ResearchPad - physical-chemistry Default RSS Feed en-us © 2020 Newgen KnowledgeWorks <![CDATA[Flavonoids and antioxidant activity of rare and endangered fern: <i>Isoetes sinensis</i>]]> Isoetes sinensis Palmer is a critically endangered, first-class protected plant in China. Until now, researchers have primarily focused on the ultrastructure, phylogeny, and transcriptomes of the plant. However, flavonoid profiles and bioactivity of I. sinensis have not been extensively investigated. To develop the endangered I. sinensis for edible and medicinal purposes, flavonoid content, chemical constitution, and antioxidant activities were investigated in this study. Results revealed the following. 1) The total flavonoid content was determined as 10.74 ± 0.25 mg/g., 2) Antioxidant activities were stronger than most ferns, especially ABTS free radical scavenging activities. 3) Four flavones, containing apigenin, apigenin-7-glucuronide, acacetin-7-O-glcopyranoside, and homoplantageninisoetin; four flavonols, namely, isoetin, kaempferol-3-O-glucoside, quercetin-3-O-[6”-O-(3-hydroxy-3-methylglutaryl)-β-D-glucopyranoside], and limocitrin-Neo; one prodelphinidin (procyanidins;) and one nothofagin (dihydrochalcone) were tentatively identified in the mass spectrometry-DAD (254nm) chromatograms. This study was the first to report on flavonoid content and antioxidant activities of I. sinensis. Stronger antioxidant activity and flavonoid content suggests that the endangered I. sinensis is an important and potentially edible and medicinal plant.

<![CDATA[Nutritional and physicochemical characteristics of purple sweet corn juice before and after boiling]]> Sweet corn juice is becoming increasingly popular in China. In order to provide valuable health-related information to consumers, the nutritional and physicochemical characteristics of raw and boiled purple sweet corn juices were herein investigated. Sugars, antinutrients, total free phenols, anthocyanins, and antioxidant activity were analyzed by conventional chemical methods. The viscosity and stability of juices were determined by Ubbelohde viscosity meter and centrifugation, respectively. Boiling process could elevate viscosity, stability and sugar content, and reduce antinutrients, total free phenols, anthocyanins, and antioxidant activity in corn juice. In addition, short time boiling efficiently reduced the degradation of anthocyanins during subsequent refrigeration. The content of amino acids, vitamin B1/B2 and E were detected by High Performance Liquid Chromatography. Gas Chromatography Mass Spectrometry was used for the analysis of fatty acids and aroma compounds. Several aroma compounds not previously reported in corn were identified, including 1-heptanol, 2-methyl-2-butenal, (Z)-3-nonen-1-ol, 3-ethyl-2-methyl-1,3-hexadiene, and 2,4-bis(1,1-dimethylethyl)phenol. Interestingly, the boiling process had no apparent effect on the amino acids profile, but it caused a 45.8% loss of fatty acids in the juice by promoting the retention of fatty acids in the corn residue. These results provide detailed information that could be used for increasing consumers’ knowledge of sweet corn juice, further development of sweet corn juice by food producers, and maize breeding programs.

<![CDATA[Concept of an artificial muscle design on polypyrrole nanofiber scaffolds]]> Here we present the synthesis and characterization of two new conducting materials having a high electro-chemo-mechanical activity for possible applications as artificial muscles or soft smart actuators in biomimetic structures. Glucose-gelatin nanofiber scaffolds (CFS) were coated with polypyrrole (PPy) first by chemical polymerization followed by electrochemical polymerization doped with dodecylbenzensulfonate (DBS-) forming CFS-PPy/DBS films, or with trifluoromethanesulfonate (CF3SO3-, TF) giving CFS-PPy/TF films. The composition, electronic and ionic conductivity of the materials were determined using different techniques. The electro-chemo-mechanical characterization of the films was carried out by cyclic voltammetry and square wave potential steps in bis(trifluoromethane)sulfonimide lithium solutions of propylene carbonate (LiTFSI-PC). Linear actuation of the CFS-PPy/DBS material exhibited 20% of strain variation with a stress of 0.14 MPa, rather similar to skeletal muscles. After 1000 cycles, the creeping effect was as low as 0,2% having a good long-term stability showing a strain variation per cycle of -1.8% (after 1000 cycles). Those material properties are excellent for future technological applications as artificial muscles, batteries, smart membranes, and so on.

<![CDATA[The 2015-2016 El Niño increased infection parameters of copepods on Eastern Tropical Pacific dolphinfish populations]]> The oceanographic conditions of the Pacific Ocean are largely modified by El Niño (EN), affecting several ecological processes. Parasites and other marine organisms respond to environmental variation, but the influence of the EN cycle on the seasonal variation of parasitic copepods has not been yet evaluated. We analysed the relation between infection parameters (prevalence and mean intensity) of the widespread parasitic copepods Caligus bonito and Charopinopsis quaternia in the dolphinfish Coryphaena hippurus and oceanography during the strong 2015–16 EN. Fish were collected from capture fisheries on the Ecuadorian coast (Tropical Eastern Pacific) over a 2-year period. Variations of sea surface temperature (SST), salinity, chlorophyll a (Chl-a), Oceanic Niño Index (ONI), total host length (TL) and monthly infection parameters of both copepod species were analysed using time series and cross-correlations. We used the generalised additive models for determine the relationship between environmental variables and infection parameters. The total body length of the ovigerous females and the length of the eggs of C. bonito were measured in both periods. Infection parameters of both C. bonito and Ch. quaternia showed seasonal and annual patterns associated with the variation of environmental variables examined (SST, salinity, Chl-a and ONI 1+2). Infection parameters of both copepod species were significantly correlated with ONI 1+2, SST, TL and Chl-a throughout the GAMLSS model, and the explained deviance contribution ranged from 16%-36%. Our results suggest than an anomaly higher than +0.5°C triggers a risen in infection parameters of both parasitic copepods. This risen could be related to increases in egg length, female numbers and the total length of the ovigerous females in EN period. This study provides the first evidence showing that tropical parasitic copepods are sensitive to the influence of EN event, especially from SST variations. The observed behaviour of parasitic copepods likely affects the host populations and structure of the marine ecosystem at different scales.

<![CDATA[The effect of Mn2Sb2 and Mn2Sb secondary phases on magnetism in (GaMn)Sb thin films]]>

In this work, a detailed study of structural, electrical and magnetic characterization of (GaMn)Sb diluted magnetic semiconductors (DMS) is presented. (GaMn)Sb thin films were grown by DC magnetron co-sputtering method as an innovative procedure to fabricate III-V DMS. The presence of unusual Mn2Sb2 and Mn2Sb secondary phases, induced by substrate temperature and deposition time, were revealed through XRD measurements. Magnetization measurements allow determining crossover between a paramagnetic-like to a ferromagnetic-like behavior controlled by secondary phases. It was found that both, the magnetic remanence and magnetic coercivity, increases with substrate temperature. Interestingly, the magnetic response is paramagnetic at lower deposition times and substrate temperatures, and XRD measurements suggest the absence of Mn2Sb and Mn2Sb2 in secondary phases. For longer deposition times or higher substrate temperature, XRD shows the presence of Mn2Sb2 and Mn2Sb phases and ferromagnetic-like behavior. The DC resistivity of our samples was characterized and the carrier density was determined by Hall measurements and, in contrast with the reported in other studies, found them to be a p-type semiconductor with carrier densities as big as one order of magnitude larger than reported values. From the ferromagnetic-like samples, evidence of an anomalous Hall-effect in the sample was found, with higher magnetic saturation and a anomalous Hall conductivity of 2380 S/cm. All the results point to a contribution of the secondary phases to the overall magnetic response of the samples used, and suggest the importance of studying the formation of secondary phases in the growth of DMS, especially, for the case of (GaMn)Sb where Mn ion can have multiple oxidation states.

<![CDATA[Cobalt ion interaction with TMEM16A calcium-activated chloride channel: Inhibition and potentiation]]>

TMEM16A, a Ca2+-sensitive Cl- channel, plays key roles in many physiological functions related to Cl- transport across lipid membranes. Activation of this channel is mediated via binding intracellular Ca2+ to the channel with a relatively high apparent affinity, roughly in the sub-μM to low μM concentration range. Recently available high-resolution structures of TMEM16 molecules reveal that the high-affinity Ca2+ activation sites are formed by several acidic amino acids, using their negatively charged sidechain carboxylates to coordinate the bound Ca2+. In this study, we examine the interaction of TMEM16A with a divalent cation, Co2+, which by itself cannot activate current in TMEM16A. This divalent cation, however, has two effects when applied intracellularly. It inhibits the Ca2+-induced TMEM16A current by competing with Ca2+ for the aforementioned high-affinity activation sites. In addition, Co2+ also potentiates the Ca2+-induced current with a low affinity. This potentiation effect requires high concentration (mM) of Co2+, similar to our previous findings that high concentrations (mM) of intracellular Ca2+ ([Ca2+]i) can induce more TMEM16A current after the Ca2+-activation sites are saturated by tens of μM [Ca2+]i. The degrees of potentiation by Co2+ and Ca2+ also roughly correlate with each other. Interestingly, mutating a pore residue of TMEM16A, Y589, alters the degree of potentiation in that the smaller the sidechain of the replaced residue, the larger the potentiation induced by divalent cations. We suggest that the Co2+ potentiation and the Ca2+ potentiation share a similar mechanism by increasing Cl- flux through the channel pore, perhaps due to an increase of positive pore potential after the binding of divalent cations to phospholipids in the pore. A smaller sidechain of a pore residue may allow the pore to accommodate more phospholipids, thus enhancing the current potentiation caused by high concentrations of divalent cations.

<![CDATA[Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity]]>

Soil salinization is a serious problem for cultivation of rice, as among cereals rice is the most salt sensitive crop, and more than 40% of the total agricultural land amounting to approximately 80 million ha the world over is salt affected. Salinity affects a plant in a varieties of ways, including ion toxicity, osmotic stress and oxidative damage. Since miRNAs occupy the top place in biochemical events determining a trait, understanding their role in salt tolerance is highly desirable, which may allow introduction of the trait in the rice cultivars of choice through biotechnological interventions. High throughput sequencing of sRNAs in the root and shoot tissues of the seedlings of the control and NaCl treated Pokkali, a salt-tolerant rice variety, identified 75 conserved miRNAs and mapped 200 sRNAs to the rice genome as novel miRNAs. Expression of nine novel miRNAs and two conserved miRNAs were confirmed by Northern blotting. Several of both conserved and novel miRNAs that expressed differentially in root and/or shoot tissues targeted transcription factors like AP2/EREBP domain protein, ARF, NAC, MYB, NF-YA, HD-Zip III, TCP and SBP reported to be involved in salt tolerance or in abiotic stress tolerance in general. Most of the novel miRNAs expressed in the salt tolerant wild rice Oryza coarctata, suggesting conservation of miRNAs in taxonomically related species. One of the novel miRNAs, osa-miR12477, also targeted L-ascorbate oxidase (LAO), indicating build-up of oxidative stress in the plant upon salt treatment, which was confirmed by DAB staining. Thus, salt tolerance might involve miRNA-mediated regulation of 1) cellular abundance of the hormone signaling components like EREBP and ARF, 2) synthesis of abiotic stress related transcription factors, and 3) antioxidative component like LAO for mitigation of oxidative damage. The study clearly indicated importance of osa-miR12477 regulated expression of LAO in salt tolerance in the plant.

<![CDATA[Assessing the effects of intratendinous genipin injections: Mechanical augmentation and spatial distribution in an ex vivo degenerative tendon model]]>


Tendinopathy is a common musculoskeletal disorder and current treatment options show limited success. Genipin is an effective collagen crosslinker with low cytotoxicity and a promising therapeutic strategy for stabilizing an intratendinous lesion.


This study examined the mechanical effect and delivery of intratendinous genipin injection in healthy and degenerated tendons.

Study design

Controlled laboratory study


Bovine superficial digital flexor tendons were randomized into four groups: Healthy control (N = 25), healthy genipin (N = 25), degenerated control (N = 45) and degenerated genipin (N = 45). Degeneration was induced by Collagenase D injection. After 24h, degenerated tendons were subsequently injected with either 0.2ml of 80mM genipin or buffer only. 24h post-treatment, samples were cyclically loaded for 500 cycles and then ramp loaded to failure. Fluorescence and absorption assays were performed to analyze genipin crosslink distribution and estimate tissue concentration after injection.


Compared to controls, genipin treatment increased ultimate force by 19% in degenerated tendons (median control 530 N vs. 633 N; p = 0.0078). No significant differences in mechanical properties were observed in healthy tendons, while degenerated tendons showed a significant difference in ultimate stress (+23%, p = 0.049), stiffness (+27%, p = 0.037), work to failure (+42%, p = 0.009), and relative stress relaxation (-11%, p < 0.001) after genipin injection. Fluorescence and absorption were significantly higher in genipin treated tendons compared to control groups. A higher degree of crosslinking (+45%, p < 0.001) and a more localized distribution were observed in the treated healthy compared to degenerated tendons, with higher genipin tissue concentrations in healthy (7.9 mM) than in degenerated tissue (2.3 mM).


Using an ex-vivo tendinopathy model, intratendinous genipin injections recovered mechanical strength to the level of healthy tendons. Measured by genipin tissue distribution, injection is an effective method for local delivery.

Clinical relevance

This study provides a proof of concept for the use of intratendinous genipin injection in the treatment of tendinopathy. The results demonstrate that a degenerated tendon can be mechanically augmented by a clinically viable method of local genipin delivery. This warrants further in vivo studies towards the development of a clinically applicable treatment based on genipin.

<![CDATA[Graphene oxide in zinc alginate films: Antibacterial activity, cytotoxicity, zinc release, water sorption/diffusion, wettability and opacity]]>

Alginate is considered an exceptional biomaterial due to its hydrophilicity, biocompatibility, biodegradability, nontoxicity and low-cost in comparison with other biopolymers. We have recently demonstrated that the incorporation of 1% graphene oxide (GO) into alginate films crosslinked with Ca2+ cations provides antibacterial activity against Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis, and no cytotoxicity for human keratinocyte HaCaT cells. However, many other reports in literature have shown controversial results about the toxicity of GO demanding further investigation. Furthermore, the synergic effect of GO with other divalent cations with intrinsic antibacterial and cytotoxic activity such as Zn2+ has not been explored yet. Thus, here, two commercially available sodium alginates were characterised and utilized in the synthesis of zinc alginate films with GO following the same chemical route reported for the calcium alginate/GO composites. The results of this study showed that zinc release, water sorption/diffusion and wettability depended significantly on the type of alginate utilized. Furthermore, Zn2+ and GO produced alginate films with increased water diffusion, wettability and opacity. However, neither the combination of GO with Zn2+ nor the use of different types of sodium alginates modified the antibacterial activity and cytotoxicity of the zinc alginates against these Gram-positive pathogens and human cells respectively.

<![CDATA[Molecular mechanisms of mesoporous silica formation from colloid solution: Ripening-reactions arrest hollow network structures]]>

The agglomeration of silica nanoparticles in aqueous solution is investigated from molecular simulations. Mimicking destabilization of colloidal solutions by full removal of protective moieties or surface charge, association of SiO2/Si(OH)4 core/shell particles leads to rapid proton transfer reactions that account for local silanole → silica ripening reactions. Yet, such virtually barrier-less binding is only observed within a limited contact zone. Agglomeration hence leads to the formation of oligomers of nanoparticles, whilst full merging into a compact precipitate is hampered by the need for extended structural reorganisation. Implementing sufficiently fast supply from colloidal solution, our simulations show the development of silica networks comprised of covalently bound, yet not fully merged nanoparticles. Within the oligomerized nanoparticle network, coordination numbers range from 2 to 5 –which is far below closest packing. Our simulations hence rationalize the formation of covalently bound network structures hosting extended pores. The resulting interfaces to the solvent show water immobilization only for the immediate contact layers, whilst the inner pores exhibit solvent mobility akin to bulk water.

<![CDATA[Detailed characterization of the solution kinetics and thermodynamics of biotin, biocytin and HABA binding to avidin and streptavidin]]>

The high affinity (KD ~ 10−15 M) of biotin for avidin and streptavidin is the essential component in a multitude of bioassays with many experiments using biotin modifications to invoke coupling. Equilibration times suggested for these assays assume that the association rate constant (kon) is approximately diffusion limited (109 M-1s-1) but recent single molecule and surface binding studies indicate that they are slower than expected (105 to 107 M-1s-1). In this study, we asked whether these reactions in solution are diffusion controlled, which reaction model and thermodynamic cycle describes the complex formation, and if there are any functional differences between avidin and streptavidin. We have studied the biotin association by two stopped-flow methodologies using labeled and unlabeled probes: I) fluorescent probes attached to biotin and biocytin; and II) unlabeled biotin and HABA, 2-(4’-hydroxyazobenzene)-benzoic acid. Both native avidin and streptavidin are homo-tetrameric and the association data show no cooperativity between the binding sites. The kon values of streptavidin are faster than avidin but slower than expected for a diffusion limited reaction in both complexes. Moreover, the Arrhenius plots of the kon values revealed strong temperature dependence with large activation energies (6–15 kcal/mol) that do not correspond to a diffusion limited process (3–4 kcal/mol). Accordingly, we propose a simple reaction model with a single transition state for non-immobilized reactants whose forward thermodynamic parameters complete the thermodynamic cycle, in agreement with previously reported studies. Our new understanding and description of the kinetics, thermodynamics, and spectroscopic parameters for these complexes will help to improve purification efficiencies, molecule detection, and drug screening assays or find new applications.

<![CDATA[The ability of locked nucleic acid oligonucleotides to pre-structure the double helix: A molecular simulation and binding study]]>

Locked nucleic acid (LNA) oligonucleotides bind DNA target sequences forming Watson-Crick and Hoogsteen base pairs, and are therefore of interest for medical applications. To be biologically active, such an oligonucleotide has to efficiently bind the target sequence. Here we used molecular dynamics simulations and electrophoresis mobility shift assays to elucidate the relation between helical structure and affinity for LNA-containing oligonucleotides. In particular, we have studied how LNA substitutions in the polypyrimidine strand of a duplex (thus forming a hetero duplex, i.e. a duplex with a DNA polypurine strand and an LNA/DNA polypyrimidine strand) enhance triplex formation. Based on seven polypyrimidine single strand oligonucleotides, having LNAs in different positions and quantities, we show that alternating LNA with one or more non-modified DNA nucleotides pre-organizes the hetero duplex toward a triple-helical-like conformation. This in turn promotes triplex formation, while consecutive LNAs distort the duplex structure disfavoring triplex formation. The results support the hypothesis that a pre-organization in the hetero duplex structure enhances the binding of triplex forming oligonucleotides. Our findings may serve as a criterion in the design of new tools for efficient oligonucleotide hybridization.

<![CDATA[Conformational regulation of Escherichia coli DNA polymerase V by RecA and ATP]]>

Mutagenic translesion DNA polymerase V (UmuD′2C) is induced as part of the DNA damage-induced SOS response in Escherichia coli, and is subjected to multiple levels of regulation. The UmuC subunit is sequestered on the cell membrane (spatial regulation) and enters the cytosol after forming a UmuD′2C complex, ~ 45 min post-SOS induction (temporal regulation). However, DNA binding and synthesis cannot occur until pol V interacts with a RecA nucleoprotein filament (RecA*) and ATP to form a mutasome complex, pol V Mut = UmuD′2C-RecA-ATP. The location of RecA relative to UmuC determines whether pol V Mut is catalytically on or off (conformational regulation). Here, we present three interrelated experiments to address the biochemical basis of conformational regulation. We first investigate dynamic deactivation during DNA synthesis and static deactivation in the absence of DNA synthesis. Single-molecule (sm) TIRF-FRET microscopy is then used to explore multiple aspects of pol V Mut dynamics. Binding of ATP/ATPγS triggers a conformational switch that reorients RecA relative to UmuC to activate pol V Mut. This process is required for polymerase-DNA binding and synthesis. Both dynamic and static deactivation processes are governed by temperature and time, in which onoff switching is “rapid” at 37°C (~ 1 to 1.5 h), “slow” at 30°C (~ 3 to 4 h) and does not require ATP hydrolysis. Pol V Mut retains RecA in activated and deactivated states, but binding to primer-template (p/t) DNA occurs only when activated. Studies are performed with two forms of the polymerase, pol V Mut-RecA wt, and the constitutively induced and hypermutagenic pol V Mut-RecA E38K/ΔC17. We discuss conformational regulation of pol V Mut, determined from biochemical analysis in vitro, in relation to the properties of pol V Mut in RecA wild-type and SOS constitutive genetic backgrounds in vivo.

<![CDATA[Targeted fluorescence lifetime probes reveal responsive organelle viscosity and membrane fluidity]]>

The only way to visually observe cellular viscosity, which can greatly influence biological reactions and has been linked to several human diseases, is through viscosity imaging. Imaging cellular viscosity has allowed the mapping of viscosity in cells, and the next frontier is targeted viscosity imaging of organelles and their microenvironments. Here we present a fluorescent molecular rotor/FLIM framework to image both organellar viscosity and membrane fluidity, using a combination of chemical targeting and organelle extraction. For demonstration, we image matrix viscosity and membrane fluidity of mitochondria, which have been linked to human diseases, including Alzheimer’s Disease and Leigh’s syndrome. We find that both are highly dynamic and responsive to small environmental and physiological changes, even under non-pathological conditions. This shows that neither viscosity nor fluidity can be assumed to be fixed and underlines the need for single-cell, and now even single-organelle, imaging.

<![CDATA[Effects of the electrical conductivity of a soilless culture system on gamma linolenic acid levels in borage seed oil]]>

Borage is a well-known plant of great importance in human nutrition and health. Expanding knowledge of particular plants that have anti-cancer products is a global concern. There is substantial information regarding the benefits, presence and extraction of gamma linolenic acid (GLA; 18:3n6) in different plants around the world, especially in borage seeds. However, there is little information concerning the effects of the salinity of the nutrient solution on the growth and presence of GLA in borage seeds. The objective of this work was to determine the optimal salinity of the nutrient solution for obtaining GLA in soilless cultivation systems. Borage plants were grown in coconut fibre and provided three treatments of nutrient solution of 2.20, 3.35 and 4.50 dS m-1, increasing solution salinity with the standard nutrient solution of concentrated macronutrients as a reference. Vegetative growth, seed production and GLA ratio were measured. The results of vegetative development and GLA production doubled and tripled with the increase in salinity of the nutrient solution, respectively.

<![CDATA[DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network]]>

Comprehensive characterization of ligand-binding sites is invaluable to infer molecular functions of hypothetical proteins, trace evolutionary relationships between proteins, engineer enzymes to achieve a desired substrate specificity, and develop drugs with improved selectivity profiles. These research efforts pose significant challenges owing to the fact that similar pockets are commonly observed across different folds, leading to the high degree of promiscuity of ligand-protein interactions at the system-level. On that account, novel algorithms to accurately classify binding sites are needed. Deep learning is attracting a significant attention due to its successful applications in a wide range of disciplines. In this communication, we present DeepDrug3D, a new approach to characterize and classify binding pockets in proteins with deep learning. It employs a state-of-the-art convolutional neural network in which biomolecular structures are represented as voxels assigned interaction energy-based attributes. The current implementation of DeepDrug3D, trained to detect and classify nucleotide- and heme-binding sites, not only achieves a high accuracy of 95%, but also has the ability to generalize to unseen data as demonstrated for steroid-binding proteins and peptidase enzymes. Interestingly, the analysis of strongly discriminative regions of binding pockets reveals that this high classification accuracy arises from learning the patterns of specific molecular interactions, such as hydrogen bonds, aromatic and hydrophobic contacts. DeepDrug3D is available as an open-source program at with the accompanying TOUGH-C1 benchmarking dataset accessible from

<![CDATA[Metal based donepezil analogues designed to inhibit human acetylcholinesterase for Alzheimer’s disease]]>

Among neurodegenerative disorders, Alzheimer’s disease (AD) is one of the most common disorders showing slow progressive cognitive decline. Targeting acetylcholinesterase (AChE) is one of the major strategies for AD therapeutics, as cholinergic pathways in the cerebral cortex and basal forebrain are compromised. Herein, we report the design of some copper and other metal based donepezil derivatives, employing density functional theory (DFT). All designed compounds are optimized at the B3LYP/SDD level of theory. Dipole moments, electronic energie, enthalpies, Gibbs free energies, and HOMO-LUMO gaps of these modified compounds are also investigated in the subsequent analysis. The molecules were then subjected to molecular docking analysis with AChE to study the molecular interactions broadly. Ensemble based docking and molecular dynamics (MD) simulations of the best candidates were also performed. Docking and MD simulation reveal that modified drugs are more potent than unmodified donepezil, where Trp86, Tyr337, Phe330 residues play some important roles in drug-receptor interactions. According to ensemble based docking, D9 shows greater binding affinity compared to the parent in most conformations obtained from protein data bank and MD simulation. In addition, it is observed that the π- π stacking with the residues of Trp86, Tyr337, Tyr341, Tyr124 and Trp286 may be required for strong ligand binding. Moreover, ADME/T analysis suggests that modified derivatives are less toxic and have improved pharmacokinetic properties than those of the parent drug. These results further confirm the ability of metal-directed drugs to bind simultaneously to the active sites of AChE and support them as potential candidates for the future treatment of Alzheimer’s disease.

<![CDATA[Removal of hydrogen sulfide from a biogas mimic by using impregnated activated carbon adsorbent]]>

Adsorption technology has led to the development of promising techniques to purify biogas, i.e., biomethane or biohydrogen. Such techniques mainly depend on the adsorbent ability and operating parameters. This research focused on adsorption technology for upgrading biogas technique by developing a novel adsorbent. The commercial coconut shell activated carbon (CAC) and two types of gases (H2S/N2 and H2S/N2/CO2) were used. CAC was modified by copper sulfate (CuSO4), zinc acetate (ZnAc2), potassium hydroxide (KOH), potassium iodide (KI), and sodium carbonate (Na2CO3) on their surface to increase the selectivity of H2S removal. Commercial H2S adsorbents were soaked in 7 wt.% of impregnated solution for 30 min before drying at 120°C for 24 h. The synthesized adsorbent’s physical and chemical properties, including surface morphology, porosity, and structures, were characterized by SEM-EDX, FTIR, XRD, TGA, and BET analyses. For real applications, the modified adsorbents were used in a real-time 0.85 L single-column adsorber unit. The operating parameters for the H2S adsorption in the adsorber unit varied in L/D ratio (0.5–2.5) and feed flow rate (1.5–5.5 L/min) where, also equivalent with a gas hourly space velocity, GHSV (212.4–780.0 hour-1) used. The performances of H2S adsorption were then compared with those of the best adsorbent that can be used for further investigation. Characterization results revealed that the impregnated solution homogeneously covered the adsorbent surface, morphology, and properties (i.e., crystallinity and surface area). BET analysis further shows that the modified adsorbents surface area decreased by up to 96%. Hence, ZnAc2–CAC clarify as the best adsorption capacity ranging within 1.3–1.7 mg H2S/g, whereby the studied extended to adsorption-desorption cycle.

<![CDATA[The optical and biological properties of glacial meltwater in an Antarctic fjord]]>

As the Western Antarctic Peninsula (WAP) region responds to a warmer climate, the impacts of glacial meltwater on the Southern Ocean are expected to intensify. The Antarctic Peninsula fjord system offers an ideal system to understand meltwater’s properties, providing an extreme in the meltwater’s spatial gradient from the glacio-marine boundary to the WAP continental shelf. Glacial meltwater discharge in Arctic and Greenland fjords is typically characterized as relatively lower temperature, fresh and with high turbidity. During two cruises conducted in December 2015 and April 2016 in Andvord Bay, we found a water lens of low salinity and low temperature along the glacio-marine interface. Oxygen isotope ratios identified this water lens as a mixture of glacial ice and deep water in Gerlache Strait suggesting this is glacial meltwater. Conventional hydrographic measurements were combined with optical properties to effectively quantify its spatial extent. Fine suspended sediments associated with meltwater (nanoparticles of ~ 5nm) had a significant impact on the underwater light field and enabled the detection of meltwater characteristics and spatial distribution. In this study, we illustrate that glacial meltwater in Andvord Bay alters the inherent and apparent optical properties of the water column, and develop statistical models to predict the meltwater content from hydrographic and optical measurements. The predicted meltwater fraction is in good agreement with in-situ values. These models offer a potential for remote sensing and high-resolution detection of glacial meltwater in Antarctic waters. Furthermore, the possible influence of meltwater on phytoplankton abundance in the surface is highlighted; a significant correlation is found between meltwater fraction and chlorophyll concentration.

<![CDATA[Aggregation and interfacial phenomenon of amphiphilic drug under the influence of pharmaceutical excipients (green/biocompatible gemini surfactant)]]>

In the current study, we have examined the interaction amongst an antidepressant drug amitriptyline hydrochloride (AMH) and ethane-1, 2-diyl bis(N,N-dimethyl-N-cetylammoniumacetoxy) dichloride (16-E2-16, a green gemini surfactant) through tensiometric and fluorimetric techniques in aqueous/electrolyte/urea solutions. Significant variations are observed in the various evaluated parameters in the present study. Gemini 16-E2-16 has outstanding surface properties along with a much lower cmc value, demonstrating very little toxicity as well as considerable antimicrobial activity. The cmc values of mixtures decrease through increase in mole fraction (α1) of 16-E2-16, which specifies the nonideality of the solution mixtures, along with demonstrating the occurrence of mixed micellization too. Negative βRub values signify on the whole attractive force of interaction between constituents of mixed micelles. Owing to the incidence of electrolyte NaCl (50–1), lowering of the micelles’ surface charge happens, resulting in aggregation taking place at lower concentration while the presence of urea (NH2CONH2) halts micellization taking place, which means the cmc value increases in the attendance of urea. The ΔGmo values for all systems were negative along with the presence of electrolyte/urea. The excess free energy (Gex) of studied mixed systems was also estimated and found to be negative for all the systems. Using the fluorescence quenching method, the micelle aggregation number (Nagg) was evaluated and it was found that the contribution of gemini surfactant was always more than that of the AMH and their value enhances in the existence of electrolyte while decreasing in the attendance of NH2CONH2 in the system. In addition, other fluorescence parameters such as micropolarity (I1/I3), dielectric constant (Dexp) as well as Stern–Volmer binding constants (Ksv) of mixed systems were evaluated and the results showed the synergistic performance of the AMH + 16-E2-16 mixtures. Along with tensiometric and fluorimetric techniques, FT-IR spectroscopy was also engaged to reveal the interaction among constituents.