coronary CT angiography]]> https://www.researchpad.co/article/5989db4fab0ee8fa60bdbb19

The aim of this study was to evaluate the workflow efficiency of a new automatic coronary-specific reconstruction technique (Smart Phase, GE Healthcare—SP) for selection of the best cardiac phase with least coronary motion when compared with expert manual selection (MS) of best phase in patients with high heart rate. A total of 46 patients with heart rates above 75 bpm who underwent single beat coronary computed tomography angiography (CCTA) were enrolled in this study. CCTA of all subjects were performed on a 256-detector row CT scanner (Revolution CT, GE Healthcare, Waukesha, Wisconsin, US). With the SP technique, the acquired phase range was automatically searched in 2% phase intervals during the reconstruction process to determine the optimal phase for coronary assessment, while for routine expert MS, reconstructions were performed at 5% intervals and a best phase was manually determined. The reconstruction and review times were recorded to measure the workflow efficiency for each method. Two reviewers subjectively assessed image quality for each coronary artery in the MS and SP reconstruction volumes using a 4-point grading scale. The average HR of the enrolled patients was 91.1±19.0bpm. A total of 204 vessels were assessed. The subjective image quality using SP was comparable to that of the MS, 1.45±0.85 vs 1.43±0.81 respectively (p = 0.88). The average time was 246 seconds for the manual best phase selection, and 98 seconds for the SP selection, resulting in average time saving of 148 seconds (60%) with use of the SP algorithm. The coronary specific automatic cardiac best phase selection technique (Smart Phase) improves clinical workflow in high heart rate patients and provides image quality comparable with manual cardiac best phase selection. Reconstruction of single-beat CCTA exams with SP can benefit the users with less experienced in CCTA image interpretation.

]]>
<![CDATA[The Motor Subsystem as a Predictor of Success in Young Football Talents: A Person-Oriented Study]]> https://www.researchpad.co/article/5989dad7ab0ee8fa60bb881e

Motor tests play a key role in talent selection in football. However, individual motor tests only focus on specific areas of a player’s complex performance. To evaluate his or her overall performance during a game, the current study takes a holistic perspective and uses a person-oriented approach. In this approach, several factors are viewed together as a system, whose state is analysed longitudinally. Based on this idea, six motor tests were aggregated to form the Motor Function subsystem. 104 young, top-level, male football talents were tested three times (2011, 2012, 2013; Mage, t2011 = 12.26, SD = 0.29), and their overall level of performance was determined one year later (2014). The data were analysed using the LICUR method, a pattern-analytical procedure for person-oriented approaches. At all three measuring points, four patterns could be identified, which remained stable over time. One of the patterns found at the third measuring point identified more subsequently successful players than random selection would. This pattern is characterised by above-average, but not necessarily the best, performance on the tests. Developmental paths along structurally stable patterns that occur more often than predicted by chance indicate that the Motor Function subsystem is a viable means of forecasting in the age range of 12–15 years. Above-average, though not necessary outstanding, performance both on fitness and technical tests appears to be particularly promising. These findings underscore the view that a holistic perspective may be profitable in talent selection.

]]>
<![CDATA[Phase Error Correction in Time-Averaged 3D Phase Contrast Magnetic Resonance Imaging of the Cerebral Vasculature]]> https://www.researchpad.co/article/5989dab9ab0ee8fa60bade91

Purpose

Volume flow rate (VFR) measurements based on phase contrast (PC)-magnetic resonance (MR) imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC), local polynomial correction (LPC), and whole brain polynomial correction (WBPC)).

Methods

Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically.

Results

In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC), 58.4% (LPC) and 47.7% (WBPC) (p < 0.001 across all schemes). Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997). In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels).

Conclusions

While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels.

]]>
<![CDATA[Quality of maternity care and its determinants along the continuum in Kenya: A structural equation modeling analysis]]> https://www.researchpad.co/article/5989db5bab0ee8fa60bdfdc7

Background

Improving access to delivery services does not guarantee access to quality obstetric care and better survival, and therefore, concerns for quality of maternal and newborn care in low- and middle-income countries have been raised. Our study explored characteristics associated with the quality of initial assessment, intrapartum, and immediate postpartum and newborn care, and further assessed the relationships along the continuum of care.

Methods

The 2010 Service Provision Assessment data of Kenya for 627 routine deliveries of women aged 15–49 were used. Quality of care measures were assessed using recently validated quality of care measures during initial assessment, intrapartum, and postpartum periods. Data were analyzed with negative binomial regression and structural equation modeling technique.

Results

The negative binomial regression results identified a number of determinants of quality, such as the level of health facilities, managing authority, presence of delivery fee, central electricity supply and clinical guideline for maternal and neonatal care. Our structural equation modeling (SEM) further demonstrated that facility characteristics were important determinants of quality for initial assessment and postpartum care, while characteristics at the provider level became more important in shaping the quality of intrapartum care. Furthermore we also noted that quality of initial assessment had a positive association with quality of intrapartum care (β = 0.71, p < 0.001), which in turn was positively associated with the quality of newborn and immediate postpartum care (β = 1.29, p = 0.004).

Conclusions

A continued focus on quality of care along the continuum of maternity care is important not only to mothers but also their newborns. Policymakers should therefore ensure that required resources, as well as adequate supervision and emphasis on the quality of obstetric care, are available.

]]>
<![CDATA[Estimation of the Basic Reproductive Number and Mean Serial Interval of a Novel Pathogen in a Small, Well-Observed Discrete Population]]> https://www.researchpad.co/article/5989daf7ab0ee8fa60bc351f

Background

Accurately assessing the transmissibility and serial interval of a novel human pathogen is public health priority so that the timing and required strength of interventions may be determined. Recent theoretical work has focused on making best use of data from the initial exponential phase of growth of incidence in large populations.

Methods

We measured generational transmissibility by the basic reproductive number R0 and the serial interval by its mean Tg. First, we constructed a simulation algorithm for case data arising from a small population of known size with R0 and Tg also known. We then developed an inferential model for the likelihood of these case data as a function of R0 and Tg. The model was designed to capture a) any signal of the serial interval distribution in the initial stochastic phase b) the growth rate of the exponential phase and c) the unique combination of R0 and Tg that generates a specific shape of peak incidence when the susceptible portion of a small population is depleted.

Findings

Extensive repeat simulation and parameter estimation revealed no bias in univariate estimates of either R0 and Tg. We were also able to simultaneously estimate both R0 and Tg. However, accurate final estimates could be obtained only much later in the outbreak. In particular, estimates of Tg were considerably less accurate in the bivariate case until the peak of incidence had passed.

Conclusions

The basic reproductive number and mean serial interval can be estimated simultaneously in real time during an outbreak of an emerging pathogen. Repeated application of these methods to small scale outbreaks at the start of an epidemic would permit accurate estimates of key parameters.

]]>
<![CDATA[Stimulus discriminability may bias value-based probabilistic learning]]> https://www.researchpad.co/article/5989db5aab0ee8fa60bdf611

Reinforcement learning tasks are often used to assess participants’ tendency to learn more from the positive or more from the negative consequences of one’s action. However, this assessment often requires comparison in learning performance across different task conditions, which may differ in the relative salience or discriminability of the stimuli associated with more and less rewarding outcomes, respectively. To address this issue, in a first set of studies, participants were subjected to two versions of a common probabilistic learning task. The two versions differed with respect to the stimulus (Hiragana) characters associated with reward probability. The assignment of character to reward probability was fixed within version but reversed between versions. We found that performance was highly influenced by task version, which could be explained by the relative perceptual discriminability of characters assigned to high or low reward probabilities, as assessed by a separate discrimination experiment. Participants were more reliable in selecting rewarding characters that were more discriminable, leading to differences in learning curves and their sensitivity to reward probability. This difference in experienced reinforcement history was accompanied by performance biases in a test phase assessing ability to learn from positive vs. negative outcomes. In a subsequent large-scale web-based experiment, this impact of task version on learning and test measures was replicated and extended. Collectively, these findings imply a key role for perceptual factors in guiding reward learning and underscore the need to control stimulus discriminability when making inferences about individual differences in reinforcement learning.

]]>