ResearchPad - phase-transitions Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[The Rho-associated kinase inhibitor fasudil can replace Y-27632 for use in human pluripotent stem cell research]]> Poor survival of human pluripotent stem cells (hPSCs) following freezing, thawing, or passaging hinders the maintenance and differentiation of stem cells. Rho-associated kinases (ROCKs) play a crucial role in hPSC survival. To date, a typical ROCK inhibitor, Y-27632, has been the primary agent used in hPSC research. Here, we report that another ROCK inhibitor, fasudil, can be used as an alternative and is cheaper than Y-27632. It increased hPSC growth following thawing and passaging, like Y-27632, and did not affect pluripotency, differentiation ability, and chromosome integrity. Furthermore, fasudil promoted retinal pigment epithelium (RPE) differentiation and the survival of neural crest cells (NCCs) during differentiation. It was also useful for single-cell passaging of hPSCs and during aggregation. These findings suggest that fasudil can replace Y-27632 for use in stem research.

<![CDATA[Nutritional and physicochemical characteristics of purple sweet corn juice before and after boiling]]> Sweet corn juice is becoming increasingly popular in China. In order to provide valuable health-related information to consumers, the nutritional and physicochemical characteristics of raw and boiled purple sweet corn juices were herein investigated. Sugars, antinutrients, total free phenols, anthocyanins, and antioxidant activity were analyzed by conventional chemical methods. The viscosity and stability of juices were determined by Ubbelohde viscosity meter and centrifugation, respectively. Boiling process could elevate viscosity, stability and sugar content, and reduce antinutrients, total free phenols, anthocyanins, and antioxidant activity in corn juice. In addition, short time boiling efficiently reduced the degradation of anthocyanins during subsequent refrigeration. The content of amino acids, vitamin B1/B2 and E were detected by High Performance Liquid Chromatography. Gas Chromatography Mass Spectrometry was used for the analysis of fatty acids and aroma compounds. Several aroma compounds not previously reported in corn were identified, including 1-heptanol, 2-methyl-2-butenal, (Z)-3-nonen-1-ol, 3-ethyl-2-methyl-1,3-hexadiene, and 2,4-bis(1,1-dimethylethyl)phenol. Interestingly, the boiling process had no apparent effect on the amino acids profile, but it caused a 45.8% loss of fatty acids in the juice by promoting the retention of fatty acids in the corn residue. These results provide detailed information that could be used for increasing consumers’ knowledge of sweet corn juice, further development of sweet corn juice by food producers, and maize breeding programs.

<![CDATA[Screening of brain-derived neurotrophic factor (BDNF) single nucleotide polymorphisms and plasma BDNF levels among Malaysian major depressive disorder patients]]>


Brain-derived neurotrophic factor (BDNF) is a neurotrophin found in abundance in brain regions such as the hippocampus, cortex, cerebellum and basal forebrain. It has been associated with the risk of susceptibility to major depressive disorder (MDD). This study aimed to determine the association of three BDNF variants (rs6265, rs1048218 and rs1048220) with Malaysian MDD patients.


The correlation of these variants to the plasma BDNF level among Malaysian MDD patients was assessed. A total of 300 cases and 300 matched controls recruited from four public hospitals within the Klang Valley of Selangor State, Malaysia and matched for age, sex and ethnicity were screened for BDNF rs6265, rs1048218 and rs1048220 using high resolution melting (HRM).


BDNF rs1048218 and BDNF rs1048220 were monomorphic and were excluded from further analysis. The distribution of the alleles and genotypes for BDNF rs6265 was in Hardy-Weinberg equilibrium for the controls (p = 0.13) but was in Hardy Weinberg disequilibrium for the cases (p = 0.011). Findings from this study indicated that having BDNF rs6265 in the Malaysian population increase the odds of developing MDD by 2.05 folds (95% CI = 1.48–3.65). Plasma from 206 cases and 206 controls were randomly selected to measure the BDNF level using enzyme-linked immunosorbent assay (ELISA). A significant decrease in the plasma BDNF level of the cases as compared to controls (p<0.0001) was observed. However, there was no evidence of the effect of the rs6265 genotypes on the BDNF level indicating a possible role of other factors in modulating the BDNF level that warrants further investigation.


The study indicated that having the BDNF rs6265 allele (A) increase the risk of developing MDD in the Malaysian population suggesting a possible role of BDNF in the etiology of the disorder.

<![CDATA[Quantitative analysis of F-actin alterations in adherent human mesenchymal stem cells: Influence of slow-freezing and vitrification-based cryopreservation]]>

Cryopreservation is an essential tool to meet the increasing demand for stem cells in medical applications. To ensure maintenance of cell function upon thawing, the preservation of the actin cytoskeleton is crucial, but so far there is little quantitative data on the influence of cryopreservation on cytoskeletal structures. For this reason, our study aims to quantitatively describe cryopreservation induced alterations to F-actin in adherent human mesenchymal stem cells, as a basic model for biomedical applications. Here we have characterised the actin cytoskeleton on single-cell level by calculating the circular standard deviation of filament orientation, F-actin content, and average filament length. Cryo-induced alterations of these parameters in identical cells pre and post cryopreservation provide the basis of our investigation. Differences between the impact of slow-freezing and vitrification are qualitatively analyzed and highlighted. Our analysis is supported by live cryo imaging of the actin cytoskeleton via two photon microscopy. We found similar actin alterations in slow-frozen and vitrified cells including buckling of actin filaments, reduction of F-actin content and filament shortening. These alterations indicate limited functionality of the respective cells. However, there are substantial differences in the frequency and time dependence of F-actin disruptions among the applied cryopreservation strategies; immediately after thawing, cytoskeletal structures show least disruption after slow freezing at a rate of 1°C/min. As post-thaw recovery progresses, the ratio of cells with actin disruptions increases, particularly in slow frozen cells. After 120 min of recovery the proportion of cells with an intact actin cytoskeleton is higher in vitrified than in slow frozen cells. Freezing at 10°C/min is associated with a high ratio of impaired cells throughout the post-thawing culture.

<![CDATA[A method for the detection and characterization of technology fronts: Analysis of the dynamics of technological change in 3D printing technology]]>

This paper presents a method for the identification of the “technology fronts”—core technological solutions—underlying a certain broad technology, and the characterization of their change dynamics. We propose an approach based on the Latent Dirichlet Allocation (LDA) model combined with patent data analysis and text mining techniques for the identification and dynamic characterization of the main fronts where actual technological solutions are put into practice. 3D printing technology has been selected to put our method into practice for its market emergence and multidisciplinarity. The results show two highly relevant and specialized fronts strongly related with mechanical design that evolve gradually, in our opinion acting as enabling technologies. On the other side, we detected three fronts undergoing significant changes, namely layer-by-layer multimaterial manufacturing, data processing and stereolithograpy techniques. Laser and electron-beam based technologies take shape in the latter years and show signs of becoming enabling technologies in the future. The technology fronts and data revealed by our method have been convincing to experts and coincident with many technology trends already pointed out in technical reports and scientific literature.

<![CDATA[Experimental study on frost-formation characteristics on cold surface of arched copper sample]]>

The present work investigates the process of frosting formation on arched copper samples with different surface temperatures, calculated the thickness of the frost layer by using the scale method, and analyzed frost lodging, melting, and other phenomena that appeared during the frost-formation process. The results showed that the frosting process on an arched surface can be divided into ice-film formation, rapid growth of the frost layer, and stable growth of the frost layer. Meanwhile, the phenomena of frost-branch breakage, lodging, and melting were observed. The surface temperature had a large effect on the frost formation and thickness of the frost layer, e.g., the formation time of the ice film on a surface at -5°C was the longest (~135 s), the frost layer formed on a surface at -20°C was the thickest (~660 μm). When microscopic observation of the frosting process was accompanied by calculation of the frost-layer thickness, it could be seen that the appearance of the frost branches was affected by the different thermal conductivities of the frost layers, undulating surface of the ice film, and temperature difference between the layers. The changes in the frost branches and the soft surface of the frost layer also affected the growth of the frost layer. The findings of this study are expected to provide guidelines for optimization of conventional defrosting methods.

<![CDATA[Glucosylceramide acyl chain length is sensed by the glycolipid transfer protein]]>

The glycolipid transfer protein, GLTP, can be found in the cytoplasm, and it has a FFAT-like motif (two phenylalanines in an acidic tract) that targets it to the endoplasmic reticulum (ER). We have previously shown that GLTP can bind to a transmembrane ER protein, vesicle-associated membrane protein-associated protein A (VAP-A), which is involved in a wide range of ER functions. We have addressed the mechanisms that might regulate the association between GLTP and the VAP proteins by studying the capacity of GLTP to recognize different N-linked acyl chain species of glucosylceramide. We used surface plasmon resonance and a lipid transfer competition assay to show that GLTP prefers shorter N-linked fully saturated acyl chain glucosylceramides, such as C8, C12, and C16, whereas long C18, C20, and C24-glucosylceramides are all bound more weakly and transported more slowly than their shorter counterparts. Changes in the intrinsic GLTP tryptophan fluorescence blueshifts, also indicate a break-point between C16- and C18-glucosylceramide in the GLTP sensing ability. It has long been postulated that GLTP would be a sensor in the sphingolipid synthesis machinery, but how this mechanistically occurs has not been addressed before. It is unclear what proteins the GLTP VAP association would influence. Here we found that if GLTP has a bound GlcCer the association with VAP-A is weaker. We have also used a formula for identifying putative FFAT-domains, and we identified several potential VAP-interactors within the ceramide and sphingolipid synthesis pathways that could be candidates for regulation by GLTP.

<![CDATA[An efficient proteome-wide strategy for discovery and characterization of cellular nucleotide-protein interactions]]>

Metabolite-protein interactions define the output of metabolic pathways and regulate many cellular processes. Although diseases are often characterized by distortions in metabolic processes, efficient means to discover and study such interactions directly in cells have been lacking. A stringent implementation of proteome-wide Cellular Thermal Shift Assay (CETSA) was developed and applied to key cellular nucleotides, where previously experimentally confirmed protein-nucleotide interactions were well recaptured. Many predicted, but never experimentally confirmed, as well as novel protein-nucleotide interactions were discovered. Interactions included a range of different protein families where nucleotides serve as substrates, products, co-factors or regulators. In cells exposed to thymidine, a limiting precursor for DNA synthesis, both dose- and time-dependence of the intracellular binding events for sequentially generated thymidine metabolites were revealed. Interactions included known cancer targets in deoxyribonucleotide metabolism as well as novel interacting proteins. This stringent CETSA based strategy will be applicable for a wide range of metabolites and will therefore greatly facilitate the discovery and studies of interactions and specificities of the many metabolites in human cells that remain uncharacterized.

<![CDATA[Development and validation of a method for human papillomavirus genotyping based on molecular beacon probes]]>

We describe a new assaying system for the detection and genotyping of human papillomavirus (HPV) based on linear-after-the-exponential-PCR(LATE-PCR) and melting curve analysis. The 23 most prevalent HPV strains (types 6, 11, 16, 18, 31, 33, 35, 39, 42, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73, 81, 82, and 83) are assayed in two sealed reaction tubes within 2 h. Good sensitivity and specificity was evaluated by testing cloned HPV DNA and clinical samples. The detection limit was 5–500 copies/reaction depending on the genotype. No cross-reactivity was observed with the other HPV types that are not covered by our method or pathogens tested which were commonly found in female genital tract. When compared with the HPV GenoArray Diagnostic kit, the results from 1104 clinical samples suggest good overall agreement between the two methods,(98.37%, 95% CI: 97.44%–98.97%) and the kappa value was 0.954. Overall, this new HPV genotyping assay system presents a simple, rapid, universally applicable, sensitive, and highly specific detection methodology that should be useful for HPV detection and genotyping, therefore, is potentially of great value in clinical application.

<![CDATA[Release of aluminium and thallium ions from uncoated food contact materials made of aluminium alloys into food and food simulant]]>

In order to investigate the release of aluminium ions from food contact materials, three different types of uncoated aluminium menu trays for single use were tested with the foodstuffs sauerkraut juice, apple sauce and tomato puree, as well as with the food simulants 5 g/L citric acid solution and artificial tap water. To mimic a consumer relevant exposure scenario, the aluminium trays were studied using time and temperature gradients according to the Cook & Chill method, also taking into account storage time at elevated temperatures during the delivery period. The release of aluminium was found to exceed the specific release limit (SRL) of 5 mg aluminium per kilogram of food specified by the Council of Europe by up to six times. Furthermore, a release of thallium was also detected unexpectedly.

Kinetic studies showed a comparable behaviour in the release of aluminium, manganese and vanadium as components of the aluminium alloy itself. In contrast, thallium could be identified as a surface contaminant or impurity because of an entirely different kinetic curve. Kinetic studies also allowed activation energy calculations.

Additional camping saucepans were tested as an article for repeated use. In three subsequent release experiments with citric acid (5 g/L), artificial tap water and tomato puree as benchmark foodstuffs, the results were comparable to those of the uncoated wrought alloy aluminium trays.

<![CDATA[An Analysis of Precipitation Isotope Distributions across Namibia Using Historical Data]]>

Global precipitation isoscapes based on the Global Network for Isotopes in Precipitation (GNIP) network are an important toolset that aid our understanding of global hydrologic cycles. Although the GNIP database is instrumental in developing global isoscapes, data coverage in some regions of hydrological interest (e.g., drylands) is low or non-existent thus the accuracy and relevance of global isoscapes to these regions is debatable. Capitalizing on existing literature isotope data, we generated rainfall isoscapes for Namibia (dryland) using the cokriging method and compared it to a globally fitted isoscape (GFI) downscaled to country level. Results showed weak correlation between observed and predicted isotope values in the GFI model (r2 < 0.20) while the cokriging isoscape showed stronger correlation (r2 = 0.67). The general trend of the local cokriging isoscape is consistent with synoptic weather systems (i.e., influences from Atlantic Ocean maritime vapour, Indian Ocean maritime vapour, Zaire Air Boundary, the Intertropical Convergence Zone and Tropical Temperate Troughs) and topography affecting the region. However, because we used the unweighted approach in this method, due to data scarcity, the absolute values could be improved in future studies. A comparison of local meteoric water lines (LMWL) constructed from the cokriging and GFI suggested that the GFI model still reflects the global average even when downscaled. The cokriging LMWL was however more consistent with expectations for an arid environment. The results indicate that although not ideal, for data deficient regions such as many drylands, the unweighted cokriging approach using historical local data can be an alternative approach to modelling rainfall isoscapes that are more relevant to the local conditions compared to using downscaled global isoscapes.

<![CDATA[Functional and Biochemical Characterization of Alvinella pompejana Cys-Loop Receptor Homologues]]>

Cys-loop receptors are membrane spanning ligand-gated ion channels involved in fast excitatory and inhibitory neurotransmission. Three-dimensional structures of these ion channels, determined by X-ray crystallography or electron microscopy, have revealed valuable information regarding the molecular mechanisms underlying ligand recognition, channel gating and ion conductance. To extend and validate the current insights, we here present promising candidates for further structural studies. We report the biochemical and functional characterization of Cys-loop receptor homologues identified in the proteome of Alvinella pompejana, an extremophilic, polychaete annelid found in hydrothermal vents at the bottom of the Pacific Ocean. Seven homologues were selected, named Alpo1-7. Five of them, Alpo2-6, were unidentified prior to this study. Two-electrode voltage clamp experiments revealed that wild type Alpo5 and Alpo6, both sharing remarkably high sequence identity with human glycine receptor α subunits, are anion-selective channels that can be activated by glycine, GABA and taurine. Furthermore, upon expression in insect cells fluorescence size-exclusion chromatography experiments indicated that four homologues, Alpo1, Alpo4, Alpo6 and Alpo7, can be extracted out of the membrane by a wide variety of detergents while maintaining their oligomeric state. Finally, large-scale purification efforts of Alpo1, Alpo4 and Alpo6 resulted in milligram amounts of biochemically stable and monodisperse protein. Overall, our results establish the evolutionary conservation of glycine receptors in annelids and pave the way for future structural studies.

<![CDATA[A Real-Time PCR Method to Detect the Population Level of Halovirus SNJ1]]>

Although viruses of haloarchaea are the predominant predator in hypersaline ecosystem, the culture studies about halovirus-host systems are infancy. The main reason is the tradition methodology (plaque assay) for virus-host interaction depends on culturable and susceptible host. Actually, more than 90% of haloarchaea are unculturable. Therefore, it is necessary to establish an approach for detecting the dynamics of virus in hypersaline environment without culture. In this study, we report a convenient method to determine the dynamics of halovirus SNJ1 based on quantitative real-time PCR (qPCR). All findings showed that the qPCR method was specific (single peak in melt curves), accurate (a good linear relationship between the log of the PFU and the Ct values, R2 = 0.99), reproducible (low coefficient of variations, below 1%). Additionally, the physicochemical characteristics of the samples tested did not influence the stability of qPCR. Therefore, the qPCR method has the potential value in quantifying and surveying haloviruses in halophilic ecological system.

<![CDATA[Non-Homologous End Joining and Homology Directed DNA Repair Frequency of Double-Stranded Breaks Introduced by Genome Editing Reagents]]>

Genome editing using transcription-activator like effector nucleases or RNA guided nucleases allows one to precisely engineer desired changes within a given target sequence. The genome editing reagents introduce double stranded breaks (DSBs) at the target site which can then undergo DNA repair by non-homologous end joining (NHEJ) or homology directed recombination (HDR) when a template DNA molecule is available. NHEJ repair results in indel mutations at the target site. As PCR amplified products from mutant target regions are likely to exhibit different melting profiles than PCR products amplified from wild type target region, we designed a high resolution melting analysis (HRMA) for rapid identification of efficient genome editing reagents. We also designed TaqMan assays using probes situated across the cut site to discriminate wild type from mutant sequences present after genome editing. The experiments revealed that the sensitivity of the assays to detect NHEJ-mediated DNA repair could be enhanced by selection of transfected cells to reduce the contribution of unmodified genomic DNA from untransfected cells to the DNA melting profile. The presence of donor template DNA lacking the target sequence at the time of genome editing further enhanced the sensitivity of the assays for detection of mutant DNA molecules by excluding the wild-type sequences modified by HDR. A second TaqMan probe that bound to an adjacent site, outside of the primary target cut site, was used to directly determine the contribution of HDR to DNA repair in the presence of the donor template sequence. The TaqMan qPCR assay, designed to measure the contribution of NHEJ and HDR in DNA repair, corroborated the results from HRMA. The data indicated that genome editing reagents can produce DSBs at high efficiency in HEK293T cells but a significant proportion of these are likely masked by reversion to wild type as a result of HDR. Supplying a donor plasmid to provide a template for HDR (that eliminates a PCR amplifiable target) revealed these cryptic DSBs and facilitated the determination of the true efficacy of genome editing reagents. The results indicated that in HEK293T cells, approximately 40% of the DSBs introduced by genome editing, were available for participation in HDR.

<![CDATA[Association of HIV diversity and virologic outcomes in early antiretroviral treatment: HPTN 052]]>

Higher HIV diversity has been associated with virologic outcomes in children on antiretroviral treatment (ART). We examined the association of HIV diversity with virologic outcomes in adults from the HPTN 052 trial who initiated ART at CD4 cell counts of 350–550 cells/mm3. A high resolution melting (HRM) assay was used to analyze baseline (pre-treatment) HIV diversity in six regions in the HIV genome (two in gag, one in pol, and three in env) from 95 participants who failed ART. We analyzed the association of HIV diversity in each genomic region with baseline (pre-treatment) factors and three clinical outcomes: time to virologic suppression after ART initiation, time to ART failure, and emergence of HIV drug resistance at ART failure. After correcting for multiple comparisons, we did not find any association of baseline HIV diversity with demographic, laboratory, or clinical characteristics. For the 18 analyses performed for clinical outcomes evaluated, there was only one significant association: higher baseline HIV diversity in one of the three HIV env regions was associated with longer time to ART failure (p = 0.008). The HRM diversity assay may be useful in future studies exploring the relationship between HIV diversity and clinical outcomes in individuals with HIV infection.

<![CDATA[Application of the PJ and NPS evaporation duct models over the South China Sea (SCS) in winter]]>

The detection of duct height has a significant effect on marine radar or wireless apparatus applications. The paper presents two models to verify the adaptation of evaporation duct models in the SCS in winter. A meteorological gradient instrument used to measure evaporation ducts was fabricated using hydrological and meteorological sensors at different heights. An experiment on the adaptive characteristics of evaporation duct models was carried out over the SCS. The heights of the evaporation ducts were measured by means of log-linear fit, Paulus-Jeske (PJ) and Naval Postgraduate School (NPS) models. The results showed that NPS model offered significant advantages in stability compared with the PJ model. According the collected data computed by the NPS model, the mean deviation (MD) was -1.7 m, and the Standard Deviation (STD) of the MD was 0.8 m compared with the true value. The NPS model may be more suitable for estimating the evaporation duct height in the SCS in winter due to its simpler system characteristics compared with meteorological gradient instruments.

<![CDATA[Thermodynamic Features of Structural Motifs Formed by β-L-RNA]]>

This is the first report to provide comprehensive thermodynamic and structural data concerning duplex, hairpin, quadruplex and i-motif structures in β-L-RNA series. Herein we confirm that, within the limits of experimental error, the thermodynamic stability of enantiomeric structural motifs is the same as that of naturally occurring D-RNA counterparts. In addition, formation of D-RNA/L-RNA heterochiral duplexes is also observed; however, their thermodynamic stability is significantly reduced in reference to homochiral D-RNA duplexes. The presence of three locked nucleic acid (LNA) residues within the D-RNA strand diminishes the negative effect of the enantiomeric, complementary L-RNA strand in the formation of heterochiral RNA duplexes. Similar behavior is also observed for heterochiral LNA-2′-O-methyl-D-RNA/L-RNA duplexes. The formation of heterochiral duplexes was confirmed by 1H NMR spectroscopy. The CD curves of homochiral L-RNA structural motifs are always reversed, whereas CD curves of heterochiral duplexes present individual features dependent on the composition of chiral strands.

<![CDATA[Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling]]>

Flaviviruses comprise major emerging pathogens such as dengue virus (DENV) or Zika virus (ZIKV). The flavivirus RNA genome is replicated by the RNA-dependent-RNA polymerase (RdRp) domain of non-structural protein 5 (NS5). This essential enzymatic activity renders the RdRp attractive for antiviral therapy. NS5 synthesizes viral RNA via a “de novo” initiation mechanism. Crystal structures of the flavivirus RdRp revealed a “closed” conformation reminiscent of a pre-initiation state, with a well ordered priming loop that extrudes from the thumb subdomain into the dsRNA exit tunnel, close to the “GDD” active site. To-date, no allosteric pockets have been identified for the RdRp, and compound screening campaigns did not yield suitable drug candidates. Using fragment-based screening via X-ray crystallography, we found a fragment that bound to a pocket of the apo-DENV RdRp close to its active site (termed “N pocket”). Structure-guided improvements yielded DENV pan-serotype inhibitors of the RdRp de novo initiation activity with nano-molar potency that also impeded elongation activity at micro-molar concentrations. Inhibitors exhibited mixed inhibition kinetics with respect to competition with the RNA or GTP substrate. The best compounds have EC50 values of 1–2 μM against all four DENV serotypes in cell culture assays. Genome-sequencing of compound-resistant DENV replicons, identified amino acid changes that mapped to the N pocket. Since inhibitors bind at the thumb/palm interface of the RdRp, this class of compounds is proposed to hinder RdRp conformational changes during its transition from initiation to elongation. This is the first report of a class of pan-serotype and cell-active DENV RdRp inhibitors. Given the evolutionary conservation of residues lining the N pocket, these molecules offer insights to treat other serious conditions caused by flaviviruses.

<![CDATA[Understanding Financial Market States Using an Artificial Double Auction Market]]>

The ultimate value of theories describing the fundamental mechanisms behind asset prices in financial systems is reflected in the capacity of such theories to understand these systems. Although the models that explain the various states of financial markets offer substantial evidence from the fields of finance, mathematics, and even physics, previous theories that attempt to address the complexities of financial markets in full have been inadequate. We propose an artificial double auction market as an agent-based model to study the origin of complex states in financial markets by characterizing important parameters with an investment strategy that can cover the dynamics of the financial market. The investment strategies of chartist traders in response to new market information should reduce market stability based on the price fluctuations of risky assets. However, fundamentalist traders strategically submit orders based on fundamental value and, thereby stabilize the market. We construct a continuous double auction market and find that the market is controlled by the proportion of chartists, Pc. We show that mimicking the real state of financial markets, which emerges in real financial systems, is given within the range Pc = 0.40 to Pc = 0.85; however, we show that mimicking the efficient market hypothesis state can be generated with values less than Pc = 0.40. In particular, we observe that mimicking a market collapse state is created with values greater than Pc = 0.85, at which point a liquidity shortage occurs, and the phase transition behavior is described at Pc = 0.85.

<![CDATA[Estimations of evapotranspiration in an age sequence of Eucalyptus plantations in subtropical China]]>

Eucalyptus species are widely planted for reforestation in subtropical China. However, the effects of Eucalyptus plantations on the regional water use remain poorly understood. In an age sequence of 2-, 4- and 6-year-old Eucalyptus plantations, the tree water use and soil evaporation were examined by linking model estimations and field observations. Results showed that annual evapotranspiration of each age sequence Eucalyptus plantations was 876.7, 944.1 and 1000.7 mm, respectively, accounting for 49.81%, 53.64% and 56.86% of the annual rainfall. In addition, annual soil evaporations of 2-, 4- and 6-year-old were 318.6, 336.1, and 248.7 mm of the respective Eucalyptus plantations. Our results demonstrated that Eucalyptus plantations would potentially reduce water availability due to high evapotranspiration in subtropical regions. Sustainable management strategies should be implemented to reduce water consumption in Eucalyptus plantations in the context of future climate change scenarios such as drought and warming.